Jump to content

BD+00 316

Coordinates: Sky map 01h 57m 03.2041s, +00° 45′ 31.8789″
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Citation bot (talk | contribs) at 21:10, 1 December 2020 (Alter: year. Add: display-authors, page, s2cid, pages, volume, journal, doi, author pars. 1-30. Formatted dashes. | You can use this bot yourself. Report bugs here. | Suggested by Abductive | Category:2MASS objects | via #UCB_Category 59/509). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

BD+00 316
Observation data
Epoch J2000      Equinox J2000
Constellation Cetus
Right ascension 01h 57m 03.2041s[1]
Declination 00° 45′ 31.8789″[1]
Apparent magnitude (V) 10.56
Characteristics
Evolutionary stage main-sequence star
Spectral type F8[2]
Astrometry
Radial velocity (Rv)7.69 km/s
Proper motion (μ) RA: 23.305[1] mas/yr
Dec.: -7.093[1] mas/yr
Parallax (π)2.7289 ± 0.0517 mas[3]
Distance1,200 ± 20 ly
(366 ± 7 pc)
Details[4]
Mass1.53+0.07
−0.06
 M
Radius2.17+0.18
−0.10
 R
Surface gravity (log g)3.944+0.036
−0.050
 cgs
Temperature6050±100 K
Metallicity [Fe/H]0.15±0.07 dex
Rotational velocity (v sin i)7.8±0.3 km/s
Age3.6+1.6
−1.0
 Gyr
Other designations
Mpingo, Gaia DR2 2507901914613005056, WASP-71, TYC 30-116-1, 2MASS J01570320+0045318[1]
Database references
SIMBAD436 data

BD+00 316, also known as WASP-71 since 2012,[2] is an F-class main sequence star about 1200 light-years away. The star is younger than the Sun at approximately 3.6 billion years,[4] yet is already close to leaving the main sequence.[2] BD+00 316 is enriched in heavy elements, having 140% of the solar abundance of iron.

Imaging surveys in 2015 and 2020 failed to find any stellar companions for BD+00 316.[5][6]

The star was named Mpingo by Tanzanian amateur astronomers in 2020 as part of the NameExoWorlds contest.[7]

Planetary system

In 2012 a transiting superjovian planet b was detected on a tight, circular orbit.[2] The planetary orbit is well aligned with the equatorial plane of the star, the misalignment angle being equal to −1.9+7.1
−7.5
°.[4] Its equilibrium temperature is 2016.1+67.0
−52.5
K.[4]

The planet was named Tanzanite by Tanzanian amateur astronomers in 2020 as part of the NameExoWorlds contest.[7]

The WASP-71 planetary system[4]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b (Tanzanite) 2.14±0.08 MJ 0.0460±0.0006 2.903676±0.000008 <0.019[8] 85.8+2.4
−2.1
°
1.35+0.13
−0.07
 RJ

References

  1. ^ a b c d e "BD+00 316". SIMBAD. Centre de données astronomiques de Strasbourg.
  2. ^ a b c d Smith, A. M. S.; Anderson, D. R.; Bouchy, F.; Collier Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Hébrard, G.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Moutou, C.; Pepe, F.; Pollacco, D.; Queloz, D.; Santerne, A.; Segransan, D.; Smalley, B.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G. (2013), "WASP-71b: a bloated hot Jupiter in a 2.9-day, prograde orbit around an evolved F8 star", Astronomy & Astrophysics, 552: A120, arXiv:1211.3045, doi:10.1051/0004-6361/201220727, S2CID 118575479
  3. ^ Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  4. ^ a b c d e Brown, D. J. A.; Triaud, A. H. M. J.; Doyle, A. P.; Gillon, M.; Lendl, M.; Anderson, D. R.; Collier Cameron, A.; Hébrard, G.; Hellier, C.; Lovis, C.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Smalley, B. (2016), "Rossiter–McLaughlin models and their effect on estimates of stellar rotation, illustrated using six WASP systems", Monthly Notices of the Royal Astronomical Society, 464: 810–839, arXiv:1610.00600, doi:10.1093/mnras/stw2316, S2CID 53497449{{citation}}: CS1 maint: unflagged free DOI (link)
  5. ^ Wöllert, Maria; Brandner, Wolfgang (2015), "A Lucky Imaging search for stellar sources near 74 transit hosts", Astronomy & Astrophysics, 579: A129, arXiv:1506.05456, doi:10.1051/0004-6361/201526525, S2CID 118903879
  6. ^ Bohn, A. J.; Southworth, J.; Ginski, C.; Kenworthy, M. A.; Maxted, P. F. L.; Evans, D. F. (2020), "A multiplicity study of transiting exoplanet host stars. I. High-contrast imaging with VLT/SPHERE", Astronomy & Astrophysics, 635: A73, arXiv:2001.08224, doi:10.1051/0004-6361/201937127, S2CID 210861118
  7. ^ a b The IAU announces names for WASP exoplanets
  8. ^ Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Affer, L.; Biazzo, K.; Bignamini, A.; Esposito, M.; Giacobbe, P.; Hébrard, G.; Malavolta, L.; et al. (2017), "The GAPS Programme with HARPS-N@TNG XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets", Astronomy & Astrophysics, A107: 602, arXiv:1704.00373, doi:10.1051/0004-6361/201629882, S2CID 118923163