Jump to content

2019 in paleomammalogy: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 964: Line 964:
* Description of new cranial remains of the [[Proterotheriidae|proterotheriid]] ''[[Neolicaphrium]] recens'' from the [[Pleistocene]] [[Sopas Formation]] ([[Uruguay]]), and a study on the diet of this species as indicated by tooth microwear, will be published by Corona, Ubilla & Perea (2019).<ref>{{cite journal |author1=Andrea Corona |author2=Martín Ubilla |author3=Daniel Perea |year=2019 |title=New records and diet reconstruction using dental microwear analysis for ''Neolicaphrium recens'' Frenguelli, 1921 (Litopterna, Proterotheriidae) |journal=Andean Geology |volume=46 |issue=1 |pages=153–167 |doi=10.5027/andgeoV46n1-3136 }}</ref>
* Description of new cranial remains of the [[Proterotheriidae|proterotheriid]] ''[[Neolicaphrium]] recens'' from the [[Pleistocene]] [[Sopas Formation]] ([[Uruguay]]), and a study on the diet of this species as indicated by tooth microwear, will be published by Corona, Ubilla & Perea (2019).<ref>{{cite journal |author1=Andrea Corona |author2=Martín Ubilla |author3=Daniel Perea |year=2019 |title=New records and diet reconstruction using dental microwear analysis for ''Neolicaphrium recens'' Frenguelli, 1921 (Litopterna, Proterotheriidae) |journal=Andean Geology |volume=46 |issue=1 |pages=153–167 |doi=10.5027/andgeoV46n1-3136 }}</ref>
* A study on the dietary and environmental preferences of ''Neolicaphrium recens'' is published by Morosi & Ubilla (2019).<ref>{{Cite journal|author1=Elizabeth Morosi |author2=Martin Ubilla |year=2019 |title=Dietary and palaeoenvironmental inferences in ''Neolicaphrium recens'' Frenguelli, 1921 (Litopterna, Proterotheriidae) using carbon and oxygen stable isotopes (Late Pleistocene; Uruguay) |journal=Historical Biology: An International Journal of Paleobiology |volume=31 |issue=2 |pages=196–202 |doi=10.1080/08912963.2017.1355914 }}</ref>
* A study on the dietary and environmental preferences of ''Neolicaphrium recens'' is published by Morosi & Ubilla (2019).<ref>{{Cite journal|author1=Elizabeth Morosi |author2=Martin Ubilla |year=2019 |title=Dietary and palaeoenvironmental inferences in ''Neolicaphrium recens'' Frenguelli, 1921 (Litopterna, Proterotheriidae) using carbon and oxygen stable isotopes (Late Pleistocene; Uruguay) |journal=Historical Biology: An International Journal of Paleobiology |volume=31 |issue=2 |pages=196–202 |doi=10.1080/08912963.2017.1355914 }}</ref>
* A study on variations of [[incisor]] [[Tooth enamel|enamel]] microstructure in [[Notoungulata|notoungulates]] and on their evolutionary and ecological significance will be published by Filippo ''et al.'' (2019).<ref>{{Cite journal|author1=Andréa Filippo |author2=Daniela C. Kalthoff |author3=Guillaume Billet |author4=Helder Gomes Rodrigues |year=2019 |title=Evolutionary and functional implications of incisor enamel microstructure diversity in Notoungulata (Placentalia, Mammalia) |journal=Journal of Mammalian Evolution |volume=in press |issue= |pages= |doi=10.1007/s10914-019-09462-z }}</ref>
* First skeletal remains of ''[[Notostylops]] murinus'' recovered from middle [[Eocene]] levels of the Sarmiento Formation ([[Argentina]]) are described by Lorente, Gelfo & López (2019).<ref>{{cite journal |author1=Malena Lorente |author2=Javier N. Gelfo |author3=Guillermo M. López |year=2019 |title=First skeleton of the notoungulate mammal ''Notostylops murinus'' and palaeobiology of Eocene Notostylopidae |journal=Lethaia |volume=in press |issue= |pages= |doi=10.1111/let.12310 }}</ref>
* First skeletal remains of ''[[Notostylops]] murinus'' recovered from middle [[Eocene]] levels of the Sarmiento Formation ([[Argentina]]) are described by Lorente, Gelfo & López (2019).<ref>{{cite journal |author1=Malena Lorente |author2=Javier N. Gelfo |author3=Guillermo M. López |year=2019 |title=First skeleton of the notoungulate mammal ''Notostylops murinus'' and palaeobiology of Eocene Notostylopidae |journal=Lethaia |volume=in press |issue= |pages= |doi=10.1111/let.12310 }}</ref>
* A study on the braincase anatomy in [[Mesotheriidae|mesotheriid]] [[Notoungulata|notoungulates]] is published by Fernández-Monescillo ''et al.'' (2019).<ref>{{cite journal |author1=Marcos Fernández-Monescillo |author2=Pierre-Olivier Antoine |author3=François Pujos |author4=Helder Gomes Rodrigues |author5=Bernardino Mamani Quispe |author6=Maeva Orliac |year=2019 |title=Virtual endocast morphology of Mesotheriidae (Mammalia, Notoungulata, Typotheria): new insights and implications on notoungulate encephalization and brain evolution |journal=Journal of Mammalian Evolution |volume=26 |issue=1 |pages= 85–100|doi=10.1007/s10914-017-9416-7 }}</ref>
* A study on the braincase anatomy in [[Mesotheriidae|mesotheriid]] [[Notoungulata|notoungulates]] is published by Fernández-Monescillo ''et al.'' (2019).<ref>{{cite journal |author1=Marcos Fernández-Monescillo |author2=Pierre-Olivier Antoine |author3=François Pujos |author4=Helder Gomes Rodrigues |author5=Bernardino Mamani Quispe |author6=Maeva Orliac |year=2019 |title=Virtual endocast morphology of Mesotheriidae (Mammalia, Notoungulata, Typotheria): new insights and implications on notoungulate encephalization and brain evolution |journal=Journal of Mammalian Evolution |volume=26 |issue=1 |pages= 85–100|doi=10.1007/s10914-017-9416-7 }}</ref>

Revision as of 16:09, 13 March 2019

List of years in mammal paleontology
In paleontology
2016
2017
2018
2019
2020
2021
2022
In science
2016
2017
2018
2019
2020
2021
2022
+...

