Jump to content

Gallic acid

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Michael W Gray (talk | contribs) at 13:53, 23 October 2013 (→‎Historical context and uses - correction see talk page). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Gallic acid
Names
IUPAC name
3,4,5-trihydroxybenzoic acid
Other names
Gallic acid
Gallate
3,4,5-trihydroxybenzoate
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.005.228 Edit this at Wikidata
EC Number
  • 205-749-9
KEGG
RTECS number
  • LW7525000
UNII
  • InChI=1S/C7H6O5/c8-4-1-3(7(11)12)2-5(9)6(4)10/h1-2,8-10H,(H,11,12) checkY
    Key: LNTHITQWFMADLM-UHFFFAOYSA-N checkY
  • InChI=1/C7H6O5/c8-4-1-3(7(11)12)2-5(9)6(4)10/h1-2,8-10H,(H,11,12)
    Key: LNTHITQWFMADLM-UHFFFAOYAN
  • O=C(O)c1cc(O)c(O)c(O)c1
Properties
C7H6O5
Molar mass 170.12 g/mol
Appearance White, yellowish-white, or
pale fawn-colored crystals.
Density 1.694 g/cm3 (anhydrous)
Melting point 260 °C (500 °F; 533 K)
1.19 g/100 mL, 20°C (anhydrous)
1.5 g/100 mL, 20 °C (monohydrate)
Solubility soluble in alcohol, ether, glycerol, acetone
negligible in benzene, chloroform, petroleum ether
log P 0.70
Acidity (pKa) COOH: 4.5, OH: 10.
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Irritant
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g. sodium chlorideFlammability 0: Will not burn. E.g. waterInstability (yellow): no hazard codeSpecial hazards (white): no code
0
0
Lethal dose or concentration (LD, LC):
5000 mg/kg (rabbit, oral)
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Gallic acid is a trihydroxybenzoic acid, a type of phenolic acid, a type of organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants.[1] The chemical formula is C6H2(OH)3COOH. Gallic acid is found both free and as part of hydrolyzable tannins.

Salts and esters of gallic acid are termed 'gallates'. Despite its name, it does not contain gallium.

Gallic acid is commonly used in the pharmaceutical industry.[2] It is used as a standard for determining the phenol content of various analytes by the Folin-Ciocalteau assay; results are reported in gallic acid equivalents.[3] Gallic acid can also be used as a starting material in the synthesis of the psychedelic alkaloid mescaline.[4]

Gallic acid seems to have anti-fungal and anti-viral properties. Gallic acid acts as an antioxidant and helps to protect human cells against oxidative damage. Gallic acid was found to show cytotoxicity against cancer cells, without harming healthy cells. Gallic acid is used as a remote astringent in cases of internal haemorrhage. Gallic acid is also used to treat albuminuria and diabetes. Some ointments to treat psoriasis and external haemorrhoids contain gallic acid.[5]

Historical context and uses

Gallic acid is an important component of iron gall ink, the standard European writing and drawing ink from the 12th to 19th century with a history extending to the Roman empire and the Dead Sea Scrolls. Pliny the Elder (23-79 AD) describes his experiments with it and writes that it was used to produce dyes. Galls (also known as oak apples) from oak trees were crushed and mixed with water, producing tannic acid (a macromolecular complex containing gallic acid). It could then be mixed with green vitriol (ferrous sulfate) — obtained by allowing sulfate-saturated water from a spring or mine drainage to evaporate — and gum arabic from acacia trees; this combination of ingredients produced the ink.[6]

Gallic acid was one of the substances used by Angelo Mai (1782–1854), among other early investigators of palimpsests, to clear the top layer of text off and reveal hidden manuscripts underneath. Mai was the first to employ it, but did so "with a heavy hand", often rendering manuscripts too damaged for subsequent study by other researchers.[citation needed]

Gallic acid was first studied by the Swedish chemist Carl Wilhelm Scheele in 1786.[7] In 1818 the French chemist and pharmacist Henri Braconnot (1780–1855) devised a simpler method of purifying gallic acid from galls;[8] gallic acid was also studied by the French chemist Théophile-Jules Pelouze (1807–1867),[9] among others.

George Washington used gallic acid to communicate with spies[clarification needed] during the American Revolutionary War, according to the miniseries America: The Story of Us.[citation needed]

Gallic acid is a component of some pyrotechnic whistle mixtures.

Metabolism

Biosynthesis

Chemical structure of 3,5-didehydroshikimate

Gallic acid is formed from 3-dehydroshikimate by the action of the enzyme shikimate dehydrogenase to produce 3,5-didehydroshikimate. This latter compound tautomerizes to form the redox equivalent gallic acid, where the equilibrium lies essentially entirely toward gallic acid because of the coincidently occurring aromatization.[10][11]

Degradation

Gallate dioxygenase is an enzyme found in Pseudomonas putida that catalyses the reaction gallate + O2(1E)-4-oxobut-1-ene-1,2,4-tricarboxylate.

Gallate decarboxylase is another enzyme in the degradation of gallic acid.

Conjugation

Gallate 1-beta-glucosyltransferase is an enzyme that uses UDP-glucose and gallate, whereas its two products are UDP and 1-galloyl-beta-D-glucose.

