Jump to content

Mammography: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Research alternatives to mammography {{POV-statement|date=September 2011}}: looks like advertising, no good sources - either delete or rewrite
Line 22: Line 22:
Mammography has a false-negative (missed cancer) rate of at least 10 percent. This is partly due to [[optical density|dense]] tissues obscuring the cancer and the fact that the appearance of cancer on mammograms has a large overlap with the appearance of normal tissues.
Mammography has a false-negative (missed cancer) rate of at least 10 percent. This is partly due to [[optical density|dense]] tissues obscuring the cancer and the fact that the appearance of cancer on mammograms has a large overlap with the appearance of normal tissues.


==Procedure==
==Procedure== KELLY IS A BABE
[[Image:MammographyinprocessGraphic.jpg|right|thumb|360px|Craniocaudal (CC) mammography view in progress]]
[[Image:MammographyinprocessGraphic.jpg|right|thumb|360px|Craniocaudal (CC) mammography view in progress]]
During the procedure, the breast is compressed using a dedicated mammography unit. Parallel-plate compression evens out the thickness of breast [[biological tissue|tissue]] to increase image quality by reducing the thickness of tissue that x-rays must penetrate, decreasing the amount of scattered radiation (scatter degrades image quality), reducing the required radiation dose, and holding the breast still (preventing [[motion blur]]). In screening mammography, both head-to-foot (craniocaudal, CC) view and angled side-view (mediolateral oblique, MLO) images of the breast are taken. Diagnostic mammography may include these and other views, including geometrically magnified and spot-compressed views of the particular area of concern. [[Deodorant]], [[talcum powder]] or [[lotion]] may show up on the X-ray as [[calcium]] spots, and women are discouraged from applying these on the day of their exam.
During the procedure, the breast is compressed using a dedicated mammography unit. Parallel-plate compression evens out the thickness of breast [[biological tissue|tissue]] to increase image quality by reducing the thickness of tissue that x-rays must penetrate, decreasing the amount of scattered radiation (scatter degrades image quality), reducing the required radiation dose, and holding the breast still (preventing [[motion blur]]). In screening mammography, both head-to-foot (craniocaudal, CC) view and angled side-view (mediolateral oblique, MLO) images of the breast are taken. Diagnostic mammography may include these and other views, including geometrically magnified and spot-compressed views of the particular area of concern. [[Deodorant]], [[talcum powder]] or [[lotion]] may show up on the X-ray as [[calcium]] spots, and women are discouraged from applying these on the day of their exam.

Revision as of 15:10, 21 September 2011

Mammography
Mammography
ICD-10-PCSBH0
ICD-9-CM87.37
MeSHD008327
OPS-301 code3-10

Mammography is the process of using low-energy-X-rays (usually around 30 kVp) to examine the human breast and is used as a diagnostic and a screening tool. The goal of mammography is the early detection of breast cancer, typically through detection of characteristic masses and/or microcalcifications. Mammography is believed to reduce mortality from breast cancer. Remaining aware of breast changes and physician examination are considered essential parts of regular breast care.[citation needed]

In many countries routine mammography of older women is encouraged as a screening method to diagnose early breast cancer. In 2009, the U.S. Preventive Services Task Force issued a dramatic change in the mammography guidelines for women between the ages of 40 and 49. In short, the USPSTF recommended that women begin having mammograms at age 50, instead of the previous 40-years-of-age starting point. This shift in government guidelines was met with swift negative reaction by several cancer and women’s organizations. Nonetheless, the USPSTF still recommends screening mammography, with or without clinical breast examination, every 2 years for women aged 50 to 74.[1] Altogether clinical trials have found a relative reduction in breast cancer mortality of 20%.[2][3] Mammograms have been controversial since 2000, when a paper highlighting the results of the two highest-quality studies was published.[4]

Like all x-rays, mammograms use doses of ionizing radiation to create images. Radiologists then analyze the image for any abnormal findings. It is normal to use lower energy X-rays (typically Mo-K) than those used for radiography of bones.

At this time, mammography along with physical breast examination is the modality of choice for screening for early breast cancer. Ultrasound, ductography, positron emission mammography (PEM), and magnetic resonance imaging are adjuncts to mammography. Ultrasound is typically used for further evaluation of masses found on mammography or palpable masses not seen on mammograms. Ductograms are still used in some institutions for evaluation of bloody nipple discharge when the mammogram is non-diagnostic. MRI can be useful for further evaluation of questionable findings as well as for screening pre-surgical evaluation in patients with known breast cancer to detect any additional lesions that might change the surgical approach, for instance from breast-conserving lumpectomy to mastectomy. New procedures, not yet approved for use in the general public, including breast tomosynthesis may offer benefits in years to come.