This article records new taxa of fossil mammals of every kind are scheduled to be described during the year 2019, as well as other significant discoveries and events related to paleontology of mammals that are scheduled to occur in the year 2019.

General research

  • A study on the evolution of foot posture in mammals, and on the effects of posture on body size evolution, is published by Kubo et al. (2019).[1]
  • A study on the ancestral tribosphenic therian chewing stroke, as conserved in the extant gray short-tailed opossum, is published by Bhullar et al. (2019).[2]
  • A review of the biogeographic history of mammals and other terrestrial vertebrates from the Mesozoic of Gondwana is published by Krause et al. (2019).[3]

Metatherians

  • Description of new dentary fossils referable to Eodelphis browni, and a study on the evolution of adaptations to durophagy in stagodontids, will be published by Brannick & Wilson (2019).[4]
  • A study on the locomotion of balbarids is published by Den Boer, Campione & Kear (2019).[5]
  • A study on the phylogenetic relationships of a giant short-faced kangaroo Simosthenurus occidentalis and giant wallaby Protemnodon anak, as indicated by data from fossils and near-complete mitochondrial genomes, will be published by Cascini et al. (2019).[6]
  • A study on the skull morphology of Simosthenurus occidentalis, and on its implications for inferring the diet of this mammal, is published by Mitchell & Wroe (2019).[7]
  • A study on the range and ecological tolerances of the Tasmanian devil living in the mainland Australia in prehistoric times, and on its implications for the viability of the proposal to reintroduce Tasmanian devils to mainland Australia, is published by Westaway et al. (2019).[8]
Name Novelty Status Authors Age Type locality Country Notes Images

Australogale[9]

Gen. et sp. nov

In press

Engelman, Anaya & Croft

Miocene (Serravallian)

Honda Group

 Bolivia

A member of Sparassodonta. Genus includes new species A. leptognathus.

Chaeropus yirratji[10]

Sp. nov

Valid

Travouillon et al.

Holocene

 Australia

A relative of the pig-footed bandicoot.

Pujatodon[11]

Gen. et sp. nov

In press

Goin et al.

Eocene (Ypresian)

La Meseta Formation

Antarctica
(Seymour Island)

Probably a member of Polydolopimorphia. Genus includes new species P. ektopos.

Unnuakomys[12]

Gen. et sp. nov

Valid

Eberle et al.

Late Cretaceous (Maastrichtian)

Prince Creek Formation

 United States
( Alaska)

A member of the family Pediomyidae. Genus includes new species U. hutchisoni.

Eutherians

  • A study on the relationship between morphological and molecular rates of evolution of placental mammals is published by Halliday et al. (2019), who interpret their findings as supporting a Late Cretaceous origin of crown placentals, and indicating that early members of major placental groups may not be easily distinguishable from one another or from stem eutherians.[13]
  • A study on fossils of Micromeryx flourensianus from a Miocene locality in France, preserving signs of carnivore activity, and on the possible identity of the predator which produced marks on these bones, is published by Aiglstorfer, Heizmann & Peigné (2019).[14]
  • A study on changes in local climate and habitat conditions in central Spain in a period from 9.1 to 6.3 million years ago, and on the diet and ecology of large mammals from this area in this time period as indicated by tooth wear patterns, is published by De Miguel, Azanza & Morales (2019).[15]
  • Miocene (Turolian) mammal faunas from several fossiliferous localities at Gorna Sushitsa (southwestern Bulgaria) are described by Spassov et al. (2019).[16]
  • A study on the anatomical traits of teeth and inferred diet of bovids, suids and rhinocerotids from the Pliocene site of Kanapoi (Kenya), and on their implications for reconstructing the environments of this site, is published by Dumouchel & Bobe (2019).[17]
  • A study on Paleolithic faunal remains from the Manot Cave (Israel), comparing human and hyena prey choice in the Upper Paleolithic Galilee, is published by Orbach & Yeshurun (2019).[18]
  • A study on leporid assemblages from 8 sites in southern France associated with Acheulean and Middle Paleolithic occupations by hominins, aiming to examine small fast game exploitation by archaic Homo populations, is published by Morin et al. (2019).[19]
  • Evidence from the Campo Laborde site in Argentina indicating that humans hunted and butchered a giant ground sloth Megatherium americanum is presented by Politis et al. (2019).[20]
  • A study on the impact of climate change on the faunal composition and extinction dynamics of European mammal species during the Late Pleistocene-Holocene transition, aiming to test the hypothesis of the existence of common evolutionary processes of change in faunal composition during the Late Pleistocene and Holocene, independent of the regions of Europe, is published by Puzachenko & Markova (2019).[21]
  • A study on evolutionary changes in body size and sexual size dimorphism associated with the independent colonization of Madagascar by primates, carnivorans, tenrecs and rodents is published by Kappeler et al. (2019).[22]

