Formylmethanofuran—tetrahydromethanopterin N-formyltransferase

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
formylmethanofuran-tetrahydromethanopterin N-formyltransferase
formylmethanofuran-THMPT-formyltransferase tetramer, Methanopyrus kandleri
EC number2.3.1.101
CAS number105669-83-8
IntEnzIntEnz view
ExPASyNiceZyme view
MetaCycmetabolic pathway
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
PDB 1m5s EBI.jpg
formylmethanofuran:tetrahydromethanopterin fromyltransferase from methanosarcina barkeri
FTR, proximal lobe
PDB 1m5h EBI.jpg
formylmethanofuran:tetrahydromethanopterin formyltransferase from archaeoglobus fulgidus

In enzymology, a formylmethanofuran-tetrahydromethanopterin N-formyltransferase (EC is an enzyme that catalyzes the chemical reaction

formylmethanofuran + 5,6,7,8-tetrahydromethanopterin methanofuran + 5-formyl-5,6,7,8-tetrahydromethanopterin

Thus, the two substrates of this enzyme are formylmethanofuran and 5,6,7,8-tetrahydromethanopterin, whereas its two products are methanofuran and 5-formyl-5,6,7,8-tetrahydromethanopterin.

This enzyme belongs to the family of transferases, specifically those acyltransferases transferring groups other than aminoacyl groups. The systematic name of this enzyme class is formylmethanofuran:5,6,7,8-tetrahydromethanopterin 5-formyltransferase. Other names in common use include formylmethanofuran-tetrahydromethanopterin formyltransferase, formylmethanofuran:tetrahydromethanopterin formyltransferase, N-formylmethanofuran(CHO-MFR):tetrahydromethanopterin(H4MPT), formyltransferase, FTR, formylmethanofuran:5,6,7,8-tetrahydromethanopterin, and N5-formyltransferase. This enzyme participates in folate biosynthesis.

Ftr from the thermophilic methanogen Methanopyrus kandleri (which has an optimum growth temperature 98 degrees C) is a hyperthermophilic enzyme that is absolutely dependent on the presence of lyotropic salts for activity and thermostability. The crystal structure of Ftr, determined to a reveals a homotetramer composed essentially of two dimers. Each subunit is subdivided into two tightly associated lobes both consisting of a predominantly antiparallel beta sheet flanked by alpha helices forming an alpha/beta sandwich structure. The approximate location of the active site was detected in a region close to the dimer interface.[1] Ftr from the mesophilic methanogen Methanosarcina barkeri and the sulphate-reducing archaeon Archaeoglobus fulgidus have a similar structure.[2]

In the methylotrophic bacterium Methylobacterium extorquens, Ftr interacts with three other polypeptides to form an Ftr/hydrolase complex which catalyses the hydrolysis of formyl-tetrahydromethanopterin to formate during growth on C1 substrates.[3]

Structural studies[edit]

As of late 2007, 5 structures have been solved for this class of enzymes, with PDB accession codes 1FTR, 1M5H, 1M5S, 2FHJ, and 2FHK.


  1. ^ Ermler U, Merckel M, Thauer R, Shima S (May 1997). "Formylmethanofuran: tetrahydromethanopterin formyltransferase from Methanopyrus kandleri - new insights into salt-dependence and thermostability". Structure. 5 (5): 635–46. doi:10.1016/s0969-2126(97)00219-0. PMID 9195883.
  2. ^ Mamat B, Roth A, Grimm C, Ermler U, Tziatzios C, Schubert D, Thauer RK, Shima S (September 2002). "Crystal structures and enzymatic properties of three formyltransferases from archaea: environmental adaptation and evolutionary relationship". Protein Sci. 11 (9): 2168–78. doi:10.1110/ps.0211002. PMC 2373594. PMID 12192072.
  3. ^ Pomper BK, Saurel O, Milon A, Vorholt JA (July 2002). "Generation of formate by the formyltransferase/hydrolase complex (Fhc) from Methylobacterium extorquens AM1". FEBS Lett. 523 (1–3): 133–7. doi:10.1016/S0014-5793(02)02962-9. PMID 12123819. S2CID 26661124.

Further reading[edit]

  • Donnelly MI, Wolfe RS (1986). "The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from carbon dioxide". J. Biol. Chem. 261 (35): 16653–9. PMID 3097011.
  • Leigh JA, Rinehart KL, Wolfe RS (1984). "Structure of methanofuran, the carbon-dioxide reduction factor of Methanobacterium thermoautotrophicum". J. Am. Chem. Soc. 106 (12): 3636–3640. doi:10.1021/ja00324a037.
This article incorporates text from the public domain Pfam and InterPro: IPR022667