PLD3: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Tkwon22 (talk | contribs)
Added last portion of Function content from sandbox.
Tkwon22 (talk | contribs)
Added Interactions heading and content from sandbox.
Line 30: Line 30:


Elevated expression of PLD3 was found to be one of the consistent factors that contribute to the self-renewal activity of [[hematopoietic stem cell]] populations, suggesting a possible role of PLD3 in the mechanism behind the maintenance of durable, long-term self-renewing cell populations.<ref>{{Cite journal|last=Kent|first=David G.|last2=Copley|first2=Michael R.|last3=Benz|first3=Claudia|last4=Wöhrer|first4=Stefan|last5=Dykstra|first5=Brad J.|last6=Ma|first6=Elaine|last7=Cheyne|first7=John|last8=Zhao|first8=Yongjun|last9=Bowie|first9=Michelle B.|date=2009-06-18|title=Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential|url=http://www.bloodjournal.org/content/113/25/6342|journal=Blood|language=en|volume=113|issue=25|pages=6342–6350|doi=10.1182/blood-2008-12-192054|issn=0006-4971|pmid=19377048}}</ref>
Elevated expression of PLD3 was found to be one of the consistent factors that contribute to the self-renewal activity of [[hematopoietic stem cell]] populations, suggesting a possible role of PLD3 in the mechanism behind the maintenance of durable, long-term self-renewing cell populations.<ref>{{Cite journal|last=Kent|first=David G.|last2=Copley|first2=Michael R.|last3=Benz|first3=Claudia|last4=Wöhrer|first4=Stefan|last5=Dykstra|first5=Brad J.|last6=Ma|first6=Elaine|last7=Cheyne|first7=John|last8=Zhao|first8=Yongjun|last9=Bowie|first9=Michelle B.|date=2009-06-18|title=Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential|url=http://www.bloodjournal.org/content/113/25/6342|journal=Blood|language=en|volume=113|issue=25|pages=6342–6350|doi=10.1182/blood-2008-12-192054|issn=0006-4971|pmid=19377048}}</ref>