Xenarthrans

  • A study on the phylogeny, macroevolution, and historical biogeography of sloths is published by Varela et al. (2019).[23]
  • A study on the fusion of anterior thoracic vertebrae in Pleistocene ground sloths is published by Tambusso et al. (2019).[24]
  • A study on the internal morphology of the skull of Glossotherium robustum will be published by Boscaini et al. (2019).[25]
  • New skull and teeth remains of Simomylodon uccasamamensis are described from the latest MiocenePliocene of the Bolivian Altiplano by Boscaini et al. (2019).[26]
  • Partial specimen of Megalonyx jeffersonii will be described from a peat deposit near Newburgh, Orange County by McDonald, Feranec & Miller (2019), representing the first record of this species from New York reported so far.[27]
  • A study on the paleoecology of the first fossilized specimen of Eremotherium laurillardi from Belize, as indicated by stable isotope analysis, is published by Larmon et al. (2019).[28]
  • A study on the evolution of morphological traits associated with tail weaponry in glyptodonts and ankylosaur dinosaurs, aiming to quantitatively test the hypothesis that tail weaponry of these groups is an example of convergent evolution, is published by Arbour & Zanno (2019).[29]
  • A review of the late Pleistocene species of Glyptodon from southern South America is published by Cuadrelli et al. (2019).[30]
  • A study on the impact of climate changes on the distribution of armadillos as indicated by fossil record is published by Soibelzon (2019).[31]
  • A study on the internal structure of the osteoderms of extinct armadillos, and on its possible associations with the climate and environmental conditions of the distribution areas of various armadillo species, is published by Ciancio et al. (2019).[32]
Name Novelty Status Authors Age Type locality Country Notes Images

Archaeomylodon[33]

Gen. et sp. nov

Valid

Brambilla & Ibarra

Ensenadan

 Argentina

A member of the family Mylodontidae belonging to the subfamily Mylodontinae. Genus includes new species A. sampedrinensis.

Afrotherians

  • Dugongid fossils will be described from the Oligocene (Rupelian) Borysthenic Formation (Ukraine) by Gol’din, Kovalchuk & Krakhmalnaya (2019), representing the first known sirenian record from inner seas of the Old World (Paratethys).[34]
  • New proboscidean remains from the late Miocene (Turolian) of Samos Island (Greece), representing juvenile individuals of deinotheres, choerolophodonts and amebelodonts, are described by Konidaris & Koufos (2019).[35]
  • Revision of proboscidean fossils from the Pliocene site of Kanapoi (Kenya) will be published by Sanders (2019).[36]
  • A study comparing the diversity of elephantimorph proboscideans of northern and southern China during the late Miocene is published by Wang et al. (2019).[37]
  • A study on the intestinal contents of two late-glacial mastodons preserved in lake sediments in Ohio and Michigan (Burning Tree mastodon and Heisler mastodon), and on their implications for inferring diet and habitats of these specimens, is published by Birks et al. (2019).[38]
  • Mothé, Ferretti & Avilla (2019) support the validity of Notiomastodon as a genus separate from Stegomastodon, arguing that members of the genus Stegomastodon were absent from South America.[39]
  • Description of teeth of a member of the genus Anancus from the Miocene (Turolian) locality Chomateri (Greece), constituting the first late Miocene record of this genus in Greece, and a revision of the late Miocene anancines from Europe, is published by Konidaris & Roussiakis (2019).[40]
  • A study on the chemical composition, microstructure and mechanical properties of tusk dentine from woolly mammoth and from extant African elephant, and on its implications for inferring the utility of mammoth ivory as a raw material for Late Pleistocene osseous projectile points, is published by Pfeifer et al. (2019).[41]
  • Stable carbon and nitrogen data of woolly mammoth fossils from north-eastern Siberia ranging throughout the last ∼50,000 years of the existence of this species is presented by Kuitems et al. (2019).[42]
  • A study on the age and origin of the Berelyokh mammoth site in northeast Siberia published by Lozhkin & Anderson (2018)[43] is criticized by Pitulko et al. (2019).[44][45]
Name Novelty Status Authors Age Type locality Country Notes Images

Culebratherium[46]

Gen. et sp. nov

Valid

Velez-Juarbe & Wood

Early Miocene

Culebra Formation

 Panama

A relative of the dugong. Genus includes new species C. alemani.

Bats

Name Novelty Status Authors Age Type locality Country Notes Images

Barbastella maxima[48]

Sp. nov

Valid

Rosina, Kruskop & Semenov

Late Miocene

 Ukraine

A species of Barbastella.

Mops kerio[49]

Sp. nov

In press

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A species of Mops.

Mops turkwellensis[49]

Sp. nov

In press

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A species of Mops.

Rousettus pattersoni[49]

Sp. nov

In press

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A species of Rousettus.

Saccolaimus kenyensis[49]

Sp. nov

In press

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A species of Saccolaimus.

Turkanycteris[49]

Gen. et sp. nov

In press

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A very large fruit bat, larger than all extant fruit bats other than some species of Pteropus and Hypsignathus. Genus includes new species T. harrisi.

Odd-toed ungulates

  • A study on the anatomy of the skeleton of extant tapirs and endemic Eocene European odd-toed ungulates, aiming to determine whether tapirs represent viable analogues for locomotion in palaeotheres and lophiodontids, will be published by MacLaren & Nauwelaerts (2019).[50]
  • A study on the intraspecific variation of the skeletal anatomy in the lophiodontid species Eolophiodon laboriense is published by Vautrin et al. (2019).[51]
  • A study on the morphology of the nares of the brontotheres Metarhinus and Sphenocoelus, and on their functional significance, is published by Mader (2019).[52]
  • A study on the timing of extinction of Elasmotherium sibiricum will be published by Kosintsev et al. (2019), who report evidence indicating that this species survived in Eastern Europe and Central Asia until at least 39,000 years ago.[53]
  • A study on the daily and seasonal movements of equids from two Miocene fossil sites in northern Florida, as indicated by data from strontium isotope ratios in tooth enamel, will be published by Wallace, Crowley & Miller (2019).[54]
Name Novelty Status Authors Age Type locality Country Notes Images

Plesiaceratherium balkanicum[55]

Sp. nov

Valid

Becker & Tissier

Miocene (European Land Mammal Zone MN5)

