73P/Schwassmann–Wachmann
Discovery | |
---|---|
Discovered by | Arnold Schwassmann Arno Arthur Wachmann |
Discovery date | May 2, 1930 |
Designations | |
1930 VI; 1979 VIII; 1990 VIII; 1994w | |
Orbital characteristics | |
Epoch | 2017-Feb-16 (JD 2457800.5) |
Aphelion | 5.211 AU |
Perihelion | 0.9722 AU (0.9187 AU after 2025 Jupiter approach)[1] |
Semi-major axis | 3.092 AU |
Eccentricity | 0.6855 |
Orbital period | 5.44 yr |
Inclination | 11.237° |
Last perihelion | 24 August 2022 (BU+BV)[2] 25 August 2022 (main)[3][4] 26 August 2022 (73P-BT)[5] March 16, 2017[6][7] October 16, 2011[8] June 6, 2006[8] |
Next perihelion | 23 December 2027[1] |
Earth MOID | 0.014 AU (2.1 million km)[6] |
Physical characteristics | |
Dimensions | 2.2 km (pre-1995 breakup)[9] ~1 km (73P-C) |
73P/Schwassmann–Wachmann, also known as Schwassmann–Wachmann 3 or SW3 for short, is a periodic comet that has a 5.4 year orbital period and that has been actively disintegrating since 1995. When it came to perihelion (closest approach to the Sun) in March 2017, fragment 73P-BT was separating from the main fragment 73P-C.[10] Fragments 73P-BU and 73P-BV were detected in July 2022.[2] The main comet came to perihelion on 25 August 2022,[4] when the comet was 0.97 AU from the Sun and 1 AU from Earth.[3] It will be less than 80 degrees from the Sun from 25 May 2022 until August 2023. On 3 April 2025 it will make a modest approach of 0.3 AU to Jupiter.[6] 73P will next come to perihelion on 23 December 2027 when it will be 0.92 AU from the Sun and on the far side of the Sun 1.9 AU from Earth.[1]
Comet Schwassmann–Wachmann 3 was one of the comets discovered by astronomers Arnold Schwassmann and Arno Arthur Wachmann, working at the Hamburg Observatory in Bergedorf, Germany. It began disintegrating on its re-entry to the inner Solar System in 1995, in a reaction triggered by the Sun's heating of the comet as it emerged from the colder regions of the outer Solar System.
Comet 73P/Schwassmann–Wachmann is a parent body of meteor shower Tau Herculids and the 1995 break-up of the comet generated a modest meteor shower around 31 May 2022 4:00-5:00 UT that lasted a few hours.[11]
The comet was discovered as astronomers were exposing photographic plates in search of minor planets for a minor planet survey, on May 2, 1930.[12] On 31 May 1930 the comet passed about 0.062 AU (9.3 million km; 5.8 million mi) from Earth.[13][12] The comet was lost after its 1930 apparition as the 1935 apparition had poor viewing geometry, but was recovered in 1979. During perihelion in 1985, the comet was unobserved as it was on the far side of the Sun 1.9 AU from Earth.[14] In 1990 the comet reached apparent magnitude 9 and was the best appearance since 1930.[12] On 12 May 2006 the comet passed 0.0783 AU (11.71 million km; 7.28 million mi) from Earth.[6] During the 2011 perihelion passage the primary component 73P-C was recovered on 28 November 2010 near apparent magnitude 21.3;[15] it came to perihelion on 16 October 2011.
Schwassmann–Wachmann has an orbital period of 5.4 years and has an Earth-MOID of 0.014 AU (2.1 million km; 1.3 million mi).[6] At aphelion (farthest distance from the Sun) the comet often makes approaches to Jupiter as it did in 1965 and will in 2167.[6] Schwassmann–Wachmann was originally estimated to have a pre-breakup nucleus diameter of approximately 2.2 km.[9] In 2005 fragment C was estimated to be about 1 km in diameter.