== Interactions ==
The human progranulin protein (PGRN), encoded by the [[Granulin|human granulin gene]] (''GRN''), is co-expressed with and interacts with PLD3 accumulated on neuritic plaques in AD brains.<ref name=":1">{{Cite journal|last=Satoh|first=Jun-ichi|last2=Kino|first2=Yoshihiro|last3=Yamamoto|first3=Yoji|last4=Kawana|first4=Natsuki|last5=Ishida|first5=Tsuyoshi|last6=Saito|first6=Yuko|last7=Arima|first7=Kunimasa|date=2014-11-02|title=PLD3 is accumulated on neuritic plaques in Alzheimer’s disease brains|url=https://doi.org/10.1186/s13195-014-0070-5|journal=Alzheimer's Research & Therapy|volume=6|pages=70|doi=10.1186/s13195-014-0070-5|issn=1758-9193}}</ref> PLD3 may interact with APP and amyloid beta, as some studies indicate that PLD3 is involved with APP processing and regulating Aβ levels.<ref name=":04">{{Cite journal|last=Cruchaga|first=Carlos|last2=Karch|first2=Celeste M.|last3=Jin|first3=Sheng Chih|last4=Benitez|first4=Bruno A.|last5=Cai|first5=Yefei|last6=Guerreiro|first6=Rita|last7=Harari|first7=Oscar|last8=Norton|first8=Joanne|last9=Budde|first9=John|date=2013-12-11|title=Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease|url=https://www.nature.com/articles/nature12825|journal=Nature|language=En|volume=505|issue=7484|pages=550–554|doi=10.1038/nature12825|issn=1476-4687}}</ref><ref name=":123">{{Cite journal|last=Karch|first=Celeste|last2=Hsu|first2=Simon|last3=Martinez|first3=Rita|last4=Norton|first4=Joanne|last5=Cirrito|first5=John R.|last6=Lee|first6=Jin-Moo|last7=Cuervo|first7=Maria|last8=Cruchaga|first8=Carlos|last9=Goate|first9=Alison|date=2017-07-01|title=PHOSPHOLIPASE D3 CONTRIBUTES TO ALZHEIMER’S DISEASE RISK VIA DISRUPTION OF Aβ CLEARANCE THROUGH THE LYSOSOME|url=http://www.alzheimersanddementia.com/article/S1552-5260(17)33164-3/fulltext|journal=Alzheimer's & Dementia: The Journal of the Alzheimer's Association|language=English|volume=13|issue=7|pages=P602–P603|doi=10.1016/j.jalz.2017.07.248|issn=1552-5260}}</ref><ref name=":133">{{Cite journal|last=Karch|first=Celeste|last2=Hsu|first2=Simon|last3=Ezerskiy|first3=Lubov|last4=Martinez|first4=Rita|last5=Norton|first5=Joanne|last6=Cruchaga|first6=Carlos|last7=Goate|first7=Alison M.|date=2015-07-01|title=Phospholipase d3 contributes to Alzheimer’s disease risk via disruption in app trafficking and Aβ generation|url=http://www.alzheimersanddementia.com/article/S1552-5260(15)02256-6/fulltext|journal=Alzheimer's & Dementia|language=English|volume=11|issue=7|doi=10.1016/j.jalz.2015.07.106|issn=1552-5260}}</ref> PLD3 may also interact with Akt and insulin in myoblasts ''in vitro''.<ref name=":172">{{Cite journal|last=Zhang|first=Junlin|last2=Chen|first2=Shuai|last3=Zhang|first3=Shujin|last4=Lu|first4=Zhijuan|last5=Yang|first5=Heping|last6=Wang|first6=Huayan|date=October 2009|title=[Over-expression of phospholipase D3 inhibits Akt phosphorylation in C2C12 myoblasts]|url=https://www.ncbi.nlm.nih.gov/pubmed/20112697/|journal=Sheng Wu Gong Cheng Xue Bao = Chinese Journal of Biotechnology|volume=25|issue=10|pages=1524–1531|issn=1000-3061|pmid=20112697}}</ref>


== References ==
== References ==

Revision as of 09:09, 30 November 2017

PLD3
Identifiers
AliasesPLD3, AD19, HU-K4, HUK4, phospholipase D family member 3, SCA46
External IDsOMIM: 615698; MGI: 1333782; HomoloGene: 7893; GeneCards: PLD3; OMA:PLD3 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001031696
NM_001291311
NM_012268

NM_011116
NM_001317355

RefSeq (protein)

NP_001026866
NP_001278240
NP_036400

NP_001304284
NP_035246

Location (UCSC)Chr 19: 40.35 – 40.38 MbChr 7: 27.23 – 27.25 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Phospholipase D3, also known as PLD3, is a protein that in humans is encoded by the PLD3 gene.[5] PLD3 belongs to the phospholipase D superfamily because it contains the two HKD motifs common to members of the phospholipase D family, however, it has no known catalytic function similar to PLD1 or PLD2. PLD3 is highly expressed in the brain in both humans and mice, and is mainly localized in the endoplasmic reticulum (ER) and the lysosome.

PLD3 may play a role in regulating the lysosomal system, myogenesis, late-stage neurogenesis, inhibiting insulin signal transduction, and amyloid precursor protein (APP) processing. The involvement in PLD3 in the lysosomal system and in APP processing and the loss-of-function mutations in PLD3 are thought to be linked to late-onset Alzheimer's disease (LOAD).[6][7][8][9][10] However, there are also studies that challenge the finding that PLD3 and Alzheimer's disease (AD) are linked.[11][12][13][14][15]

How APP processing by PLD3 during AD still remains unclear, and its role in the pathogenesis of AD is ambiguous.[16][17] PLD3 may contribute to the onset of AD by a mechanism other than by influencing APP metabolism, with one proposed mechanism suggesting that PLD3 contributes to the onset of AD by impairing the endosomal-lysosomal system.[16] In 2017, PLD3 was shown to have an association with another neurodegenerative disease, spinocerebellar ataxia.[18]

