Talk:Mars
This is the talk page for discussing improvements to the Mars article. This is not a forum for general discussion of the article's subject. |
Article policies
|
Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL |
Archives: Index, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10Auto-archiving period: 90 days |
This article is written in American English, which has its own spelling conventions (color, defense, traveled) and some terms that are used in it may be different or absent from other varieties of English. According to the relevant style guide, this should not be changed without broad consensus. |
Mars is a featured article; it (or a previous version of it) has been identified as one of the best articles produced by the Wikipedia community. Even so, if you can update or improve it, please do so. | ||||||||||||||||||||||||||||||||||
Mars is part of the Solar System series, a featured topic. This is identified as among the best series of articles produced by the Wikipedia community. If you can update or improve it, please do so. | ||||||||||||||||||||||||||||||||||
This article appeared on Wikipedia's Main Page as Today's featured article on May 8, 2007. | ||||||||||||||||||||||||||||||||||
|
A fact from this article was featured on Wikipedia's Main Page in the On this day section on August 27, 2004, August 27, 2005, August 27, 2008, August 27, 2009, August 27, 2010, August 27, 2012, and August 27, 2014. |
This article has not yet been rated on Wikipedia's content assessment scale. It is of interest to multiple WikiProjects. | ||||||||||||||||||||||||||||||
Please add the quality rating to the {{WikiProject banner shell}} template instead of this project banner. See WP:PIQA for details.
|
This is the talk page for discussing improvements to the Mars article. This is not a forum for general discussion of the article's subject. |
Article policies
|
Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL |
Archives: Index, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10Auto-archiving period: 90 days |
The 47-year cycle of Mars was observed by the Ancients
The 47-year cycle of Mars: after 47 years - 22 synodic periods of 780 days each - Mars returns to the same position among the stars and is in the same relationship to the Earth and Sun. The ancient Mesopotamians discovered this cycle. [1]
Mars water discovery
Hello, It is commonly known that evidence of seasonal waterflow or active waterflow was found on Mars near the Curiosity[1], but the curiosity is not allowed to look[2]. Please try to edit this in to the article. Thank you.
References
Silica Discovery
Much higher concentration of silica element at some sites over the past last seven months than anywhere else in the last 40 months after landing and silica makes nine tenths of composition of some of the rocks. The high silica was a surprise, the scientist said. And it supports microbal life.
Read more:
MansourJE (talk) 06.35, 23 December 2015 (UTC)
External links modified
Hello fellow Wikipedians,
I have just modified one external link on Mars. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:
- Corrected formatting/usage for http://epswww.unm.edu/facstaff/brearley/Golden_p681-695_04%5B1%5D.pdf
When you have finished reviewing my changes, please set the checked parameter below to true or failed to let others know (documentation at {{Sourcecheck}}
).
This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}}
(last update: 5 June 2024).
- If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
- If you found an error with any archives or the URLs themselves, you can fix them with this tool.
Cheers.—cyberbot IITalk to my owner:Online 01:47, 1 April 2016 (UTC)
Olympus Mons
Please change the current text about Olympus Mons, as it is THE largest known mountain in the solar system, not the second largest.— Preceding unsigned comment added by Kaishaku 1986 (talk • contribs)
- The thing is, since Dawn has orbited Vesta, it is known that Rheasilvia's central peak is slightly higher, see List of tallest mountains in the Solar System. --JorisvS (talk) 17:52, 18 May 2016 (UTC)
May 12, 2016 New Hubble Mars Image
For the infobox if interested: http://hubblesite.org/newscenter/archive/releases/2016/15/ CuriousMind01 (talk) 12:53, 21 May 2016 (UTC)
- Nice image, but I think it is still inferior to the image currently in the infobox in terms of overall quality. We had a long discussion about the lead image about a year ago. — Huntster (t @ c) 20:22, 21 May 2016 (UTC)
Tidal lock?
The article contains the following assertion:
- "7.5 billion years from now. Earth and Mars may become tidally locked with the expanding Sun."