Breast self-examination (BSE) was once promoted as a means of finding cancer at a more curable stage, however, it has been shown to be ineffective, and is no longer routinely recommended by health authorities for general use.[5][6] Awareness of breast health and familiarity with one's own body is typically promoted instead of self-exams.

Mammography has a false-negative (missed cancer) rate of at least 10 percent. This is partly due to dense tissues obscuring the cancer and the fact that the appearance of cancer on mammograms has a large overlap with the appearance of normal tissues.

==Procedure== KELLY IS A BABE

Craniocaudal (CC) mammography view in progress

During the procedure, the breast is compressed using a dedicated mammography unit. Parallel-plate compression evens out the thickness of breast tissue to increase image quality by reducing the thickness of tissue that x-rays must penetrate, decreasing the amount of scattered radiation (scatter degrades image quality), reducing the required radiation dose, and holding the breast still (preventing motion blur). In screening mammography, both head-to-foot (craniocaudal, CC) view and angled side-view (mediolateral oblique, MLO) images of the breast are taken. Diagnostic mammography may include these and other views, including geometrically magnified and spot-compressed views of the particular area of concern. Deodorant, talcum powder or lotion may show up on the X-ray as calcium spots, and women are discouraged from applying these on the day of their exam.

Until some years ago, mammography was typically performed with screen-film cassettes. Now, mammography is undergoing transition to digital detectors, known as digital mammography or Full Field Digital Mammography (FFDM). The first FFDM system was approved by the FDA in the U.S. in 2000. This progress is some years later than in general radiology. This is due to several factors:

  1. the higher spatial resolution demands of mammography,
  2. significantly increased expense of the equipment,
  3. concern by the FDA that digital mammography equipment demonstrate that it is at least as good as screen-film mammography at detecting breast cancers without increasing breast dose or the number of women recalled for further evaluation.

As of March 1, 2010, 62% of facilities in the United States and its territories have at least one FFDM unit.[7] (The FDA includes computed radiography units in this figure.[8])

In order to encourage the use of mammograms as a screening measure for breast cancer, a number of hospitals, cancer centers and other healthcare groups have started mobile mammography vans to bring affordable, accessible and convenient mammograms to their communities. Many mobile mammography vans prioritize serving uninsured, low-income and/or non-English-speaking women who otherwise could not otherwise afford a mammogram or who are unaccustomed to seeing a doctor. Many offer free or low-cost mammograms to women who are uninsured and/or cannot afford a mammogram.[9]

"Work-up" process

In the past several years, the "work-up" process has become quite formalized. It generally consists of screening mammography, diagnostic mammography, and biopsy when necessary, often performed via stereotactic core biopsy or ultrasound-guided core biopsy. After a screening mammogram, some women may have areas of concern which can't be resolved with only the information available from the screening mammogram. They would then be called back for a "diagnostic mammogram". This phrase essentially means a problem-solving mammogram. During this session, the radiologist will be monitoring each of the additional films as they are taken by a technologist. Depending on the nature of the finding, ultrasound may often be used at this point, as well.

Generally the cause of the unusual appearance is found to be benign. If the cause cannot be determined to be benign with sufficient certainty, a biopsy will be recommended. The biopsy procedure will be used to obtain actual tissue from the site for the pathologist to examine microscopically to determine the precise cause of the abnormality. In the past, biopsies were most frequently done in surgery, under local or general anesthesia. The majority are now done with needles using either ultrasound or mammographic guidance to be sure that the area of concern is the area that is biopsied. These core biopsies require only local anesthesia, similar to what would be given during a small dental procedure.

One study shows that needle biopsies of liver malignancies rarely increase the likelihood that cancer will spread, and has not been found to occur with breast needle biopsies.[10]

Results

Normal (left) versus cancerous (right) mammography image.