Genetics

PLD3 was first characterized as a human homolog of the HindIII K4L protein in the vaccinia virus, having a DNA sequence 48.1% similar to the viral gene.[19] The PLD3 gene in humans is located at chromosome 19q13.2, with a sequence comprising at least 15 exons and is alternatively spliced at the low GC 5' UTR into 25 predicted transcripts.[20][21] Translation of the 490 amino acid-long PLD3 protein is initiated around exons 5 to 7, and ends at the stop codon in exon 15.[20]

Structure

PLD3 is a 490 amino acid-long type 2 transmembrane protein, unlike PLD1 and PLD2 which do not contain a transmembrane protein domain in their protein structure.[22]

The cytosolic N-terminal of the protein faces towards the cytoplasm of the cell, and lacks consensus sites for N-glycosylation.[22] The N-terminus is also predicted to contain a transmembrane domain.[23]

The bulk of the protein is located in the ER lumen, containing the C-terminal domain.[24] The C-terminal domain contains seven glycosylation sites along with a prenylation motif and two HXKXXXXD/E (HKD) motifs.[25] In PLD1 and PLD2, this is the catalytic domain or active site of the protein, which is why PLD3 was assigned to the phospholipase D superfamily.[25] However, PLD3 has no known catalytic activity and aside from presence of the HKD motifs, PLD3 has no structural commonalities with PLD1 or PLD2.[25]

Tissue and Subcellular Distribution

Expression of PLD3 in tissues differs with the transcript size of its mRNA.[26] The longer 2200 base pair transcript is ubiquitously expressed in the body, exhibiting higher expression levels in the heart, skeletal muscle, and the brain.[26] Meanwhile, the shorter 1700 base pair transcript is found in abundance in the brain, but at low expression in non-nervous tissue.[27][28] PLD3 expression is especially pronounced in mature neurons in the mammalian forebrain.[28] High expression of PLD3 is specifically seen in the hippocampus and the frontal, temporal, and occipital lobes in the cerebral cortex.[29][28] The PLD3 gene is also found with high expression in the cerebellum.[30]

Subcellular localization of PLD3 is thought to primarily be in the endoplasmic reticulum (ER), as it has been shown to co-localize with protein disulfide-isomerase, a protein known to be a marker for the ER.[31] PLD3 may also be localized in lysosomes, co-localizing with lysosomal markers LAMP1 and LAMP2 in lysosomes in separate studies.[32][33] PLD3 was identified as a protein in insulin secretory granules derived from pancreatic beta cells.[34]

Function

PLD3 is a member of the phospholipase D protein family, however, it has no known catalytic activity like that of PLD1 and PLD2.[35]

PLD3 may play some role in influencing protein processing through the lysosome as well as a regulatory role in lysosomal morphology.[36][37] Some studies suggest that PLD3 is involved in amyloid precursor protein (APP) processing and regulating amyloid beta (Aβ) levels.[38][37][39] Overexpression of wildtype PLD3 is linked to a decrease in intracellular APP and extracellular Aβ isoforms Aβ40 and Aβ42, while a knockdown of PLD3 is linked to an increase in extracellular Aβ40 and Aβ42.[38][37] PLD3 was implied to be involved in sensing oxidative stress, such that suppressing the PLD3 gene with short hairpin RNA increased the viability of cells exposed to oxidative stress.[40]

Increased PLD3 expression was shown to increase myotube formation in differentiated mouse myoblasts in vitro, and ER stress which also increases myotube formation was also shown to increase PLD3 expression.[41] Decreasing PLD3 expression meanwhile decreases myotube formation.[41] These findings suggest a possible role of PLD3 in myogenesis, although its exact mechanism of action remains unknown.[41] Overexpression of PLD3 in mouse myoblasts in vitro may inhibit Akt phosphorylation and block signal transduction during insulin signalling.[42] PLD3 may be involved in the later stages of neurogenesis, contributing to processes associated with neurotransmission, target cell innervation, and neuronal survival.[43]