Natural occurrences

Gallic acid is found in a number of land plants. It is also found in the aquatic plant Myriophyllum spicatum and shows an allelopathic effect on the growth of the blue-green alga Microcystis aeruginosa.[12]

List of plants that contain the chemical

In food

Spectral data

UV-Vis
Lambda-max: 220, 271 nm (ethanol)
Spectrum of gallic acid
Extinction coefficient (log ε)
IR
Major absorption bands ν : 3491, 3377, 1703, 1617, 1539, 1453, 1254 cm−1 (KBr)
NMR
Proton NMR


(acetone-d6):
d : doublet, dd : doublet of doublets,
m : multiplet, s : singlet

δ :

7.15 (2H, s, H-3 and H-7)

Carbon-13 NMR


(acetone-d6):

δ :

167.39 (C-1),
144.94 (C-4 and C-6),
137.77 (C-5),
120.81 (C-2),
109.14 (C-3 and C-7)

Other NMR data
MS
Masses of
main fragments
ESI-MS [M-H]- m/z : 169.0137

Reference[14]

Esters

Also known as galloylated esters:

Health effects

It is a weak carbonic anhydrase inhibitor.[18]

Potential uses

It can be used to produce polyesters based on phloretic acid and gallic acid.[19]

See also

References

  1. ^ LD Reynolds and NG Wilson, "Scribes and Scholars" 3rd Ed. Oxford: 1991. pp193–4.
  2. ^ S. M. Fiuza. "Phenolic acid derivatives with potential anticancer properties––a structure–activity relationship study. Part 1: Methyl, propyl and octyl esters of caffeic and gallic acids". Elsevier. doi:10.1016/j.bmc.2004.04.026. {{cite web}}: Missing or empty |url= (help)
  3. ^ Andrew Waterhouse. "Folin-Ciocalteau Micro Method for Total Phenol in Wine". UC Davis.
  4. ^ Tsao, Makepeasce (1951). "A New Synthesis Of Mescaline". Journal of the American Chemical Society. 73 (11): 5495–5496. doi:10.1021/ja01155a562. ISSN 0002-7863. {{cite journal}}: Cite has empty unknown parameter: |coauthors= (help); Unknown parameter |month= ignored (help)
  5. ^ phytochemicals.info
  6. ^ Fruen, Lois. "Iron Gall Ink".
  7. ^ Carl Wilhelm Scheele (1786) "Om Sal essentiale Gallarum eller Gallåple-salt" (On the essential salt of galls or gall-salt), Kongliga Vetenskaps Academiens nya Handlingar (Proceedings of the Royal [Swedish] Academy of Science), vol 7, pages 30-34.
  8. ^ Braconnot Henri (1818). "Observations sur la préparation et la purification de l'acide gallique, et sur l'existence d'un acide nouveau dans la noix de galle". Annales de chimie et de physique. 9: 181–184. {{cite journal}}: Unknown parameter |trans_title= ignored (|trans-title= suggested) (help)
  9. ^ J. Pelouze (1833) "Mémoire sur le tannin et les acides gallique, pyrogallique, ellagique et métagallique," Annales de chimie et de physique, vol. 54, pages 337-365 [presented February 17, 1834].
  10. ^ Gallic acid pathway on metacyc.org
  11. ^ Dewick, PM; Haslam, E (1969). "Phenol biosynthesis in higher plants. Gallic acid". Biochemical Journal. 113 (3): 537–542. PMC 1184696.
  12. ^ Nakai, S (2000). "Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa". Water Research. 34 (11): 3026. doi:10.1016/S0043-1354(00)00039-7.
  13. ^ Mämmelä, Pirjo; Savolainen, Heikki; Lindroos, Lasse; Kangas, Juhani; Vartiainen, Terttu (2000). "Analysis of oak tannins by liquid chromatography-electrospray ionisation mass spectrometry". Journal of Chromatography A. 891 (1): 75–83. doi:10.1016/S0021-9673(00)00624-5. PMID 10999626.
  14. ^ a b Chanwitheesuk, Anchana; Teerawutgulrag, Aphiwat; Kilburn, Jeremy D.; Rakariyatham, Nuansri (2007). "Antimicrobial gallic acid from Caesalpinia mimosoides Lamk". Food Chemistry. 100 (3): 1044. doi:10.1016/j.foodchem.2005.11.008.
  15. ^ Antibacterial phenolics from Boswellia dalzielii. Alemika Taiwo E, Onawunmi Grace O and Olugbade, Tiwalade O, Nigerian Journal of Natural Products and Medicines, 2006 (abstract)
  16. ^ Pathak, S. B.; Niranjan, K.; Padh, H.; Rajani, M.; et al. (2004). "TLC Densitometric Method for the Quantification of Eugenol and Gallic Acid in Clove". Chromatographia. 60 (3–4): 241–244. doi:10.1365/s10337-004-0373-y. {{cite journal}}: Cite has empty unknown parameter: |coauthors= (help); Explicit use of et al. in: |first= (help)
  17. ^ Gálvez, Miguel Carrero; Barroso, Carmelo García; Pérez-Bustamante, Juan Antonio (1994). "Analysis of polyphenolic compounds of different vinegar samples". Zeitschrift für Lebensmittel-Untersuchung und -Forschung. 199: 29. doi:10.1007/BF01192948.
  18. ^ Satomi, H; Umemura, K; Ueno, A; Hatano, T; Okuda, T; Noro, T (1993). "Carbonic anhydrase inhibitors from the pericarps of Punica granatum L". Biological & Pharmaceutical Bulletin. 16 (8): 787–90. doi:10.1248/bpb.16.787. PMID 8220326.
  19. ^ New polymer syntheses, 101. Liquid-crystalline hyperbranched and potentially biodegradable polyesters based on phloretic acid and gallic acid. Antonio Reina, Andreas Gerken, Uwe Zemann and Hans R. Kricheldorf, Macromolecular Chemistry and Physics, July 1999, Volume 200, Issue 7, pages 1784–1791, doi:10.1002/(SICI)1521-3935(19990701)200:7<1784::AID-MACP1784>3.0.CO;2-B