Dennstaedtiaceae

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Dennstaedtiaceae
Temporal range: Cenomanian–Recent
Fern dsc06699.jpg
Pteridium aquilinum
Scientific classification e
Kingdom: Plantae
Clade: Tracheophytes
Division: Polypodiophyta
Class: Polypodiopsida
Order: Polypodiales
Suborder: Dennstaedtiineae
Schwarstb. & Hovenkamp
Family: Dennstaedtiaceae
Lotsy
Genera

Dennstaedtiaceae is one of fifteen families in the order Polypodiales, the most derived families within monilophytes (ferns). It comprises 10 genera with ca 240 known species,[1] including one of the world's most abundant fern, Pteridium aquilinum (bracken). Members of the order generally have large, highly divided leaves and have either small, round intramarginal sori with cup-shaped indusia (e.g. Dennstaedtia) or linear marginal sori with a false indusium formed from the reflexed leaf margin (e.g. Pteridium). The morphological diversity among members of the order has confused past taxonomy, but recent molecular studies have supported the monophyly of the order and the family.[2] The reclassification of Dennstaedtiaceae and the rest of the monilophytes was published in 2006,[2] so most of the available literature is not updated.

Characteristics[edit]

  • Terrestrial or scrambling (scandent) over rocks or stones (epilithic) or occasionally over other vegetation (epiphytic)
  • Rhizomes long-creeping, occasionally short-creeping
  • Rhizomes bearing jointed hairs, or peltate, non-clathrate, entire scales, or both, with transitions
  • Rhizomes often solenostelic or protostelic with internal phloem, or rarely short and dyctiostelic
  • Petioles close or more often remote, non-articulate, usually with one or two, less often several vascular bundles
  • Petioles often with epipetiolar buds
  • Petioles usually with gutter-shaped vascular strand (open end adaxial)
  • Petiole either pubescent or glabrous
  • Mature leaves often glabrous at maturity, or bearing (mostly articulate) hairs, not scaly; hairs often persistent on leaf axes
  • Blades often large
  • Blades often 2-3 pinnate to decompound, can be 1-4 pinnate or more divided, mostly distinctly anadromous
  • Veins free, or forked, or pinnate, ending with more or less thickened ends behind the margin, rarely vanishing, free included veinlets none
  • Stomata anomocytic and/or polocytic
  • Sori near the margin, or submarginal, sometimes fused with the blade to form a cup or pouch or obscured in a recurved portion of the blade margin joining 2 to very many vein ends
  • Sori mostly linear, may be discrete
  • Indusia linear or cup shaped at blade margin, or reflexed over sori
  • Indusia sometimes wanting and replaced by the reflexed, more or less modified leaf margin; sometimes such a "false" indusium present beside a "true" one
  • Sporangium stalk with 1-3 rows of cells
  • Sterile appendages among sporangia none or if present not or little differentiated from epidermal appendages
  • Capsule usually with well-differentiated stomium
  • Spore tetrahedral and trilete, or reniform and monolete, variously sculptured
  • Gametophyte known in comparatively few representatives
  • Gametophyte green, hairless, cordate, and the plate stage is reached soon after germination

Characteristics described by Smith et al., Judd et al., and Kramer, K. U.[2][3][4]

Distribution of genera[edit]

Generally, the family is pantropical, but due to the distribution of Pteridium (the most widespread fern genus), Dennstaedtiaceae can be found worldwide.[5] Pteridium is a well adapted early successional genus, generally described as a weed because of its ease of spread. The spore is light and robust, so it can travel relatively far and colonise open, disturbed environments easily.[6] Dennsteadtia is mostly tropical to warm-temperate, but not well represented in the Amazon or Africa. Oenotrichia is in New Caledonia. Leptolepia is in New Zealand, Queensland (Australia), and in New Guinea. Microlepia is in the Asiatic-Pacific. Paesia occurs in tropical America, Asia, and the western Pacific. Hypolepis is tropical and south-temperate. Blotiella is strongly centered in Africa. Histiopteris is generally Malesian, with one pantropic to south-temperate species.[4] The extinct genus Krameropteris is known from remains found in Cenomanian aged Burmese amber.[7]

History of classification[edit]

