From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Available structures
PDBOrtholog search: PDBe RCSB
AliasesMTHFD1L, FTHFSDC1, MTC1THFS, dJ292B18.2, methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like, methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1 like
External IDsMGI: 1924836 HomoloGene: 56706 GeneCards: MTHFD1L
Gene location (Human)
Chromosome 6 (human)
Chr.Chromosome 6 (human)[1]
Chromosome 6 (human)
Genomic location for MTHFD1L
Genomic location for MTHFD1L
Band6q25.1Start150,865,549 bp[1]
End151,101,887 bp[1]
RefSeq (mRNA)


RefSeq (protein)


Location (UCSC)Chr 6: 150.87 – 151.1 MbChr 10: 3.97 – 4.17 Mb
PubMed search[3][4]
View/Edit HumanView/Edit Mouse

Monofunctional C1-tetrahydrofolate synthase, mitochondrial also known as formyltetrahydrofolate synthetase, is an enzyme that in humans is encoded by the MTHFD1L gene (methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like).[5][6][7]


One-carbon substituted forms of tetrahydrofolate (THF) are involved in the de novo synthesis of purines and thymidylate and support cellular methylation reactions through the regeneration of methionine from homocysteine. MTHFD1L is an enzyme involved in THF synthesis in mitochondria.[7]

In contrast to MTHFD1 that has trifunctional methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetase enzymatic activities, MTHFD1L only has formyltetrahydrofolate synthetase activity.[8]

Clinical significance[edit]

Certain variants of the MTHFD1L are associated neural tube defects.[9] Different alleles of SNP rs7646 in the 3′ UTR of MTHFD1L are differentially regulated by microRNAs affecting MTHFD1L expression[10].

Model organisms[edit]

Model organisms have been used in the study of MTHFD1L function. A conditional knockout mouse line, called Mthfd1ltm1a(EUCOMM)Wtsi[15][16] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[17][18][19]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[13][20] Twenty six tests were carried out on mutant mice and two significant abnormalities were observed.[13] The homozygous mutant embryos identified during gestation had exencephaly. None survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice and no further abnormalities were observed.[13]


  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000120254 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000040675 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:".
  4. ^ "Mouse PubMed Reference:".
  5. ^ Prasannan P, Pike S, Peng K, Shane B, Appling DR (October 2003). "Human mitochondrial C1-tetrahydrofolate synthase: gene structure, tissue distribution of the mRNA, and immunolocalization in Chinese hamster ovary calls". J. Biol. Chem. 278 (44): 43178–87. doi:10.1074/jbc.M304319200. PMC 1457088. PMID 12937168.
  6. ^ Christensen KE, Mackenzie RE (2008). "Mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetases". Vitam. Horm. 79: 393–410. doi:10.1016/S0083-6729(08)00414-7. PMID 18804703.
  7. ^ a b "Entrez Gene: methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like".
  8. ^ Christensen KE, Patel H, Kuzmanov U, Mejia NR, MacKenzie RE (March 2005). "Disruption of the mthfd1 gene reveals a monofunctional 10-formyltetrahydrofolate synthetase in mammalian mitochondria". J. Biol. Chem. 280 (9): 7597–602. doi:10.1074/jbc.M409380200. PMID 15611115.
  9. ^ Parle-McDermott A, Pangilinan F, O'Brien KK, Mills JL, Magee AM, Troendle J, Sutton M, Scott JM, Kirke PN, Molloy AM, Brody LC (December 2009). "A common variant in MTHFD1L is associated with neural tube defects and mRNA splicing efficiency". Hum. Mutat. 30 (12): 1650–6. doi:10.1002/humu.21109. PMC 2787683. PMID 19777576.
  10. ^ Minguzzi, Stefano; Selcuklu, S. Duygu; Spillane, Charles; Parle-McDermott, Anne (2013-12-18). "An NTD-Associated Polymorphism in the 3′ UTR of MTHFD1L can Affect Disease Risk by Altering miRNA Binding". Human Mutation. 35 (1): 96–104. doi:10.1002/humu.22459. ISSN 1059-7794.
  11. ^ "Salmonella infection data for Mthfd1l". Wellcome Trust Sanger Institute.
  12. ^ "Citrobacter infection data for Mthfd1l". Wellcome Trust Sanger Institute.
  13. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  14. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  15. ^ "International Knockout Mouse Consortium".
  16. ^ "Mouse Genome Informatics".
  17. ^ Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  18. ^ Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  19. ^ Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  20. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

Further reading[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.