Elevated expression of PLD3 was found to be one of the consistent factors that contribute to the self-renewal activity of hematopoietic stem cell populations, suggesting a possible role of PLD3 in the mechanism behind the maintenance of durable, long-term self-renewing cell populations.[44]

Interactions

The human progranulin protein (PGRN), encoded by the human granulin gene (GRN), is co-expressed with and interacts with PLD3 accumulated on neuritic plaques in AD brains.[45] PLD3 may interact with APP and amyloid beta, as some studies indicate that PLD3 is involved with APP processing and regulating Aβ levels.[46][47][48] PLD3 may also interact with Akt and insulin in myoblasts in vitro.[49]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000105223Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000003363Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: Phospholipase D family, member 3".
  6. ^ Cruchaga, Carlos; Karch, Celeste M.; Jin, Sheng Chih; Benitez, Bruno A.; Cai, Yefei; Guerreiro, Rita; Harari, Oscar; Norton, Joanne; Budde, John (2013-12-11). "Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease". Nature. 505 (7484): 550–554. doi:10.1038/nature12825. ISSN 1476-4687.
  7. ^ Karch, Celeste; Hsu, Simon; Martinez, Rita; Norton, Joanne; Cirrito, John R.; Lee, Jin-Moo; Cuervo, Maria; Cruchaga, Carlos; Goate, Alison (2017-07-01). "PHOSPHOLIPASE D3 CONTRIBUTES TO ALZHEIMER'S DISEASE RISK VIA DISRUPTION OF Aβ CLEARANCE THROUGH THE LYSOSOME". Alzheimer's & Dementia: The Journal of the Alzheimer's Association. 13 (7): P602–P603. doi:10.1016/j.jalz.2017.07.248. ISSN 1552-5260.
  8. ^ Karch, Celeste; Hsu, Simon; Ezerskiy, Lubov; Martinez, Rita; Norton, Joanne; Cruchaga, Carlos; Goate, Alison M. (2015-07-01). "Phospholipase d3 contributes to Alzheimer's disease risk via disruption in app trafficking and Aβ generation". Alzheimer's & Dementia. 11 (7). doi:10.1016/j.jalz.2015.07.106. ISSN 1552-5260.
  9. ^ Nho, Kwangsik T.; Kim, Sungeun; Risacher, Shannon Leigh; Shen, Li; Foroud, Tatiana; Aisen, Paul; Petersen, Ronald Carl; Jack, Clifford; Weiner, Michael Walter (2014-07-01). "RARE VARIANT IN PLD3 IS ASSOCIATED WITH ALZHEIMER'S PATTERN OF NEURODEGENERATIVE CHANGES". Alzheimer's & Dementia: The Journal of the Alzheimer's Association. 10 (4): P97. doi:10.1016/j.jalz.2014.05.181. ISSN 1552-5260.
  10. ^ Zhang, Deng-Feng; Fan, Yu; Wang, Dong; Bi, Rui; Zhang, Chen; Fang, Yiru; Yao, Yong-Gang (August 2016). "PLD3 in Alzheimer's Disease: a Modest Effect as Revealed by Updated Association and Expression Analyses". Molecular Neurobiology. 53 (6): 4034–4045. doi:10.1007/s12035-015-9353-5. ISSN 1559-1182. PMID 26189833.
  11. ^ Heilmann, Stefanie; Drichel, Dmitriy; Clarimon, Jordi; Fernández, Victoria; Lacour, André; Wagner, Holger; Thelen, Mathias; Hernández, Isabel; Fortea, Juan (2015-04-01). "PLD3 in non-familial Alzheimer's disease". Nature. 520 (7545): E3–E5. doi:10.1038/nature14039. ISSN 1476-4687.