Bugojno Basin

 Bosnia and Herzegovina

Even-toed ungulates

  • A study on the phylogenetic relationships and timing of the origin of Cetartiodactyla is published by Zurano et al. (2019).[56]
  • A study on the teeth eruption pattern of a wide range of extinct cetartiodactyl families is published by Rodrigues et al. (2019).[57]
  • New specimen of the fossil peccary Parachoerus carlesi will be described from the Upper Pleistocene of the Chaco Province of Argentina by Gasparini et al. (2019), representing the most complete fossil material of a member this species reported so far, and providing new information on the morphology of the species and the environment it lived in.[58]
  • A description of the skull anatomy of the fossil suid Nyanzachoerus jaegeri based on new fossil material and a study on the phylogenetic relationships of the species will be published by Reda, Lazagabaster & Haile-Selassie (2019).[59]
  • New fossil suid specimens, providing new information on the classification and relationships of the Miocene Suinae from China, will be described from the latest Miocene site of Shuitangba (Zhaotong Basin, China) by Hou et al. (2019).[60]
  • Croitor, Sanz & Daura (2019) report the findings from a morphological and demographic analysis of remains of the endemic deer Haploidoceros mediterraneus from the Late Pleistocene of the Cova del Rinoceront (Spain).[61]
  • A systematic, macroscopic, radiographic, and histologic study of the fossil bones of the Cretan deer Candiacervus will be published by Lyras et al. (2019), who interpret their findings as indicative of the occurrence of a metabolic bone disease in the Cretan deer population, probably caused by habitat degradation.[62]
  • A study on the age and morphometrics of a partial fossil caribou antler from Graham Island (Canada) is published by Mathewes, Richards & Reimchen (2019).[63]
  • Description of new specimens of Sardomeryx oschiriensis from the Miocene (Burdigalian) of Sardinia (Italy) and a study on the phylogenetic relationships of this species will be published by Mennecart et al. (2019).[64]
  • The first detailed description of the giraffid species Schansitherium tafeli is published by Hou et al. (2019), who compare this taxon with Samotherium boissieri.[65]
  • Description of an almost complete skull and a second partial skull of Bohlinia attic from the late Miocene of Maragheh (Iran), as well as a complete upper dentition of a member of this species from Samos (Greece), is published by Parizad et al. (2019).[66]
  • New fossil material of the stem-caprine species Olonbulukia tsaidamensis is described from the Wuzhong region of northern China by Wang et al. (2019), who also revise fossil stem-caprine taxa from the Wuzhong Fauna and so-called "Qaidam Fauna".[67]
  • Entelodontid teeth will be described from the late Eocene of the Krabi coal mine in southern Thailand by Ducrocq, Chaimanee & Jaeger (2019), representing the southernmost occurrence of entelodontids in Asia during the Paleogene reported so far.[68]
  • The first directly dated fossil of a member of the genus Hexaprotodon (an upper right canine fragment) from the Narmada Valley of Central India will be described by Jukar et al. (2019), who also present a tentative extinction chronology of Hexaprotodon, indicating that this genus survived into the Early Holocene.[69]
  • Putative helohyids Pakkokuhyus and Progenitohyus are transferred to the family Dichobunidae by Ducrocq (2019).[70]
Name Novelty Status Authors Age Type locality Country Notes Images

Elaphurus davidianus predavidianus[71]

Subsp. nov

In press

Dong et al.

Early Pleistocene

Nihewan Formation

 China

A subspecies of the Père David's deer.

Kubanochoerus parvus[72]

Sp. nov

In press

Hou & Deng

Latest Middle or earliest Late Miocene

 China

A member of the family Suidae belonging to the subfamily Listriodontinae.

Megaloceros matritensis[73]

Sp. nov

In press

Van der Made

Middle Pleistocene

 Spain

Cetaceans

  • A study on the morphology of teeth and enamel microstructure of two fossil cetaceans from Antarctica (a basilosaurid from the La Meseta Formation and a member of the genus Llanocetus from the Submeseta Formation) will be published by Loch et al. (2019).[74]
  • Partly preserved tail vertebra of a basilosaurid is described from the Eocene Cajaruro Formation (Peru) by Davydenko, Laime & Gol'din (2019), representing the first record of an Eocene marine mammal from the northwestern Amazon region.[75]
  • A study on the stomach contents of a new specimen of Basilosaurus isis from Wadi Al Hitan in Egypt is published by Voss et al. (2019).[76]
  • A study on the variation in feeding behavior of fossil toothed whales with extremely long rostra is published by McCurry & Pyenson (2019).[77]
  • Redescription of the holotype and referred specimen of Prosqualodon australis from the Miocene Gaiman Formation (Argentina) and a study on the phylogenetic relationships of this species will be published by Gaetán (2019).[78]
  • Isolated teeth resembling tooth taxon Phococetus vasconum are described from the Pungo River Formation (North Carolina, United States) by Boessenecker (2019), who also notes their similarities to the teeth of Inticetus vertizi, and suggests that Phococetus may be an Inticetus-like, large heterodont toothed whale.[79]
  • A study on the anatomy and phylogenetic relationships of Phoberodon arctirostris is published by Viglino et al. (2019).[80]
  • An isolated tooth of an Inticetus-like cetacean is described from the Miocene deposits close to the village of Melpignano (Province of Lecce, Italy) by Peri et al. (2019), who also review the geographic distribution of fossils of Inticetus-like cetaceans.[81]
  • A study on the age of fossil gray whale finds from Florida and Georgia is published by Garrison et al. (2019).[82]
Name Novelty Status Authors Age Type locality Country Notes Images

Kentriodon nakajimai[83]

Sp. nov

Valid

Kimura & Hasegawa

Miocene (Serravallian/Tortonian)

Haraichi Formation

 Japan

Miobalaenoptera[84]

Gen. et sp. nov

Valid

Tanaka & Watanabe

Late Miocene

Horokaoshirarika Formation

 Japan

A rorqual. Genus includes new species M. numataensis.

Niparajacetus[85]

Gen. et sp. nov

Valid

Solis-Añorve, González-Barba & Hernández-Rivera

Oligocene (Chattian)

El Cien Formation

 Mexico

A baleen whale belonging to the superfamily Aetiocetoidea. The type species is N. palmadentis

Tranatocetus maregermanicum[86]

Sp. nov

Valid

Marx et al.