However, I didn't see that mentioned in the attached reference. Part of the problem may be that we don't have full access to the reference work, but the part that was visible didn't seem to mention the possibility. It might help if this statement was backed up by a scholarly study. Praemonitus (talk) 20:43, 27 May 2016 (UTC)
Grand tack hypothesis
Should the third paragraph of the "Surface geology" section cover the Grand tack hypothesis and its likely impact on the accretion of material that formed Mars? Praemonitus (talk) 19:46, 10 June 2016 (UTC)
- IMO, it seems tangential to Mars' geology. The article is long as it is. My 2 cents. Cheers, BatteryIncluded (talk)
- Well it explains why the planet is so small, thereby having its present day geological structure and atmosphere. But otherwise yes, I suppose it is tangential. Praemonitus (talk) 13:51, 11 June 2016 (UTC)
Semi-protected edit request on 29 June 2016
This edit request has been answered. Set the |answered= or |ans= parameter to no to reactivate your request. |
The images from the following links should be added to the photos in the "Mars" Article: http://imgur.com/vCubgyA http://imgur.com/KVAnI5S Blinndsay (talk) 22:59, 29 June 2016 (UTC)
- Not done: I don't see any indication that those images are compatibility licensed for use on Wikipedia. Unless they are released by the copyright holder under a compatible license, they cannot be uploaded. — JJMC89 (T·C) 02:02, 30 June 2016 (UTC)
The Mars Density Equation
The Density of Mars can be described as an equation of the Form A R^3 + B R + C where R is the Radius in Kilometers, and C is the Density of the Crust, while A is the tri-axial coefficient of compression, and B is the gravitational uni-axial co-efficient of compression. R is the Radius at the tilt angle of a spinning sphere ( approximately 23 degrees 19 minutes and 39.3 seconds of tilt = 23.327 583 333 degrees of tilt. The tilt angle radius gives a slightly better indication of the Volume of an oblate spheroidal planet like Mars, where the Equitorial Radius is greater than the Polar radius. The Tilt Angle Radius = (( 1 X polar Radius) + ( 2.858 093 602 X Equitorial Radius )) / 3.858 093 602. This gives 3391.0161 Km. The density is then ( 1 + Pi ) X 10^-9 X R^3 + ( 1 + SQRT 2) X 10^-1 X R + 2941.05 kg/m^3. This gives 161.4942016 + 818.663704 + 2941.05 = 3921.207906 kg/m^3. This is slightly lower density than density listed in the article of 3933.5 +/- 0.4 kg/m^3, but the Radius is slightly higher, and Mass will be 6.404 688 781 E23 is slightly lower, and the surface gravity is slightly higher at 3.71743 m/sec^2 versus 3.711 m/sec^2. The advantage of the density equation is that it gives a density for the dominate materials that make up the Crust of Mars. That is 2941.05 Kg/m^3 and other materials mixed together still are dominated by the Unit mass of the tholeiitic basalt. In comparison Venus has a Value of C = 2657.05 ( granite and Diorite ), and the Earth and Moon have a value of C = 2900 Kg/m^3 ( >85 % Basalt, and <15 % Granite by volume in the Crust ). The Density Equation is for Rocky Planets, so it doesn't work well on Mercury, or the Gas Giant Planets. In addition it can be used on the ice Planets, but the value of C can be lower than 1000. In conclusion the Rocky Planet Density Equation can be used to determine the density of the crustal materials as well as the overall average density of the Planet, or Satellite of a Planet.63.225.17.34 (talk) 17:11, 3 July 2016 (UTC)
- Note that any data used in the article needs to satisfy WP:NOR. I.e. it must be based upon reliable sources. Praemonitus (talk) 17:49, 5 July 2016 (UTC)
Move "Moons" section
I feel Moons comes in such an insignificant part of the page. I'm thinking it is worth moving closer to the top of the page. Would it perhaps belong in the Physical Characteristics? Situphobos (talk) 09:41, 8 July 2016 (UTC)
- Yes, its position below the in-culture things, some even trivial, was ridiculous. I've moved it. --JorisvS (talk) 12:00, 8 July 2016 (UTC)