Often women are quite distressed to be called back for a diagnostic mammogram. Most of these recalls will be false positive results. It helps to know these approximate statistics: of every 1,000 U.S. women who are screened, about 7% (70) will be called back for a diagnostic session (although some studies estimate the number closer to 10%–15%). About 10 of these individuals will be referred for a biopsy; the remaining 60 are found to be of benign cause. Of the 10 referred for biopsy, about 3.5 will have a cancer and 6.5 will not. Of the 3.5 who have cancer, about 2 have a low stage cancer that will be essentially cured after treatment. Mammogram results are often expressed in terms of the BI-RADS Assessment Category, often called a "BI-RADS score." The categories range from 0 (Incomplete) to 6 (Known biopsy – proven malignancy). In the UK mammograms are scored on a scale from 1-5 (1 = normal, 2 = benign, 3 = indeterminate, 4 = suspicious of malignancy, 5 = malignant).

Mammography may also produce false negatives. Estimates of the numbers of cancers missed by mammography are usually around 10%–30%. This means that of the 350 per 100,000 women who have breast cancer, about 35–105[citation needed] will not be detected by mammography. Reasons for not seeing the cancer include observer error, but more frequently it is because the cancer is hidden by other dense tissue in the breast and even after retrospective review of the mammogram, cannot be seen. Furthermore, one form of breast cancer, lobular cancer, has a growth pattern that produces shadows on the mammogram which are indistinguishable from normal breast tissue.

Computer-aided diagnosis (CAD) are being tested to decrease the number of cases of cancer that are missed in mammograms. In one test, a computer identified 71% of the cases of cancer that had been missed by physicians. However, the computer also flagged twice as many non-cancerous masses than the physicians did. In a second study of a larger set of mammograms, a computer recommended six biopsies that physicians did not. All six turned out to be cancers that would have been missed.[11] Generally, CAD systems in screening mammography have poor specificity and compare poorly to double reading.[12]

While data are accumulating suggesting that CAD can find a few additional cancers, this should be put in perspective. The additional find rate was 20%, thus in a group of 10,000 women who will have about 40 cancers, CAD may help find an additional 8. The types of additional cancers that may be found are likely to be early and small.[citation needed] As of 2006, there have been no data to show that finding these additional cancers will have any effect on survival rate. Some feel that these cancers are likely to be found at the next screening, still at a curable stage, and therefore it remains to be proven whether CAD will be eventually found to have any effect on patient outcome.

A study released October 1, 2008, by British researchers revealed that using CAD in conjunction with a single reading by a physician may be as beneficial as a second reading by a physician. The study of 31,000 women, the largest of its kind to date, determined that the find rate for a single physician in conjunction with CAD as compared to two physicians was nearly identical.[13] Out of 227 cancers found, the CAD method found just one fewer than the 199 cancers found using two separate physicians.

Risks

False positives

The goal of any screening procedure is to examine a large population of patients and find the small number most likely to have a serious condition. These patients are then referred for further, usually more invasive, testing. Thus a screening exam is not intended to be definitive: It is intended to have sufficient sensitivity to detect a useful proportion of cancers. The cost of higher sensitivity is a larger number of results that would be regarded as suspicious in patients without disease. This is true of mammography. The patients without disease who are called back for further testing from a screening session (about 7%) are sometimes referred to as "false positives". There is a trade-off between the number of patients with disease found, and the much larger number of patients without disease that must be re-screened.

Research shows[14] that false-positive mammograms may affect women's well-being and behavior. Some women who receive false-positive results may be more likely to return for routine screening or perform breast self-examinations more frequently. However, some women who receive false-positive results become anxious, worried and distressed about the possibility of having breast cancer, feelings that can last for many years.

False positives also mean greater expense, both for the individual woman, and for the screening program. Since follow-up screening is typically much more expensive than initial screening, more false positives that must receive follow-up means fewer woman may be screened for a given amount of money. Thus as sensitivity increases, a screening program will cost more, or be able to screen a smaller number of women.

False negatives

At the same time, mammograms also have a rate of missed tumors, or "false negatives." Accurate data regarding the number of false negatives are very difficult to obtain, simply because mastectomies cannot be performed on every woman who has had a mammogram to determine the false negative rate accurately. Estimates of the false negative rate depend on close follow-up of a large number of patients for many years. This is difficult in practice, because many women do not return for regular mammography making it impossible to know if they ever developed a cancer. Dr. Samuel S. Epstein, in his book, The Politics of Cancer, claims that in women ages 40 to 49, one in four instances of cancer is missed at each mammography. Researchers have found that breast tissue is denser among younger women, making it difficult to detect tumors. For this reason, false negatives are twice as likely to occur in premenopausal mammograms(Prate.) This is why the screening program in the UK does not start calling women for screening mammograms until the age of 50.