Late Miocene

Breda Formation

 Netherlands

A member of the family Cetotheriidae.

Carnivorans

  • A study on the morphology of bony labyrinths of extant and fossil carnivorans, and on its implications for inferring hunting behaviours of extinct carnivorans, is published by Schwab et al. (2019).[87]
  • A study on the taxonomy of the dire wolf, assessing whether fossils from Mexico and the western coast of the United States should be assigned to the distinct subspecies Canis dirus guildayi, is published by Ruiz-Ramoni & Montellano-Ballesteros (2019).[88]
  • A study on the age of dog remains from the Koster Site and Stilwell II site in Illinois, dated to between 10,190 and 9,630 cal BP, is published by Perri et al. (2019), who interpret these remains as representing the earliest confirmed evidence of domestic dogs in the Americas and the earliest confirmed individual dog burials anywhere in the world.[89]
  • A study on the trophic and ecological niche widths of ancient and modern pandas is published by Han et al. (2019).[90]
  • A study on functional adaptations in the anatomy of the elbow joint of extant and fossil bears, and on its implications for inferring paleobiology of Quaternary fossil species of bears, is published by Meloro & de Oliveira (2019).[91]
  • A study on the diet of Agriotherium africanum from the South African fossil site of Langebaanweg, as indicated by tooth microwear, will be published by Stynder et al. (2019).[92]
  • The first fossil of a member of the genus Agriotherium from Italy will be described by Bellucci et al. (2019).[93]
  • A study aiming to decipher the various factors influencing the isotopic composition of bones of a potentially omnivorous species like cave bear, as well examining how likely are the different interpretations of the palaeodiet of the Romanian cave bears in comparison with the rest of the European cave bears, is published by Bocherens (2019).[94]
  • A study on the cranial and mandibular morphology of Ursus deningeri compared to other bear species, and on its implications for inferring the palaeobiology of this species, is published by van Heteren et al. (2019).[95]
  • A study on the tooth-root morphology of maxillary teeth of living bears, and on its implications for inferring the diet and feeding behaviour of the cave bears, is published by Pérez-Ramos et al. (2019).[96]
  • A study on the feedings preferences and timing of extinction of cave bears in Mediterranean Europe based on data from two Paleolithic cave bear sites in northeastern Italy (Paina Cave and Trene Cave) is published by Terlato et al. (2019).[97]
  • A study on the timing and causes of extinction of cave bears in the Alps is published by Döppes et al. (2019).[98]
  • A study on the morphometric and morphotypic variability of upper incisors of the Middle and Late Pleistocene cave bears from the Caucasus and Ural Mountains will be published by Baryshnikov, Gimranov & Kosintsev (2019).[99]
  • A study on the morphometrical variability of upper cheek teeth of cave bears from 123 geographical sites of PliocenePleistocene ages is published by Baryshnikov & Puzachenko (2019).[100]
  • A study evaluating how the morphology of teeth of cave bears from the Scladina Cave (Belgium) changed over time is published by Charters et al. (2019).[101]
  • A study on the biomechanical capabilities of the musteloid species Leptarctus primus relative to living carnivoran taxa, and on their implications for inferring the paleoecology of this species, is published by Prybyla, Tseng & Flynn (2019).[102]
  • A revision of the systematics of fossil hog-nosed skunks from Argentina will be published by Schiaffini & Juan (2019).[103]
  • A skull of a large fossil mustelid showing similarities to both Oriensictis melina from Zhoukoudian and Enhydrictis from Sardinia will be described from the Jinyuan cave (Liaoning, China) by Jiangzuo et al. (2019), who relegate Oriensictis to the rank of a subgenus of Enhydrictis.[104]
  • A study on the bone histology of Nanophoca vitulinoides will be published by Dewaele et al. (2019).[105]
  • A fossil specimen assigned to the genus Homiphoca will be described from the Pliocene of Spain by Rahmat et al. (2019), representing the first European record ot this genus.[106]
  • A study evaluating the ability of the extinct giant fossa to hunt large lemurs will be published by Meador et al. (2019).[107]
  • Description of mongoose fossils from the early Pleistocene fossil locality Cooper ’s D in the Cradle of Humankind (South Africa) is published by Cohen, O’Regan & Steininger (2019).[108]
  • Description of felid fossils recovered from bluffs along the South Saskatchewan River near Medicine Hat (Alberta, Canada), including the first confirmed occurrence of Smilodon fatalis in Canada, is published by Reynolds, Seymour & Evans (2019).[109]
  • Large carnivore footprints, probably produced by Smilodon populator, will be described from a new ichnological site from the Late Pleistocene of Buenos Aires Province (Argentina) by Agnolin et al. (2019), who name a new ichnotaxon Felipeda miramarensis.[110]
  • Tooth enamel strontium isotopic values of a specimen of the American lion from Cedral (San Luis Potosí, Mexico) are determined by Pérez-Crespo et al. (2019), who also evaluate the implications of their findings for inferring the mobility of the studied specimen.[111]
Name Novelty Status Authors Age Type locality Country Notes Images

Amphicyon zhanxiangi[112]

Sp. nov

Valid

Jiangzuo et al.

Early middle Miocene

 China

A bear dog.

Amphimachairodus alvarezi[113]

Sp. nov

Valid

Ruiz-Ramoni, Rincón & Montellano-Ballesteros

Late Hemphillian

 Mexico

A machairodontine felid.

Izmirictis[114]

Gen. et sp. nov

Valid

Morales et al.

Early Miocene

 Turkey

A member of Feliformia belonging to the family Lophocyonidae (new rank, formerly ranked as the subfamily Lophocyoninae within the Viverridae). Genus includes new species I. cani.

Leptofelis[115]

Gen. et comb. nov

Valid

Salesa et al.

Late Miocene

 Spain

A member of the family Felidae belonging to the subfamily Felinae; a new genus for "Styriofelis" vallesiensis Salesa et al. (2012).

Panthera balamoides[116]

Sp. nov

In press

Stinnesbeck et al.

