Jump to content

Microscope

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 62.171.194.36 (talk) at 14:58, 3 November 2009 (→‎History). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Microscope
File:Optical microscope nikon alphaphot +.jpg
UsesSmall sample observation
Notable experimentsDiscovery of cells
InventorHans Lippershey
Zacharias Janssen
Related itemsElectron microscope

A microscope (from the Greek: μικρός, mikrós, "small" and σκοπεῖν, skopeîn, "to look" or "see") is an instrument to see objects too tiny for the naked eye. The science of investigating small objects using such an instrument is called microscopy. Microscopic means invisible to the eye unless aided by a microscope.

History

An early microscope was made in 1590 in Middelburg, The Netherlands.[1] Three eyeglass makers are variously given credit: Hans Lippershey (who developed an early telescope); Zacharias Jansen; with the help of his father, Hans Janssen. Giovanni Faber coined the name for Galileo Galilei's compound microscope in 1625.[2] (Galileo had called it the "occhiolino" or "little eye".)yer baby

The most common type of microscope—and the first invented—is the optical microscope. This is an optical instrument containing one or more lenses producing an enlarged image of an object placed in the focal plane of the lenses.okay cool

Types

Types of microscopes

"Microscopes" can be separated into optical theory microscopes (Light microscope), electron microscopes (e.g.,TEM), and scanning probe microscopes (SPM). Optical microscopes function through the optical theory of lenses in order to magnify the image generated by the passage of a wave through the sample, or reflected by the sample. The waves used are electromagnetic (in optical microscopes) or electron beams (in electron microscopes). Types are the compound light, stereo, and the electron microscope.

Optical microscopes, using visible wavelengths of light, are the simplest and most used. Optical microscopes have refractive glass and occasionally of plastic or quartz, to focus light into the eye or another light detector. Mirror-based optical microscopes operate in the same manner. Typical magnification of a light microscope, assuming visible range light, is up to 1500x with a theoretical resolution limit of around 0.2 micrometres or 200 nanometers. Specialized techniques (e.g., scanning confocal microscopy, Vertico SMI) may exceed this magnification but the resolution is diffraction limited. The use of shorter wavelengths of light, such as the ultraviolet, is one way to improve the spatial resolution of the optical microscope, as are devices such as the near-field scanning optical microscope.
Sarfus, a recent optical technique increases the sensitivity of standard optical microscope to a point it becomes possible to directly visualize nanometric films (down to 0.3 nanometer) and isolated nano-objects (down to 2 nm-diameter). The technique is based on the use of non-reflecting substrates for cross-polarized reflected light microscopy.

CBP Office of Field Operations agent checking the authenticity of a travel document at an international airport using a stereo microscope

Ultraviolet light enables the resolution of microscopic features, as well as to image samples that are transparent to the eye. Near infrared light images circuitry embedded in bonded silicon devices, as silicon is transparent in this region. Many wavelengths of light, ranging from the ultraviolet to the visible are used to excite fluorescence emission from objects for viewing by eye or with sensitive cameras.

Phase contrast microscopy is an optical microscopy illumination technique in which small phase shifts in the light passing through a transparent specimen are converted into amplitude or contrast changes in the image. A phase contrast microscope does not require staining to view the slide. This microscope made it possible to study the cell cycle.

The traditional optical microscope has been recently modified into a digital microscope, where instead of directly viewing the object, a charge-coupled device (CCD) camera projects the image to a monitor.

Electron microscopes

Three major variants of electron microscopes exist:

The SEM and STM can also be considered examples of scanning probe microscopy.

Established types of scanning probe microscopy

Of these techniques AFM and STM are the most commonly used followed by MFM and SNOM/NSOM.

Other microscopes

Replica of microscope by Van Leeuwenhoek
Different microscopes

Scanning acoustic microscopes use sound waves to measure variations in acoustic impedance. Similar to Sonar in principle, they are used for such jobs as detecting defects in the subsurfaces of materials including those found in integrated circuits.

See also

References

  1. ^ Microscopes: Time Line
  2. ^ Stephen Jay Gould(2000). The Lying Stones of Marrakech, ch.2 "The Sharp-Eyed Lynx, Outfoxed by ature". London: Jonathon Cape. ISBN 0224050443
  3. ^ Morita, Seizo. Roadmap of Scanning Probe Microscopy. 3 January 2007

External links