  12. ^ Hooli, Basavaraj V.; Lill, Christina M.; Mullin, Kristina; Qiao, Dandi; Lange, Christoph; Bertram, Lars; Tanzi, Rudolph E. (2015-04-01). "PLD3 gene variants and Alzheimer's disease". Nature. 520 (7545): E7–E8. doi:10.1038/nature14040. ISSN 1476-4687.
  13. ^ Lambert, Jean-Charles; Grenier-Boley, Benjamin; Bellenguez, Céline; Pasquier, Florence; Campion, Dominique; Dartigues, Jean-Francois; Berr, Claudine; Tzourio, Christophe; Amouyel, Philippe (2015-04-01). "PLD3 and sporadic Alzheimer's disease risk". Nature. 520 (7545): E1–E1. doi:10.1038/nature14036. ISSN 1476-4687.
  14. ^ Jiao, Bin; Liu, Xiaoyan; Tang, Beisha; Hou, Lihua; Zhou, Lin; Zhang, Fufeng; Zhou, Yafang; Guo, Jifeng; Yan, Xinxiang (October 2014). "Investigation of TREM2, PLD3, and UNC5C variants in patients with Alzheimer's disease from mainland China". Neurobiology of Aging. 35 (10): 2422.e9–2422.e11. doi:10.1016/j.neurobiolaging.2014.04.025. ISSN 1558-1497. PMID 24866402.
  15. ^ Fazzari, Pietro; Horre, Katrien; Arranz, Amaia M.; Frigerio, Carlo Sala; Saito, Takashi; Saido, Takaomi C.; Strooper, Bart De (2017-01-25). "PLD3 gene and processing of APP". Nature. 541 (7638): E1–E2. doi:10.1038/nature21030. ISSN 1476-4687.
  16. ^ a b Fazzari, Pietro; Horre, Katrien; Arranz, Amaia M.; Frigerio, Carlo Sala; Saito, Takashi; Saido, Takaomi C.; Strooper, Bart De (2017-01-25). "PLD3 gene and processing of APP". Nature. 541 (7638): E1–E2. doi:10.1038/nature21030. ISSN 1476-4687.
  17. ^ Wang, Jun; Yu, Jin-Tai; Tan, Lan (April 2015). "PLD3 in Alzheimer's disease". Molecular Neurobiology. 51 (2): 480–486. doi:10.1007/s12035-014-8779-5. ISSN 1559-1182. PMID 24935720.
  18. ^ Nibbeling, Esther A R; Duarri, Anna; Verschuuren-Bemelmans, Corien C; Fokkens, Michiel R; Karjalainen, Juha M; Smeets, Cleo J L M; Boer-Bergsma, Jelkje J de; Vries, Gerben van der; Dooijes, Dennis (2017-11-01). "Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia". Brain. 140 (11): 2860–2878. doi:10.1093/brain/awx251. ISSN 0006-8950.
  19. ^ Cao, J. X.; Koop, B. F.; Upton, C. (April 1997). "A human homolog of the vaccinia virus HindIII K4L gene is a member of the phospholipase D superfamily". Virus Research. 48 (1): 11–18. ISSN 0168-1702. PMID 9140189.
  20. ^ a b Munck, Antonia; Böhm, Christopher; Seibel, Nicole M.; Hashemol Hosseini, Zara; Hampe, Wolfgang (2005). "Hu-K4 is a ubiquitously expressed type 2 transmembrane protein associated with the endoplasmic reticulum". FEBS Journal. 272 (7): 1718–1726. doi:10.1111/j.1742-4658.2005.04601.x. ISSN 1742-464X.
  21. ^ Karch, Celeste M.; Goate, Alison M. (2015-01-01). "Alzheimer's disease risk genes and mechanisms of disease pathogenesis". Biological psychiatry. 77 (1): 43–51. doi:10.1016/j.biopsych.2014.05.006. ISSN 0006-3223. PMC 4234692. PMID 24951455.{{cite journal}}: CS1 maint: PMC format (link)