- I agree. Its position after the history and culture sections was inappropriate - it clearly belongs nearer the scientific sections, and the new location is much better. Boing! said Zebedee (talk) 12:46, 8 July 2016 (UTC)
Orbital parameters
My understanding was that orbital parameters don't need to be kept highly precise because (1) orbits change due to perturbation, and (2) this is an encyclopedia, not a NASA tracking station. I attempted to rectify this by reverting the edits of W like wiki, but this was reverted without a suitable explanation. It looks like this user has done the same to the other planet wikipages. Praemonitus (talk) 17:39, 4 August 2016 (UTC)
- Hi Praemonitus, I just filled in the values from the nasa-page. If they are too precise for you: A compromise could be: keep the precise km-value and round the AU-value (but not the old one - the values of some other planets were a bit incorrect before)?! Cheers --W like wiki (talk) 18:02, 4 August 2016 (UTC)
- The NASA page is based on the JPL data, which uses table 8.10.2 of "Keplerian Elements for Approximate Positions of the Major Planets" by E.M. Standish. For Mars that shows a base a of 1.52371034 in epoch J2000, with a variation of 0.00001847 per century. So yes that's good for what it was like sixteen years ago. Do we need to know it with that much accuracy though? For encyclopedic purposes, a few digits of precision is good enough. I know this has been discussed before. Praemonitus (talk) 19:51, 4 August 2016 (UTC)
- Your "precise" data may be just an average as the distance varies throughout its orbit. Anyway, this and all other articles you improved with references, do not need AU within nine significant figures. I doubt JPL uses Wikipedia to program their orbiters and landers' firing sequence, so about 3 figures should do fine, thank you. Cheers, BatteryIncluded (talk) 00:30, 5 August 2016 (UTC)
- I think W_like_wiki's figures are overly precise, but there's no need to sacrifice a degree of accuracy just because we aren't NASA. I typically go with two decimal places as that conveys a degree of accuracy useful for almost anyone without being overbearingly precise. — Huntster (t @ c) 00:48, 5 August 2016 (UTC)
Request edit on 12 August 2016
It is requested that an edit be made to the semi-protected article at Mars. (edit · history · last · links · protection log)
This template must be followed by a complete and specific description of the request, that is, specify what text should be removed and a verbatim copy of the text that should replace it. "Please change X" is not acceptable and will be rejected; the request must be of the form "please change X to Y".
The edit may be made by any autoconfirmed user. Remember to change the |
— 2601:183:4000:D57A:E532:F558:2BA1:2602 (talk) 01:33, 12 August 2016 (UTC)
- Wikipedia articles that use American English
- Wikipedia featured articles
- FA-Class Featured topics articles
- Wikipedia featured topics Solar System featured content
- High-importance Featured topics articles
- Featured articles that have appeared on the main page
- Featured articles that have appeared on the main page once
- Old requests for peer review
- Selected anniversaries (August 2004)
- Selected anniversaries (August 2005)
- Selected anniversaries (August 2008)
- Selected anniversaries (August 2009)
- Selected anniversaries (August 2010)
- Selected anniversaries (August 2012)
- Selected anniversaries (August 2014)
- Pages using WikiProject banner shell with duplicate banner templates
- FA-Class Astronomy articles
- Top-importance Astronomy articles
- FA-Class Astronomy articles of Top-importance
- FA-Class Astronomical objects articles
- Pages within the scope of WikiProject Astronomical objects (WP Astronomy Banner)
- Unassessed Astronomy articles
- Unknown-importance Astronomy articles
- Unassessed Astronomy articles of Unknown-importance
- Unassessed Solar System articles
- Unknown-importance Solar System articles
- Solar System task force
- Wikipedia semi-protected edit requests