Histone deacetylase 5

From Wikipedia, the free encyclopedia
(Redirected from HDAC5)
AliasesHDAC5, HD5, NY-CO-9, histone deacetylase 5
External IDsOMIM: 605315; MGI: 1333784; HomoloGene: 3995; GeneCards: HDAC5; OMA:HDAC5 - orthologs
RefSeq (mRNA)


RefSeq (protein)



Location (UCSC)Chr 17: 44.08 – 44.12 MbChr 11: 102.19 – 102.23 Mb
PubMed search[3][4]
View/Edit HumanView/Edit Mouse

Histone deacetylase 5 is an enzyme that in humans is encoded by the HDAC5 gene.[5][6][7]


Histones play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation/deacetylation alters chromosome structure and affects transcription factor access to DNA. The protein encoded by this gene belongs to the class II histone deacetylase/acuc/apha family. It possesses histone deacetylase activity and represses transcription when tethered to a promoter. It coimmunoprecipitates only with HDAC3 family member and might form multicomplex proteins. It also interacts with myocyte enhancer factor-2 (MEF2) proteins, resulting in repression of MEF2-dependent genes. This gene is thought to be associated with colon cancer. Two transcript variants encoding different isoforms have been found for this gene.[7]

AMP-activated protein kinase regulation of the glucose transporter GLUT4 occurs by phosphorylation of HDAC5.[8]

HDAC5 is involved in memory consolidation and suggests that development of more selective HDAC inhibitors for the treatment of Alzheimer's disease should avoid targeting HDAC5.[9] Its function can be effectively examined by siRNA knockdown based on an independent validation.[10]

HDAC5 overexpression in urothelial carcinoma cell lines inhibits long-term proliferation but can promote epithelial-to-mesenchymal transition (EMT)[11]


Histone deacetylase 5 has been shown to interact with:

See also[edit]


  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000108840Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000008855Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b Grozinger CM, Hassig CA, Schreiber SL (April 1999). "Three proteins define a class of human histone deacetylases related to yeast Hda1p". Proceedings of the National Academy of Sciences of the United States of America. 96 (9): 4868–73. Bibcode:1999PNAS...96.4868G. doi:10.1073/pnas.96.9.4868. PMC 21783. PMID 10220385.
  6. ^ Scanlan MJ, Chen YT, Williamson B, Gure AO, Stockert E, Gordan JD, et al. (May 1998). "Characterization of human colon cancer antigens recognized by autologous antibodies". International Journal of Cancer. 76 (5): 652–8. doi:10.1002/(SICI)1097-0215(19980529)76:5<652::AID-IJC7>3.0.CO;2-P. PMID 9610721. S2CID 916155.
  7. ^ a b "Entrez Gene: HDAC5 histone deacetylase 5".
  8. ^ McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, Kemp BE, Hargreaves M (April 2008). "AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5". Diabetes. 57 (4): 860–7. doi:10.2337/db07-0843. PMID 18184930. S2CID 17274354.
  9. ^ Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A (January 2013). "Loss of HDAC5 impairs memory function: implications for Alzheimer's disease". Journal of Alzheimer's Disease. 33 (1): 35–44. doi:10.3233/JAD-2012-121009. hdl:2434/223089. PMID 22914591.
  10. ^ Munkácsy G, Sztupinszki Z, Herman P, Bán B, Pénzváltó Z, Szarvas N, Győrffy B (September 2016). "Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments". Molecular Therapy: Nucleic Acids. 5 (9): e366. doi:10.1038/mtna.2016.66. PMC 5056990. PMID 27673562.
  11. ^ Jaguva Vasudevan AA, Hoffmann MJ, Beck ML, Poschmann G, Petzsch P, Wiek C, et al. (April 2019). "HDAC5 Expression in Urothelial Carcinoma Cell Lines Inhibits Long-Term Proliferation but Can Promote Epithelial-to-Mesenchymal Transition". International Journal of Molecular Sciences. 20 (9): 2135. doi:10.3390/ijms20092135. PMC 6539474. PMID 31052182.
  12. ^ a b Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O, Khochbin S (June 2002). "Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor". The Journal of Biological Chemistry. 277 (24): 22045–52. doi:10.1074/jbc.M201736200. PMID 11929873.
  13. ^ Zhang CL, McKinsey TA, Olson EN (October 2002). "Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation". Molecular and Cellular Biology. 22 (20): 7302–12. doi:10.1128/MCB.22.20.7302-7312.2002. PMC 139799. PMID 12242305.
  14. ^ Watamoto K, Towatari M, Ozawa Y, Miyata Y, Okamoto M, Abe A, et al. (December 2003). "Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation". Oncogene. 22 (57): 9176–84. doi:10.1038/sj.onc.1206902. PMID 14668799. S2CID 24491249.
  15. ^ a b Zhang J, Kalkum M, Chait BT, Roeder RG (March 2002). "The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2". Molecular Cell. 9 (3): 611–23. doi:10.1016/S1097-2765(02)00468-9. PMID 11931768.
  16. ^ Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E (January 2002). "Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR". Molecular Cell. 9 (1): 45–57. doi:10.1016/S1097-2765(01)00429-4. hdl:11858/00-001M-0000-002C-9FF9-9. PMID 11804585.
  17. ^ Grozinger CM, Schreiber SL (July 2000). "Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization". Proceedings of the National Academy of Sciences of the United States of America. 97 (14): 7835–40. Bibcode:2000PNAS...97.7835G. doi:10.1073/pnas.140199597. PMC 16631. PMID 10869435.
  18. ^ Koipally J, Georgopoulos K (August 2002). "A molecular dissection of the repression circuitry of Ikaros". The Journal of Biological Chemistry. 277 (31): 27697–705. doi:10.1074/jbc.M201694200. PMID 12015313.
  19. ^ Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S (May 2000). "mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity". The Journal of Biological Chemistry. 275 (20): 15594–9. doi:10.1074/jbc.M908437199. PMID 10748098.
  20. ^ Castet A, Boulahtouf A, Versini G, Bonnet S, Augereau P, Vignon F, et al. (2004). "Multiple domains of the Receptor-Interacting Protein 140 contribute to transcription inhibition". Nucleic Acids Research. 32 (6): 1957–66. doi:10.1093/nar/gkh524. PMC 390375. PMID 15060175.
  21. ^ a b Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA (January 2000). "Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway". Genes & Development. 14 (1): 45–54. doi:10.1101/gad.14.1.45. PMC 316335. PMID 10640275.
  22. ^ Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA (October 2004). "Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5". Molecular and Cellular Biology. 24 (19): 8374–85. doi:10.1128/MCB.24.19.8374-8385.2004. PMC 516754. PMID 15367659.
  23. ^ Chauchereau A, Mathieu M, de Saintignon J, Ferreira R, Pritchard LL, Mishal Z, et al. (November 2004). "HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF". Oncogene. 23 (54): 8777–84. doi:10.1038/sj.onc.1208128. PMID 15467736. S2CID 26092755.

Further reading[edit]

External links[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.