Breakup
In September 1995, 73P began to disintegrate.[16] It was seen to break into four large pieces labeled 73P-A, B, C and D.[17] As of March 2006, at least eight fragments were known: B, C, G, H, J, L, M and N. On April 18, 2006, the Hubble Space Telescope recorded dozens of pieces of fragments B and G.[18] It appears that the comet may eventually disintegrate completely and cease to be observable (as did 3D/Biela in the 19th century), in which case its designation would change from 73P to 73D. In May 2006, it was known to have split into at least 66 separate objects.[19] In April 2006, fragment C was the largest and the presumed principal remnant of the original nucleus.[17]
The fragments passed Earth in May 2006, with the comet coming nearest to Earth on May 12 at a distance of 0.078 AU (11.7 million km; 7.3 million mi),[6] a close pass in astronomical terms though with no significant threat of debris–Earth collision. With a 34-day observation arc fragment 73P-T was known to pass Earth on May 16 at roughly a distance of 0.059 AU (8.8 million km; 5.5 million mi).[20] In 1930 when the comet passed Earth that close, there was a meteor shower on June 9 with as many as 100 meteors per hour.[21][12] Analysis by P. A. Wiegert et al. suggested that a recurrence of that spectacle was unlikely.
Over many decades the fragments of 73P from 1995 and 2006 will disperse over the orbital path of 73P as they are all moving at a slightly different speed. Known fragments of 73P have orbital periods of 4.7 years (73P-AJ) to 6.1 years (73P-Y).[22] While the main fragment of 73P came to perihelion (closest approach to the Sun) on 25 August 2022 when it was 1 AU from Earth,[3] fragment 73P-Y (with a short 34-day observation arc) had a best-fit of being near the orbit of Jupiter about 6.0 ± 0.5 AU (898 ± 75 million km) from Earth.[23]
The non-primary fragment 73P-BT which has an observation arc of 250 days from February 2017 to October 2017 and (if it had survived) was expected to come to perihelion on 26 August 2022.[5] On 23 July 2022 fragments JD001 (73P-BU) and JD002 (73P-BV) were detected and came to perihelion on 24 August 2022.[24][2] Three additional fragments "BW, BX, and BY" that were discovered in mid-August were announced on 2 September 2022.[25] 73P-BV had a 22-day observation arc giving it the longest observation arc of the five fragments discovered in 2022.
Date & time of closest approach |
Earth distance (AU) |
Sun distance (AU) |
Velocity wrt Earth (km/s) |
Velocity wrt Sun (km/s) |
Uncertainty region (3-sigma) |
Reference |
---|---|---|---|---|---|---|
2070-Jul-11 ± 4 days | 0.121 AU (18.1 million km; 11.2 million mi; 47 LD) | 0.938 AU (140.3 million km; 87.2 million mi; 365 LD) | 11.9 | 40.0 | ± 500 thousand km | Horizons |
The comet was to have been visited by the CONTOUR comet nucleus probe on June 18, 2006, but contact with the probe was lost on August 15, 2002 when it fired its Star 30BP solid rocket motor to inject itself into solar orbit.
Image gallery
-
The B, G and R components of 73P, and Tau Coronae Borealis, May 1, 2006
-
The C component of 73P, and the Ring Nebula, May 8, 2006
-
Image taken by Andrew Catsaitis of components B and C of Comet 73P/Schwassmann–Wachmann 3 as seen together on 31 May 2006
-
Image of fragment C passing the Ring Nebula taken on 7 May 2006 at St. Francis Xavier University in Antigonish, Nova Scotia, Canada
-
Component B as seen by the Hubble Space Telescope. Also available as Video clip.
-
Image by the Spitzer Space Telescope
-
Comet Schwassmann–Wachmann passes in the field of view of the Ring Nebula on 7 May 2006. Photo by Maynard Pittendreigh
References
- ^ a b c "Horizons Batch for 73P (90000734) on 2027-Dec-23" (Perihelion occurs when rdot flips from negative to positive. r is distance from the Sun and delta is the distance from Earth). JPL Horizons. Archived from the original on 2023-07-10. Retrieved 2023-07-10. (JPL#K222/29 Soln.date: 2023-May-04)
- ^ a b c JPL SBDB: 73P-BU and JPL SBDB: 73P-BV
- ^ a b c "Horizons Batch for 73P (90000734) on 2022-08-25" (r is distance from the Sun and delta is the distance from Earth). JPL Horizons. Retrieved 2022-05-31.
- ^ a b "73P/Schwassmann-Wachmann Orbit" (Perihelion as defined at epoch 2022-08-09 using a generic two-body solution (which is also within 1 month of perihelion passage) shows perihelion occurred on 2022-08-25). Minor Planet Center. Retrieved 2017-04-07.
