Jump to content

Linoleoyl-CoA desaturase

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by BrownHairedGirl (talk | contribs) at 22:32, 23 September 2019 (replace link to deleted Portal:Molecular and cellular biology (+aliases) with Portal:Biology). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

linoleoyl-CoA desaturase
Identifiers
EC no.1.14.19.3
CAS no.9014-34-0
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins

In enzymology, a linoleoyl-CoA desaturase (EC 1.14.19.3) is an enzyme that catalyzes the chemical reaction

linoleoyl-CoA + AH2 + O2 gamma-linolenoyl-CoA + A + 2 H2O

The 3 substrates of this enzyme are linoleoyl-CoA, an electron acceptor AH2, and O2, whereas its 3 products are gamma-linolenoyl-CoA, the reduction product A, and H2O.

This enzyme belongs to the family of oxidoreductases, specifically those acting on paired donors, with O2 as oxidant and incorporation or reduction of oxygen. The oxygen incorporated need not be derived from O2 with oxidation of a pair of donors resulting in the reduction of O to two molecules of water. The systematic name of this enzyme class is linoleoyl-CoA,hydrogen-donor:oxygen oxidoreductase. Other names in common use include Delta6-desaturase, Delta6-fatty acyl-CoA desaturase, Delta6-acyl CoA desaturase, fatty acid Delta6-desaturase, fatty acid 6-desaturase, linoleate desaturase, linoleic desaturase, linoleic acid desaturase, linoleoyl CoA desaturase, linoleoyl-coenzyme A desaturase, and long-chain fatty acid Delta6-desaturase. This enzyme participates in linoleic acid metabolism. It employs one cofactor, iron.

References

  • Okayasu T, Nagao M, Ishibashi T, Imai Y (1981). "Purification and partial characterization of linoleoyl-CoA desaturase from rat liver microsomes". Arch. Biochem. Biophys. 206 (1): 21–8. doi:10.1016/0003-9861(81)90061-8. PMID 7212717.