Pleistocene

 Mexico

A species of Panthera.

Rodents

  • A study on the upper incisors of extant southern African rodents, evaluating whether the morphology of isolated rodent incisors can be used to provide dietary information, is published by Paine et al. (2019), who also apply their dietary model to fossil rodent incisors from the South African hominin-bearing sites Sterkfontein and Swartkrans.[117]
  • A study on the phylogenetic relationships of extant and fossil caviomorph rodents is published by Boivin, Marivaux & Antoine (2019), who name new clades Erethicavioi Boivin and Octochinchilloi Boivin.[118]
  • A study on the enamel microstructure of the incisors of caviomorph rodents from the Eocene and Oligocene localities in Peruvian Amazon will be published by Boivin et al. (2019).[119]
  • A study on the anatomy of three tarsal bones of Eocene caviomorph rodents from Peruvian Amazon, and on their implications for inferring the locomotor behaviors of these rodents, is published by Boivin et al. (2019).[120]
  • A study on the morphology of the limb bones of caviomorph rodents from the Miocene Santa Cruz Formation of Patagonia, and on its implications for interpreting the use of substrate by these rodents, is published by Muñoz et al. (2019).[121]
  • A study on the enamel microstructure of the incisors of the hystricognaths and anomaluroids from the Oligocene of Western Sahara will be published by Marivaux et al. (2019).[122]
  • A study on the morphology of the lower deciduous premolars of extant and fossil caviomorph rodents and its implications for inferring the phylogenetic relationships of fossil caviomorphs will be published by Verzi, Olivares & Morgan (2019), who argue that Eocene genus Cachiyacuy might be a stem-octodontoid.[123]
  • A study on the anatomy and phylogenetic relationships of the dolichotine caviid rodent Prodolichotis prisca is published by Madozzo-Jaén (2019).[124]
  • A study on the anatomy and phylogenetic relationships of Tetrastylus walteri, based on data from the holotype and new specimens, will be published by Kerber et al. (2019), who consider this taxon to be a valid species.[125]
  • Description of a well-preserved skull of Telicomys giganteus, estimation of body mass and analysis of the bite mechanics of this species will be published by Rinderknecht et al. (2019).[126]
  • A study on the morphology of the ossicles of the extinct neoepiblemid rodent Perimys and of extant and extinct caviomorph rodents in general is published by Kerber & Sánchez-Villagra (2019).[127]
  • A study on the morphology of cheek teeth, teeth replacement and systematics of members of the genus Neoepiblema is published by Kerber, Negri & Sanfelice (2019).[128]
  • A study on the morphology of upper molars of extant and fossils members of Chinchilloidea, and on the phylogenetic relationships of members of this group, is published by Rasia & Candela (2019).[129]
  • Description of a new specimen of Litodontomys from the Deseadan of Argentina and a study on the phylogenetic relationships of this taxon will be published by Busker & Dozo (2019).[130]
  • Nine virtual skull endocasts of members of the family Ischyromyidae (members of the genera Pseudotomus, Notoparamys, Reithroparamys and Rapamys) are reconstructed by Bertrand et al. (2019).[131]
  • Description of the skull anatomy of the Pleistocene ground squirrel "Urocitellus" nogaici and a study on the phylogenetic relationships of this species and other European ground squirrel species previously attributed to Urocitellus will be published by Sinitsa, Pogodina & Кryuchkova (2019), who transfer "U." nogaici, "U." polonicus and "U." primigenius to the genus Spermophilus.[132]
  • New specimen of Trogontherium cuvieri will be described from the upper Pleistocene of the Songhua River drainage area near Harbin (Heilongjiang, China) by Yang et al. (2019), documenting the survival of this species into the late Pleistocene in northeast China.[133]
  • Coster et al. (2019) describe a well-preserved astragalus of the anomaluroid Pondaungimys anomaluropsis from the Eocene Pondaung Formation (Myanmar), and evaluate its implications for inferring the anatomy and phylogenetic relationships of this species.[134]
  • A study on the diet, habitat and timing and cause of extinction of the Tenerife giant rat (Canariomys bravoi) is published by Crowley et al. (2019).[135]
Name Novelty Status Authors Age Type locality Country Notes Images

Altasciurus leonardi[136]

Sp. nov

Valid

Korth et al.

Oligocene

Brule Formation

 United States
( North Dakota)

A member of the family Aplodontiidae belonging to the subfamily Prosciurinae.

Capromys pilorides lewisi[137]

Subsp. nov

Valid

Morgan et al.

Late Pleistocene-Holocene

 Cayman Islands

A subspecies of the Desmarest's hutia.

Cardiatherium calingastaense[138]

Sp. nov

Valid

Cerdeño et al.

Late Miocene

Las Flores Formation

 Argentina

A relative of the capybara.

Eumys lammersi[136]

Sp. nov

Valid

Korth et al.

Oligocene

Brule Formation

 United States
( North Dakota)

A member of the family Cricetidae.

Geocapromys caymanensis[137]

Sp. nov

Valid

Morgan et al.

Late Pleistocene-Holocene

 Cayman Islands

A species of Geocapromys.

Heliscomys borealis[136]

Sp. nov

Valid

Korth et al.

Oligocene

Brule Formation

 United States
( North Dakota)

A member of the family Heliscomyidae.

Maquiamys[118]

Gen. et comb. nov

Valid

Boivin in Boivin, Marivaux & Antoine

Late Oligocene

Chambira Formation

 Peru

A member of the superfamily Chinchilloidea. The type species is "Scleromys" praecursor Boivin.

Paraethomys balearicus[139]

Sp. nov

In press

Torres-Roig et al.

Pliocene (Zanclean)

 Spain

A member of the family Muridae belonging to the subfamily Murinae.

Prosciurus hogansoni[136]

Sp. nov

Valid

Korth et al.

Oligocene

Brule Formation

 United States
( North Dakota)

A member of the family Aplodontiidae belonging to the subfamily Prosciurinae.