  22. ^ a b Munck, Antonia; Böhm, Christopher; Seibel, Nicole M.; Hashemol Hosseini, Zara; Hampe, Wolfgang (2005). "Hu-K4 is a ubiquitously expressed type 2 transmembrane protein associated with the endoplasmic reticulum". FEBS Journal. 272 (7): 1718–1726. doi:10.1111/j.1742-4658.2005.04601.x. ISSN 1742-464X.
  23. ^ Osisami, Mary; Ali, Wahida; Frohman, Michael A. (2012-03-12). "A Role for Phospholipase D3 in Myotube Formation". PLoS ONE. 7 (3). doi:10.1371/journal.pone.0033341. ISSN 1932-6203. PMC 3299777. PMID 22428023.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  24. ^ Frohman, Michael A. (2015-03-01). "The phospholipase D superfamily as therapeutic targets". Trends in Pharmacological Sciences. 36 (3): 137–144. doi:10.1016/j.tips.2015.01.001.
  25. ^ a b c Munck, Antonia; Böhm, Christopher; Seibel, Nicole M.; Hashemol Hosseini, Zara; Hampe, Wolfgang (2005). "Hu-K4 is a ubiquitously expressed type 2 transmembrane protein associated with the endoplasmic reticulum". FEBS Journal. 272 (7): 1718–1726. doi:10.1111/j.1742-4658.2005.04601.x. ISSN 1742-464X.
  26. ^ a b Munck, Antonia; Böhm, Christopher; Seibel, Nicole M.; Hashemol Hosseini, Zara; Hampe, Wolfgang (2005). "Hu-K4 is a ubiquitously expressed type 2 transmembrane protein associated with the endoplasmic reticulum". FEBS Journal. 272 (7): 1718–1726. doi:10.1111/j.1742-4658.2005.04601.x. ISSN 1742-464X.
  27. ^ Munck, Antonia; Böhm, Christopher; Seibel, Nicole M.; Hashemol Hosseini, Zara; Hampe, Wolfgang (2005). "Hu-K4 is a ubiquitously expressed type 2 transmembrane protein associated with the endoplasmic reticulum". FEBS Journal. 272 (7): 1718–1726. doi:10.1111/j.1742-4658.2005.04601.x. ISSN 1742-464X.
  28. ^ a b c Pedersen, K. M.; Finsen, B.; Celis, J. E.; Jensen, N. A. (1998-11-20). "Expression of a novel murine phospholipase D homolog coincides with late neuronal development in the forebrain". The Journal of Biological Chemistry. 273 (47): 31494–31504. ISSN 0021-9258. PMID 9813063.
  29. ^ Cruchaga, Carlos; Karch, Celeste M.; Jin, Sheng Chih; Benitez, Bruno A.; Cai, Yefei; Guerreiro, Rita; Harari, Oscar; Norton, Joanne; Budde, John (2013-12-11). "Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease". Nature. 505 (7484): 550–554. doi:10.1038/nature12825. ISSN 1476-4687.
  30. ^ Nibbeling, Esther A R; Duarri, Anna; Verschuuren-Bemelmans, Corien C; Fokkens, Michiel R; Karjalainen, Juha M; Smeets, Cleo J L M; Boer-Bergsma, Jelkje J de; Vries, Gerben van der; Dooijes, Dennis (2017-11-01). "Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia". Brain. 140 (11): 2860–2878. doi:10.1093/brain/awx251. ISSN 0006-8950.
  31. ^ Munck, Antonia; Böhm, Christopher; Seibel, Nicole M.; Hashemol Hosseini, Zara; Hampe, Wolfgang (2005). "Hu-K4 is a ubiquitously expressed type 2 transmembrane protein associated with the endoplasmic reticulum". FEBS Journal. 272 (7): 1718–1726. doi:10.1111/j.1742-4658.2005.04601.x. ISSN 1742-464X.