Dennstaedtiaceae was previously considered the only family the order Dennstaedtiales. Dennstaedtiaceae now contains the previously defined families Monachosoraceae Ching, Pteridiaceae Ching, and Hypolepidaceae Pic. Serm.[2] Before Smith's [2] classification in 2006, Dennstaedtiaceae was a poly- and para- phyletic family,[8][9][10] containing genera that now are classified within Lindsaeaceae and Saccolomataceae, and with the family Monachosoraceae arising from within the Dennstaedtiaceae clade.[2] The nonmonophyletic nature of Dennstaedtiaceae (pre-2006 classification) was proved and supported by multiple molecular studies. Dennstaedtiaceae as now classified is supported as monophyletic, but the relation of the genera within the family have not yet been fully clarified.[10]

Interesting species within Dennstaedtiaceae[edit]

Dennsteadtiaceae species and genera are usually known for their weedy nature (i.e. Pteridium spp., Hypolepis spp., Paesia spp.), but some species are grown ornamentally (Blotiella spp., Dennstaedtia spp., Hypolepis spp., Microlepia spp.).[11]
The fiddleheads/crosiers of Pteridium aquilinum have been known to be eaten, but they contain carcinogens, so this practice is not prevalent.[12]
The rhizomes of Pteridium esculentum were consumed by the Maori during their settlement of New Zealand in the 13th century, but no longer are a part of the Maori diet.[6] The rhizomes of Pteridium esculentum contain about 50% starch when they grow in loose rich soil, at relatively deep depths.[6] The rhizomes were a staple in the diet because once dried, the rhizomes were very light (perfect for travelling) and would keep for about a year as long as they remained dry.[6] The leaves and spores of the Pteridium esculentum are associated with toxins and carcinogens, and have been known to cause stock (cattle, sheep, horses, pigs) to sicken.[6]

References[edit]

  1. ^ Christenhusz, M. J. M.; Byng, J. W. (2016). "The number of known plants species in the world and its annual increase". Phytotaxa. Magnolia Press. 261 (3): 201–217. doi:10.11646/phytotaxa.261.3.1.
  2. ^ a b c d e f Smith, A. R., K. M. Pryer, et al. (2006). "A classification for extant ferns." Taxon 55(3): 705-731
  3. ^ Judd, W. S., C. C. Campbell, et al. (2008). Plant Systematics: A Phylogenetic Approach. Sunderland, Ma, Sinauer Associates, Inc
  4. ^ a b Kramer, K. U. (1990). Dennstaedtiaceae. The Families and Genera of Vascular Plants: Pteridophytes and Gymnosperms. K. Kubitzki, K. U. Kramer and P. S. Green. New York, Springer-Verlag. 1: 81-94
  5. ^ Thomson, J. (2000). "Morphological and Genomic Diversity in the Genus Pteridium (Dennstaedtiaceae)." Annals of Botany 85(Suppl B): 77-99
  6. ^ a b c d e McGlone, M. S., J. M. Wilmshurst, et al. (2005). "An ecological and historical review of bracken(Pteridium esculentum) in New Zealand, and its cultural significance." New Zealand Journal of Ecology 29(2): 165-184
  7. ^ Schneider, Harald; Schmidt, Alexander R.; Heinrichs, Jochen (February 2016). "Burmese amber fossils bridge the gap in the Cretaceous record of polypod ferns". Perspectives in Plant Ecology, Evolution and Systematics. 18: 70–78. doi:10.1016/j.ppees.2016.01.003. hdl:10141/610456.
  8. ^ Wolf, P. G. (1997). "Evaluation of atpB Nucleotide Sequences for Phylogenetic Studies of Ferns and Other Pteridophytes." American Journal of Botany 84(10): 1429-1440
  9. ^ Hasebe, M., P. G. Wolf, et al. (1995). "Fern Phylogeny Based on rbcL Nucleotide Sequences." American Fern Journal 85(4): 134-181
  10. ^ a b Wolf, P. G. (1995). "Phylogenetic Analyses of rbcL and Nuclear Ribosomal RNA Gene Sequences in Dennstaedtiaceae." American Fern Journal 85(4): 306-327
  11. ^ Mabberley, D. J. (1997). The Plant-Book, Cambridge University.
  12. ^ Judd, W. S., C. C. Campbell, et al. (2008). Plant Systematics: A Phylogenetic Approach. Sunderland, Ma, Sinauer Associates, Inc.