Primates

  • A study on the variability of adapiform humeral elements from Quercy collections will be published by Marigó, Verrière & Godinot (2019).[140]
  • A study on the evolutionary history of the New World monkeys (especially on the evolution of their body mass, changes of the mean latitude of their geographic range, and species diversification rates), based on data from extant and fossil species, will be published by Silvestro et al. (2019).[141]
  • A study on the relationship between brain size and skull morphology in extant New World monkeys, and on its implications for identifying relatives of howler monkeys in the fossil record, is published by Halenar‐Price & Tallman (2019).[142]
  • A study on the catarrhine capitates from the Tinderet Miocene sequence of Kenya, and on their implications for inferring locomotor diversity of Miocene catarrhines from the Tinderet sample, is published by Wuthrich, MacLatchy & Nengo (2019).[143]
  • New hominoid canine and incisor specimens, including probable teeth of Kamoyapithecus hamiltoni and teeth of a second taxon, likely related to Nyanzapithecus pickfordi, are described from the Oligocene site of Losodok (Turkana Basin, northwestern Kenya) by Hammond, Foecke & Kelley (2019).[144]

General paleoanthropology

  • A review of anatomical differences between extant ape and human foot bones, as well as a review of the hominin foot fossil record, will be published by DeSilva et al. (2019), who also conduct a cladistics analysis on hominin foot fossils.[145]
  • A study on the diversity and the environments of hominins in the early Pleistocene of the Omo-Turkana Basin (East Africa) is published by Bobe & Carvalho (2019).[146]
  • A study comparing ages at death of hominin specimens from the early Pleistocene sites of Drimolen and Swartkrans, and on their implications for inferring mechanisms of hominin skeletal accumulation at these sites, is published by Riga et al. (2019).[147]
  • A revision of Middle Pleistocene faunal record from archeological sites in Africa, and a study on its implications for inferring potential links between hominin subsistence behavior and the Early Stone Age/Middle Stone Age technological turnover, will be published by Smith et al. (2019).[148]
  • Description of new fossil material of Ardipithecus ramidus from the Gona Project study area (Ethiopia), providing new information on the locomotor pattern and the anatomy of the hand of this species, is published by Simpson et al. (2019).[149]
  • A study on the age of hominin fossils representing the genera Australopithecus, Paranthropus and Homo from the Cradle of Humankind in South Africa is published by Pickering et al. (2019).[150]
  • A study on cross-sectional geometric properties of three humeri of specimens of Paranthropus boisei, and on their implications for inferring the function of upper limbs of P. boisei, is published by Lague et al. (2019).[151]
  • A study on defects in the teeth of specimens of Paranthropus robustus, interpreted as possible evidence that members of this species were affected by amelogenesis imperfecta, is published by Towle & Irish (2019).[152]
  • A study on the anatomy of the braincase of the Australopithecus specimen Stw 573 ("Little Foot") , and on its significance for inferring the course of the evolution of the hominin brain, is published by Beaudet et al. (2019).[153]
  • A study on the anatomy of the bony labyrinth of the Australopithecus specimen Stw 573 will be published by Beaudet et al. (2019).[154]
  • New fossils attributable to the species Australopithecus anamensis will be described from Kanapoi (Kenya) by Ward, Plavcan & Manthi (2019).[155]
  • A perspective on the validity of the species name Australopithecus prometheus and its availability for use is published by Berger & Hawks (2019).[156]
  • A study comparing variation of anatomical traits in Dmanisi hominins with that in fossil hominins and modern Homo sapiens from Africa, and aiming to evaluate the number of hominin taxa present in Dmanisi, is published by Rightmire, Margvelashvili & Lordkipanidze (2019).[157]
  • A study on the growth and development of teeth of archaic hominins from the Pleistocene site of Xujiayao (China) is published by Xing et al. (2019).[158]
  • A study on the morphology of hominin teeth from the Middle Pleistocene sites of Arago (southeast France) and Sima de los Huesos (northern Spain), as well as on their implications for inferring how the settlement of Europe by hominins in the Middle Pleistocene occurred, will be published by Bermúdez de Castro et al. (2019).[159]
  • A study on the variation of anatomical traits related to brain size and organization in the sample of hominin endocasts from Sima de los Huesos is published by Poza-Rey, Gómez-Robles & Arsuaga (2019).[160]
  • A study on the climate in the areas of the Iberian Peninsula inhabited by hominins during the Early Pleistocene, as indicated by data from macroflora and pollen assemblages, will be published by Altolaguirre et al. (2019).[161]
  • A study on the shape variation of the dental arcades in Middle Pleistocene hominin fossils will be published by Stelzer et al. (2019).[162]
  • A study on the external ballistics of replicas of Schöningen Spear II is published by Milks, Parker & Pope (2019).[163]
  • A study on unpublished hominin dental remains from the late Early Pleistocene Gran Dolina-TD6.2 level of the Sierra de Atapuerca (Spain), evaluating their implications for assessing the taxonomic validity of Homo antecessor, is published by Martinón-Torres et al. (2019).[164]
  • A study on the taxonomical affinities of hominin teeth from the Mousterian level of Portel‐Ouest (Ariège, France), dated to 44,000 ka, and on the paleobiology of the hominin group from this site, will be published by Becam & Chevalier (2019).[165]
  • Evidence of Levallois technology from the lithic assemblage of the Guanyindong Cave site in southwest China, dated to approximately 170,000–80,000 years ago, is presented by Hu et al. (2019).[166]
  • Studies on the age of the hominin-associated material from the Denisova Cave (Russia) are published by Jacobs et al. (2019)[167] and Douka et al. (2019).[168]
  • A study on the origin and evolutionary mode of the Neanderthal lineage, as indicated by data from fossil mandibles, is published by Rosas, Bastir & Alarcón (2019).[169]
  • A study on demographic models that could explain presence and variations of Neanderthal portions of the genome carried by non-African individuals today will be published by Villanea & Schraiber (2019), who interpret their findings as indicative of multiple episodes of interbreeding between Neanderthal and modern humans.[170]
  • A review of evidence for recovery from serious illness and injury by Neanderthals will be published by Spikins et al. (2019), who argue that Neanderthal healthcare was widespread, knowledgeable and effective in reducing mortality risk, and that healthcare can be seen as part of several adaptations which allowed Neanderthals to survive in unique environments where they lived, rather than simply a cultural trait.[171]
  • A study aiming to find an explanation for the highly muscular Neanderthal body form, based on paleoecological and genetic data, is published by Stewart et al. (2019), who hypothesise that Neanderthal body reflects an adaptation to hunting conditions rather than cold.[172]
  • A study on the anomalies of Neanderthal skeletons from the Sidrón Cave (Spain), interpreted as evidence for the presence of inbreeding and low biological variability in the Neanderthal group from this site, is published by Ríos et al. (2019).[173]
  • A study on the diet of Neanderthals, as indicated by data from compound-specific isotope analyses of Neanderthal remains from Les Cottés cave and Grotte du Renne (France), is published by Jaouen et al. (2019).[174]
  • A study on the posture of the La Chapelle-aux-Saints 1 Neanderthal individual is published by Haeusler et al. (2019).[175]
  • A study on introgressed Neanderthal DNA in modern humans, reevaluating the validity of the claims that Neanderthal DNA was subjected to negative selection in modern humans, is published by Petr et al. (2019).[176]
  • Evidence of a third introgression from an archaic human population in all Asian and Oceanian modern human populations, in addition to known Neanderthal and Denisovan introgressions, is presented by Mondal, Bertranpetit & Lao (2019).[177]
  • A study on the biological foundations of modern human endocranial shape, as indicated by paleoanthropological data from Neanderthal fossils and neuroimaging and genomic data from present-day humans, is published by Gunz et al. (2019).[178]
  • Replacement of late Mousterian industries by Aurignacian ones at the site of Bajondillo Cave (Málaga, southern Spain) is reported by Cortés-Sánchez et al. (2019), who also evaluate when this event took place.[179]
  • A study aiming to estimate hunter-gatherer population sizes and densities for the Aurignacian techno-complex in Europe is published by Schmidt & Zimmermann (2019).[180]
  • A study on the age of the Pleistocene skullcap found in the Salkhit Valley in northeast Mongolia is published by Devièse et al. (2019), who also reconstruct the complete mitochondrial genome of this specimen.[181]
  • A study on human skeletal remains from Pleistocene and Holocene sites in East Asia, and on their implications for inferring the history of the colonization of East Asia by anatomically modern humans, is published by Matsumura et al. (2019).[182]
  • A study on the evolution of the microblade technology in East Asia, as indicated by data from the Upper Paleolithic site Shizitan 29 (Shanxi, China), is published by Song et al. (2019).[183]
  • A study on the age Fa-Hien Lena archeological site (Sri Lanka) and on the faunal assemblage from this site is published by Wedage et al. (2019), who interpret their findings as evidence of specialized, sophisticated hunting of semi-arboreal and arboreal prey animals by humans living ca. 45,000 years ago.[184]
  • A 15,000 years-old individual belonging to the species Homo sapiens, preserving an unusual number of primitive anatomical features of teeth, is described from the Dushan Cave (China) by Liao et al. (2019).[185]
  • A study on the history of dispersal of people into and within the Americas, as indicated by data from Native American Y chromosomes, is published by Pinotti et al. (2019).[186]
  • A study on the processing sequence involved in the manufacture of a skull‐cup and the manipulation of human bones from the Early Neolithic of Cueva de El Toro (Málaga, Spain), and on its implications for inferring the character of cannibalistic practices in Early Neolithic communities living in southern Iberia, is published by Santana et al. (2019).[187]
  • Mitochondrial genomes from two ~7000-year-old individuals from Takarkori rock shelter (Libya), representing the earliest and first genetic data for the Sahara region, are presented by Vai et al. (2019).[188]
  • González-Fortes et al. (2019) sequence whole genomes from four human remains from northern Portugal and southern Spain dated around 4000 years BP, and report that one of them carried the sub-Saharan mitochondrial haplogroup L2a1, potentially representing the first record of this haplogroup in ancient human remains outside Africa reported so far, and interpret their findings as evidence of an early migration process from Africa into the Iberian Peninsula through a western route.[189]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Alophia[190]

