Histone deacetylase 5

From Wikipedia, the free encyclopedia
  (Redirected from HDAC5)
Jump to: navigation, search
HDAC5
Identifiers
Aliases HDAC5, HD5, NY-CO-9, histone deacetylase 5
External IDs MGI: 1333784 HomoloGene: 3995 GeneCards: HDAC5
Targeted by Drug
Belinostat, givinostat, pracinostat, quisinostat, romidepsin, trichostatin A, vorinostat[1]
RNA expression pattern
PBB GE HDAC5 202455 at fs.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001015053
NM_005474
NM_139205

NM_001077696
NM_001284248
NM_001284249
NM_001284250
NM_010412

RefSeq (protein)

NP_001015053
NP_005465

n/a

Location (UCSC) Chr 17: 44.08 – 44.12 Mb Chr 11: 102.19 – 102.23 Mb
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse

Histone deacetylase 5 is an enzyme that in humans is encoded by the HDAC5 gene.[4][5][6]

Function[edit]

Histones play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation/deacetylation alters chromosome structure and affects transcription factor access to DNA. The protein encoded by this gene belongs to the class II histone deacetylase/acuc/apha family. It possesses histone deacetylase activity and represses transcription when tethered to a promoter. It coimmunoprecipitates only with HDAC3 family member and might form multicomplex proteins. It also interacts with myocyte enhancer factor-2 (MEF2) proteins, resulting in repression of MEF2-dependent genes. This gene is thought to be associated with colon cancer. Two transcript variants encoding different isoforms have been found for this gene.[6]

AMP-activated protein kinase regulation of the glucose transporter GLUT4 occurs by phosphorylation of HDAC5.[7]

HDAC5 is involved in memory consolidation and suggests that development of more selective HDAC inhibitors for the treatment of Alzheimer's disease should avoid targeting HDAC5.[8]

Interactions[edit]

Histone deacetylase 5 has been shown to interact with:

See also[edit]

References[edit]

  1. ^ "Drugs that physically interact with Histone deacetylase 5 view/edit references on wikidata". 
  2. ^ "Human PubMed Reference:". 
  3. ^ "Mouse PubMed Reference:". 
  4. ^ a b Grozinger CM, Hassig CA, Schreiber SL (June 1999). "Three proteins define a class of human histone deacetylases related to yeast Hda1p". Proc Natl Acad Sci U S A. 96 (9): 4868–73. doi:10.1073/pnas.96.9.4868. PMC 21783Freely accessible. PMID 10220385. 
  5. ^ Scanlan MJ, Chen YT, Williamson B, Gure AO, Stockert E, Gordan JD, Tureci O, Sahin U, Pfreundschuh M, Old LJ (June 1998). "Characterization of human colon cancer antigens recognized by autologous antibodies". Int J Cancer. 76 (5): 652–8. doi:10.1002/(SICI)1097-0215(19980529)76:5<652::AID-IJC7>3.0.CO;2-P. PMID 9610721. 
  6. ^ a b "Entrez Gene: HDAC5 histone deacetylase 5". 
  7. ^ McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, Kemp BE, Hargreaves M (2008). "AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5". Diabetes (journal). 57 (4): 860–867. doi:10.2337/db07-0843. PMID 18184930. 
  8. ^ Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A (January 2013). "Loss of HDAC5 impairs memory function: implications for Alzheimer's disease". J Alzheimers Dis. 33 (1): 35–44. doi:10.3233/JAD-2012-121009. PMID 22914591. 
  9. ^ a b Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O, Khochbin S (2002). "Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor". J. Biol. Chem. 277 (24): 22045–52. doi:10.1074/jbc.M201736200. PMID 11929873. 
  10. ^ Zhang CL, McKinsey TA, Olson EN (2002). "Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation". Mol. Cell. Biol. 22 (20): 7302–12. doi:10.1128/MCB.22.20.7302-7312.2002. PMC 139799Freely accessible. PMID 12242305. 
  11. ^ Watamoto K, Towatari M, Ozawa Y, Miyata Y, Okamoto M, Abe A, Naoe T, Saito H (2003). "Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation". Oncogene. 22 (57): 9176–84. doi:10.1038/sj.onc.1206902. PMID 14668799. 
  12. ^ a b Zhang J, Kalkum M, Chait BT, Roeder RG (2002). "The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2". Mol. Cell. 9 (3): 611–23. doi:10.1016/S1097-2765(02)00468-9. PMID 11931768. 
  13. ^ Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E (2002). "Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR". Mol. Cell. 9 (1): 45–57. doi:10.1016/S1097-2765(01)00429-4. PMID 11804585. 
  14. ^ Grozinger CM, Schreiber SL (2000). "Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization". Proc. Natl. Acad. Sci. U.S.A. 97 (14): 7835–40. doi:10.1073/pnas.140199597. PMC 16631Freely accessible. PMID 10869435. 
  15. ^ Koipally J, Georgopoulos K (2002). "A molecular dissection of the repression circuitry of Ikaros". J. Biol. Chem. 277 (31): 27697–705. doi:10.1074/jbc.M201694200. PMID 12015313. 
  16. ^ Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S (2000). "mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity". J. Biol. Chem. 275 (20): 15594–9. doi:10.1074/jbc.M908437199. PMID 10748098. 
  17. ^ Castet A, Boulahtouf A, Versini G, Bonnet S, Augereau P, Vignon F, Khochbin S, Jalaguier S, Cavaillès V (2004). "Multiple domains of the Receptor-Interacting Protein 140 contribute to transcription inhibition". Nucleic Acids Res. 32 (6): 1957–66. doi:10.1093/nar/gkh524. PMC 390375Freely accessible. PMID 15060175. 
  18. ^ a b Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA (2000). "Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway". Genes Dev. 14 (1): 45–54. PMC 316335Freely accessible. PMID 10640275. 
  19. ^ Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA (2004). "Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5". Mol. Cell. Biol. 24 (19): 8374–85. doi:10.1128/MCB.24.19.8374-8385.2004. PMC 516754Freely accessible. PMID 15367659. 
  20. ^ Chauchereau A, Mathieu M, de Saintignon J, Ferreira R, Pritchard LL, Mishal Z, Dejean A, Harel-Bellan A (2004). "HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF". Oncogene. 23 (54): 8777–84. doi:10.1038/sj.onc.1208128. PMID 15467736. 

Further reading[edit]

External links[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.