The importance of these missed cancers is not clear, particularly if the woman is getting yearly mammograms. Research on a closely related situation has shown that small cancers that are not acted upon immediately, but are observed over periods of even several years, will have good outcomes. A group of 3,184 women had mammograms which were formally classified as "probably benign." This classification is for patients who are not clearly normal but have some area of minor concern. This results, not in the patient being biopsied, but having early follow up mammography every six months for three years to guarantee no change. Of these 3,184 women, 17 (0.5%) did have cancers. Most importantly, when the diagnosis was finally made, they were all still stage 0 or 1, the earliest stages. Five years after treatment, none of these 17 women had evidence of recurrence. Thus, small early cancers, even though not acted on immediately, were still entirely curable (Sickles, Radiology, 179:463-468, 1991).

Other risks

The radiation exposure associated with mammography is a potential risk of screening. The risk of exposure appears to be greater in younger women. The largest study of radiation risk from mammography concluded that for women 40 years of age or older, the risk of radiation-induced breast cancer was minuscule, particularly compared with the potential benefit of mammographic screening, with a benefit-to-risk ratio of 48.5 lives saved for each life lost due to radiation exposure.[15] Organizations such as the National Cancer Institute and United States Preventive Task Force take such risks into account when formulating screening guidelines.[16]

The majority of health experts agree that the risk of breast cancer for asymptomatic women under 35 is not high enough to warrant the risk of radiation exposure. For this reason, and because the radiation sensitivity of the breast in women under 35 is possibly greater than in older women, most radiologists will not perform screening mammography in women under 40. However, if there is a significant risk of cancer in a particular patient (BRCA positive, very positive family history, palpable mass), mammography may still be important. Often, the radiologist will try to avoid mammography by using ultrasound or MRI imaging.

The statistics about mammography and women between the ages of 40 and 55 are the most contentious. A 1992 Canadian National Breast Cancer Study showed that mammography (conducted in the 1980s) had no positive effect on mortality for women between the ages of 50 and 60.[17] This study, however, is the only study to find this result. The study's critics pointed out that there were very serious design flaws in the study that invalidated these results.[who?]

There is a body of evidence that clearly shows that there is overdiagnosis of cancer when women are screened. These cancers would never have affected these women in their lifetimes. An estimate of this overdiagnosis is 10 breast cancers diagnosed and unnecessarily treated per life saved when 2000 women are screened for 10 years.[2]

While screening between 40 and 50 is still controversial, the preponderance of the evidence indicates that there is some small benefit in terms of early detection. Currently, the American Cancer Society, the National Cancer Institute, and the American College of Radiology encourage mammograms every two years for women ages 40 to 49.[18] In contrast, the American College of Physicians, a large internist group, has recently encouraged individualized screening plans as opposed to wholesale biannual screening of women aged 40 to 49.[19] In 2009, the U.S. Preventive Services Task Force recommended that screening of those age 40 to 49 be based on individual's risk factors and values, and that screening should not be routine in this age group.[1] Their report says that the benefits of screenings before the age of 50 don't outweigh the risks.[20]

Critique of screening mammography

The use of mammography as a screening tool for the detection of early breast cancer continues to be debated. Critics point out that a large number of women need to be screened to find cancer. Kopans reminds us that since 1990, the death rate from breast cancer has decreased by almost 30% and points to studies in Sweden and the Netherlands that show two-thirds of the decrease in cancer deaths is due to mammography screening.[21] Keen and Keen indicated that repeated mammography starting at age 50 saves about 1.8 lives over 15 years for every 1,000 women screened.[22] This result has to be seen against the negatives of errors in diagnosis, overtreatment, and radiation exposure. Countercritics argue that the benefit is greater. The Cochrane analysis of screening indicates that it is "not clear whether screening does more good than harm". According to their analysis one in 2,000 women will have her life prolonged by 10 years of screening, however, another 10 healthy women will undergo unnecessary breast cancer treatment. Additionally, 200 women will suffer from significant psychological stress due to false posivitive results.[2] Newman points out that screening mammography does not reduce death overall, but causes significant harm by inflicting cancer scare and unnecessary surgical interventions.[23] Finally, a significant recent article points out that a successful screening program should result in an increase in the number of early breast cancers, followed by a decrease in the number of late-stage cancers. However this is not happening with current mammography screening.[24]

Research alternatives to mammography [neutrality is disputed]

While the cost of mammography is relatively low, its sensitivity is not ideal,[citation needed] with reports listing the range from 45% to about 90% depending on factors such as the density of the breast. Neither is the X-ray based technology completely benign, as noted above. Therefore there is considerable ongoing research into the use of alternative technologies.