- ^ a b "Horizons Batch for 73P-BT on 2022-08-26" (r is distance from the Sun and delta is the distance from Earth). JPL Horizons. Retrieved 2022-06-07.
- ^ a b c d e f g h "JPL Small-Body Database Browser: 73P/Schwassmann–Wachmann" (Best fit for 2011+). Jet Propulsion Laboratory. Retrieved 2011-05-05.
- ^ Syuichi Nakano (2011-01-07). "73P/Schwassmann-Wachmann 3 - C (NK 2021)". OAA Computing and Minor Planet Sections. Retrieved 2012-02-18.
- ^ a b 73P past, present and future orbital elements
- ^ a b Toth, I.; Lamy, P.; Weaver, H. A. (2005). "Hubble Space Telescope observations of the nucleus fragment 73P/Schwassmann Wachmann 3-C". Icarus. 178 (1): 235–247. Bibcode:2005Icar..178..235T. doi:10.1016/j.icarus.2005.04.013.
- ^ Mike Olason (2017-02-20). "Comet 73P Schwassmann-Wachmann and the newest Fragment 73P-BT". Sky & Telescope. Retrieved 2022-06-07.
- ^ Peter Jenniskens (30 May 2022). "Anticipating a meteor outburst: Global CAMS video network detects first 2022 tau Herculids". Meteor News. Retrieved 2022-05-30.
- ^ a b c d Kronk, Gary W. "73P/Schwassmann-Wachmann 3". Retrieved 2022-06-01. (Cometography Home Page)
- ^ "Horizons Batch for 73P [1930] (90000728) Earth approach on 1930-05-31" (r is distance from the Sun and delta is the distance from Earth). JPL Horizons. Retrieved 2022-06-05.
- ^ "Horizons Batch for 73P [1979] (90000729) on 1985-01-11" (r is distance from the Sun and delta is the distance from Earth). JPL Horizons. Retrieved 2022-06-01.
- ^ "MPEC 2010-Y12 : OBSERVATIONS AND ORBITS OF COMETS". IAU Minor Planet Center. 2010-12-18. Retrieved 2011-06-26.
- ^ Whitney Clavin (2006-05-10). "Spitzer Telescope Sees Trail of Comet Crumbs". Spitzer Space Telescope at Caltech. Retrieved 2008-10-25.
- ^ a b "Hubble Provides Spectacular Detail of a Comet's Breakup". Hubblesite (News Release Number: STScI-2006-18). 2006-04-27. Retrieved 2008-10-25.
- ^ "Fragmenting Comet Won't Hit Earth". 2006-04-27. Retrieved 2022-05-29.
- ^ "JPL Small-Body Database Browser: sstr=73P (69 objects)". Retrieved 2008-10-25.
- ^ "JPL Small-Body Database Browser: Fragment 73P-T". Jet Propulsion Laboratory. Retrieved 2022-06-03.
- ^ Weigert, P.A.; Brown, P.G.; Vaubaillon, J.; Schijns, H. (2005). "The τ Herculid meteor shower and Comet 73P/Schwassmann-Wachmann 3". Monthly Notices of the Royal Astronomical Society. 361 (2): 638–644. doi:10.1111/j.1365-2966.2005.09199.x.
- ^ JPL SBDB: 73P-AJ (4.7 years) and JPL SBDB: 73P-Y (6.1 years)
- ^ "Horizons Batch for 73P-Y on 2022-08-25" (r is distance from the Sun and delta is the distance from Earth. Uncertainty (RNG_3sigma) is 80 million km which is roughly 0.5AU). JPL Horizons. Retrieved 2023-07-10.
- ^ Re: NEOCP Object JD002 (Michael Jäger MPML)
- ^ "MPEC 2022-R15 : Three New Fragments of Comet 73P/Schwassmann-Wachmann". IAU Minor Planet Center. 2022-09-02. Retrieved 2022-09-13.
External links
- 73P, bt fragment via Virtual Telescope Project
- 73P at Kronk's Cometography
- Mini-comets approaching Earth (NASA)
- Sky and Telescope article Archived 2007-03-14 at the Wayback Machine
- 73P/Schwassmann–Wachmann at ESA/Hubble
- 73P/Schwassmann–Wachmann 3 (2022) aerith.net
- 73P-c Lightcurve (Artyom Novichonok)