  32. ^ Fazzari, Pietro; Horre, Katrien; Arranz, Amaia M.; Frigerio, Carlo Sala; Saito, Takashi; Saido, Takaomi C.; Strooper, Bart De (2017-01-25). "PLD3 gene and processing of APP". Nature. 541 (7638): E1–E2. doi:10.1038/nature21030. ISSN 1476-4687.
  33. ^ Palmieri, Michela; Impey, Soren; Kang, Hyojin; di Ronza, Alberto; Pelz, Carl; Sardiello, Marco; Ballabio, Andrea (2011-10-01). "Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways". Human Molecular Genetics. 20 (19): 3852–3866. doi:10.1093/hmg/ddr306. ISSN 1460-2083. PMID 21752829.
  34. ^ Brunner, Yannick; Couté, Yohann; Iezzi, Mariella; Foti, Michelangelo; Fukuda, Mitsonuri; Hochstrasser, Denis F.; Wollheim, Claes B.; Sanchez, Jean-Charles (June 2007). "Proteomics analysis of insulin secretory granules". Molecular & cellular proteomics: MCP. 6 (6): 1007–1017. doi:10.1074/mcp.M600443-MCP200. ISSN 1535-9476. PMID 17317658.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  35. ^ Munck, Antonia; Böhm, Christopher; Seibel, Nicole M.; Hashemol Hosseini, Zara; Hampe, Wolfgang (2005). "Hu-K4 is a ubiquitously expressed type 2 transmembrane protein associated with the endoplasmic reticulum". FEBS Journal. 272 (7): 1718–1726. doi:10.1111/j.1742-4658.2005.04601.x. ISSN 1742-464X.
  36. ^ Fazzari, Pietro; Horre, Katrien; Arranz, Amaia M.; Frigerio, Carlo Sala; Saito, Takashi; Saido, Takaomi C.; Strooper, Bart De (2017-01-25). "PLD3 gene and processing of APP". Nature. 541 (7638): E1–E2. doi:10.1038/nature21030. ISSN 1476-4687.
  37. ^ a b c Karch, Celeste; Hsu, Simon; Martinez, Rita; Norton, Joanne; Cirrito, John R.; Lee, Jin-Moo; Cuervo, Maria; Cruchaga, Carlos; Goate, Alison (2017-07-01). "PHOSPHOLIPASE D3 CONTRIBUTES TO ALZHEIMER'S DISEASE RISK VIA DISRUPTION OF Aβ CLEARANCE THROUGH THE LYSOSOME". Alzheimer's & Dementia: The Journal of the Alzheimer's Association. 13 (7): P602–P603. doi:10.1016/j.jalz.2017.07.248. ISSN 1552-5260.
  38. ^ a b Cruchaga, Carlos; Karch, Celeste M.; Jin, Sheng Chih; Benitez, Bruno A.; Cai, Yefei; Guerreiro, Rita; Harari, Oscar; Norton, Joanne; Budde, John (2013-12-11). "Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease". Nature. 505 (7484): 550–554. doi:10.1038/nature12825. ISSN 1476-4687.
  39. ^ Karch, Celeste; Hsu, Simon; Ezerskiy, Lubov; Martinez, Rita; Norton, Joanne; Cruchaga, Carlos; Goate, Alison M. (2015-07-01). "Phospholipase d3 contributes to Alzheimer's disease risk via disruption in app trafficking and Aβ generation". Alzheimer's & Dementia. 11 (7). doi:10.1016/j.jalz.2015.07.106. ISSN 1552-5260.
  40. ^ Nagaoka-Yasuda, Rie; Matsuo, Naoki; Perkins, Brian; Limbaeck-Stokin, Klara; Mayford, Mark (2007-09-01). "An RNAi-based genetic screen for oxidative stress resistance reveals retinol saturase as a mediator of stress resistance". Free Radical Biology & Medicine. 43 (5): 781–788. doi:10.1016/j.freeradbiomed.2007.05.008. ISSN 0891-5849. PMID 17664141.