  • A low cost commercial device called Breastlight[25] allows a woman to shine a powerful but harmless red light through her breasts in a darkened room, revealing areas that might be cause for concern. The device has been tested in clinical trials and is considered a useful addition to a woman's breast awareness or breast self examination regime.

The Breastlight works on the principle of Transillumination. The bright red light is transmitted and scattered by the breast tissue and strongly absorbed by haemoglobin in any blood present. For most women they will simply be able to see the presence and location of their blood vessels within their breast. The blood within the blood vessels absorbs the red light revealing a darker area or shadow under Breastlight illumination. Similarly if there is additional blood present e.g. from a blood filled cyst, from the angiogenesis surrounding an area of cancer or from recent bruising then a shadow can also be observed. The accuracy of results from use of the Breastlight and other devices using the same principles in detecting breast cancer depends on a number of factors including the size and location of the cancer and the experience of the user. In the 1960s through 1990's a lot of research was carried out to see if Breast Transillumination (optical and Infra Red) could be a suitable safer alternative to X-Ray Mammography.[26] The general consensus was that Breast Transillumination was not as accurate as X-Ray Mammography as a diagnostic device for Breast Cancer. Recent clinical trials [27] where the use of the Breastlight device was compared to standard care (mammography and biopsy) concluded that "Breastlight can provide some useful information with a sensitivity of 67% and a specificity of 85%". These results are considered similar to previous breast transillumination studies. Although breast transillumination is therefore not an alternative to X-Ray Mammography as a diagnostic test it can be used to provide additional benefits in its use as a low cost home use device. Although there is the potential for false negatives and false positives with the Breastlight there are a number of advantages. User studies and clinical trial results [28] suggest that the Breastlight is useful for use in woman who have a history of recurrent cysts, have fibrous breasts, for use between regular mammograms and for differentiating between malignant and benign disease.

  • Molecular breast imaging (MBI), is a new technology used for breast imaging. MBI identifies tumors in dense breast tissue that are often not visible with X-ray based analog or digital mammography.

Regulation

Mammography facilities in the United States and its territories (including military bases) are subject to the Mammography Quality Standards Act (MQSA). The act requires annual inspections and accredition every 3 years through an FDA-approved body. Facilities found deficient during the inspection or accreditation process can be barred from performing mammograms until corrective action has been verified or, in extreme cases, can be required to notify past patients that their exams were sub-standard and should not be trusted.

At this time MQSA applies only to traditional mammography and not related scans such as breast ultrasound, stereotactic breast biospy, or breast MRI.

See also

References

  1. ^ a b "USPSTF recommendations on Screening for Breast Cancer". Retrieved 2010-09-13.
  2. ^ a b c Gøtzsche PC, Nielsen M (2006). "Screening for breast cancer with mammography". Cochrane Database Syst Rev (4): CD001877. doi:10.1002/14651858.CD001877.pub2. PMID 17054145.
    Gøtzsche PC, Nielsen M (2009). "Screening for breast cancer with mammography". Cochrane Database Syst Rev (4): CD001877. doi:10.1002/14651858.CD001877.pub3. PMID 19821284.
  3. ^ O.Olsen, P.Gøtzsche (2000). "Cochrane review on screening for breast cancer with mammography". The Lancet. 358: 1340–1342, discussion 264–6. doi:10.1016/S0140-6736(01)06449-2. PMID 11684218.
  4. ^ Miller AB (2003). "Is mammography screening for breast cancer really not justifiable?". Recent Results Cancer Res. 163: 115–28, discussion 264–6. PMID 12903848.
  5. ^ Harris R, Kinsinger LS (2002). "Routinely teaching breast self-examination is dead. What does this mean?". J. Natl. Cancer Inst. 94 (19): 1420–1. PMID 12359843.
  6. ^ Baxter N; Canadian Task Force on Preventive Health Care (2001). "Preventive health care, 2001 update: should women be routinely taught breast self-examination to screen for breast cancer?". CMAJ. 164 (13): 1837–46. PMC 81191. PMID 11450279. {{cite journal}}: Unknown parameter |month= ignored (help)
  7. ^ Mammography Quality Scorecard, from the Food and Drug Administration. Updated March 1, 2010. Accessed March 31, 2010.
  8. ^ Mammography Frequently Asked Questions, from the American College of Radiology. Revised January 8, 2007; accessed April 9, 2007.
  9. ^ [1], "Mobile Mammography Vans Can Bring Free and Low-Cost Mammograms to You," MyHealthCafe.com
  10. ^ Metcalfe MS, Bridgewater FH, Mullin EJ, Maddern GJ (2004). "Useless and dangerous—fine needle aspiration of hepatic colorectal metastases". BMJ. 328 (7438): 507–8. doi:10.1136/bmj.328.7438.507. PMC 351851. PMID 14988193. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  11. ^ Destounis SV, DiNitto P, Logan-Young W, Bonaccio E, Zuley ML, Willison KM (2004). "Can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate? Initial experience". Radiology. 232 (2): 578–84. doi:10.1148/radiol.2322030034. PMID 15229350.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. ^ Taylor P, Champness J, Given-Wilson R, Johnston K, Potts H (2005). "Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography". Health Technol Assess. 9 (6): iii, 1–58. PMID 15717938. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  13. ^ http://www.cnn.com/2008/HEALTH/conditions/10/01/computer.mammogram.help.ap/index.html. {{cite news}}: Missing or empty |title= (help) [dead link]
  14. ^ Brewer NT, Salz T, Lillie SE (2007). "Systematic review: the long-term effects of false-positive mammograms". Ann. Intern. Med. 146 (7): 502–10. PMID 17404352. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  15. ^ Feig S, Hendrick R (1997). "Radiation risk from screening mammography of women aged 40–49 years". J Natl Cancer Inst Monogr (22): 119–24. PMID 9709287.
  16. ^ Screening for Breast Cancer: Recommendations and Rationale. From the United States Preventive Task Force, a section of the Agency for Healthcare Research and Quality. Released February 2002; accessed April 9, 2007.
  17. ^ Miller AB, Baines CJ, To T, Wall C (1992). "Canadian National Breast Screening Study: 2. Breast cancer detection and death rates among women aged 50 to 59 years". CMAJ. 147 (10): 1477–88. PMC 1336544. PMID 1423088. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  18. ^ Screening Mammograms: Questions and Answers, from the National Cancer Institute. Released May 2006; accessed April 9, 2007.
  19. ^ Qaseem A, Snow V, Sherif K, Aronson M, Weiss KB, Owens DK (2007). "Screening mammography for women 40 to 49 years of age: a clinical practice guideline from the American College of Physicians". Ann. Intern. Med. 146 (7): 511–5. PMID 17404353. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  20. ^ Sammons, Mary-Beth (2009). "New Mammogram Guidelines Spark Controversy". AOL Health. Retrieved November 2009. {{cite web}}: Check |authorlink= value (help); Check date values in: |accessdate= (help); External link in |authorlink= (help); Unknown parameter |month= ignored (help)
  21. ^ Kopans DB (2009). "Why the critics of screening mammography are wrong". Diagnostic Imaging. 31 (12): 18–24.
  22. ^ Nick Mulcahy (April 2, 2009). "Screening Mammography Benefits and Harms in Spotlight Again". Medscape.
  23. ^ David H. Newman (2008). Hippocrates' Shadow. Scibner. p. 193. ISBN 1-4165-5153-0.
  24. ^ Esserman L, Shieh Y, Thompson I (2009). "Rethinking screening for breast cancer and prostate cancer". JAMA. 302 (15): 1685–92. doi:10.1001/jama.2009.1498. PMID 19843904. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  25. ^ http://uk.breastlight.com/
  26. ^ Sickles E.A Breast Cancer Detection with Transillumination and Mammography. Presented in part at the annual general meeting of the American Roentgen Ray Society, Atlanta April 1963
  27. ^ A clinical investigation to develop an evidence base for the use of Breastlight in examining the breast, Dec 2009, Trial carried out at City University of Sunderland
  28. ^ Analysis of Breastlight findings in patients with biopsies, Iwuchukwu, Keaney, Doreda, Sunderland, Tyne and Wear, UK, 12th Milan Breast Cancer Conference 16-18th June 2010

Template:Link FA