  41. ^ a b c Osisami, Mary; Ali, Wahida; Frohman, Michael A. (2012-03-12). "A Role for Phospholipase D3 in Myotube Formation". PLoS ONE. 7 (3). doi:10.1371/journal.pone.0033341. ISSN 1932-6203. PMC 3299777. PMID 22428023.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  42. ^ Zhang, Junlin; Chen, Shuai; Zhang, Shujin; Lu, Zhijuan; Yang, Heping; Wang, Huayan (October 2009). "[Over-expression of phospholipase D3 inhibits Akt phosphorylation in C2C12 myoblasts]". Sheng Wu Gong Cheng Xue Bao = Chinese Journal of Biotechnology. 25 (10): 1524–1531. ISSN 1000-3061. PMID 20112697.
  43. ^ Pedersen, K. M.; Finsen, B.; Celis, J. E.; Jensen, N. A. (1998-11-20). "Expression of a novel murine phospholipase D homolog coincides with late neuronal development in the forebrain". The Journal of Biological Chemistry. 273 (47): 31494–31504. ISSN 0021-9258. PMID 9813063.
  44. ^ Kent, David G.; Copley, Michael R.; Benz, Claudia; Wöhrer, Stefan; Dykstra, Brad J.; Ma, Elaine; Cheyne, John; Zhao, Yongjun; Bowie, Michelle B. (2009-06-18). "Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential". Blood. 113 (25): 6342–6350. doi:10.1182/blood-2008-12-192054. ISSN 0006-4971. PMID 19377048.
  45. ^ Satoh, Jun-ichi; Kino, Yoshihiro; Yamamoto, Yoji; Kawana, Natsuki; Ishida, Tsuyoshi; Saito, Yuko; Arima, Kunimasa (2014-11-02). "PLD3 is accumulated on neuritic plaques in Alzheimer's disease brains". Alzheimer's Research & Therapy. 6: 70. doi:10.1186/s13195-014-0070-5. ISSN 1758-9193.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  46. ^ Cruchaga, Carlos; Karch, Celeste M.; Jin, Sheng Chih; Benitez, Bruno A.; Cai, Yefei; Guerreiro, Rita; Harari, Oscar; Norton, Joanne; Budde, John (2013-12-11). "Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease". Nature. 505 (7484): 550–554. doi:10.1038/nature12825. ISSN 1476-4687.
  47. ^ Karch, Celeste; Hsu, Simon; Martinez, Rita; Norton, Joanne; Cirrito, John R.; Lee, Jin-Moo; Cuervo, Maria; Cruchaga, Carlos; Goate, Alison (2017-07-01). "PHOSPHOLIPASE D3 CONTRIBUTES TO ALZHEIMER'S DISEASE RISK VIA DISRUPTION OF Aβ CLEARANCE THROUGH THE LYSOSOME". Alzheimer's & Dementia: The Journal of the Alzheimer's Association. 13 (7): P602–P603. doi:10.1016/j.jalz.2017.07.248. ISSN 1552-5260.
  48. ^ Karch, Celeste; Hsu, Simon; Ezerskiy, Lubov; Martinez, Rita; Norton, Joanne; Cruchaga, Carlos; Goate, Alison M. (2015-07-01). "Phospholipase d3 contributes to Alzheimer's disease risk via disruption in app trafficking and Aβ generation". Alzheimer's & Dementia. 11 (7). doi:10.1016/j.jalz.2015.07.106. ISSN 1552-5260.
  49. ^ Zhang, Junlin; Chen, Shuai; Zhang, Shujin; Lu, Zhijuan; Yang, Heping; Wang, Huayan (October 2009). "[Over-expression of phospholipase D3 inhibits Akt phosphorylation in C2C12 myoblasts]". Sheng Wu Gong Cheng Xue Bao = Chinese Journal of Biotechnology. 25 (10): 1524–1531. ISSN 1000-3061. PMID 20112697.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.