Gen. et sp. nov

Junior homonym

Rasmussen et al.

Early Miocene

 Kenya

An early Old World monkey. Genus includes new species A. metios. The generic name is preoccupied by Alophia Ragonot (1893).

Bownomomys[191]

Gen. et comb. nov

Valid

Morse et al.

Eocene

 United States
( Wyoming)

An early primate. Genus includes "Teilhardina" americana Bown (1976) and "Teilhardina" crassidens Bown & Rose (1987).

Other eutherians

Name Novelty Status Authors Age Type locality Country Notes Images

Fratrodon[204]

Gen. et sp. nov

Valid

Solé et al.

Eocene (Ypresian)

Paris Basin

 France

A member of the family Paroxyclaenidae. Genus includes new species F. tresvauxi.

Merialus bruneti[204]

Sp. nov

Valid

Solé et al.

Eocene (Ypresian)

Paris Basin

 France

A member of the family Paroxyclaenidae.

Nesophontes hemicingulus[137]

Sp. nov

Valid

Morgan et al.

Late Pleistocene-Holocene

 Cayman Islands

A species of Nesophontes.

Paraspaniella[204]

Gen. et sp. nov

Valid

Solé et al.

Eocene (Ypresian)

Paris Basin

 France

A member of the family Paroxyclaenidae. Genus includes new species P. gunnelli.

Sororodon[204]

Gen. et sp. nov

Valid

Solé et al.

Eocene (Ypresian)

Paris Basin

 France

A member of the family Paroxyclaenidae. Genus includes new species S. tresvauxae.

Wyonycteris kingi[205]

Sp. nov

In press

Hooker

Paleogene

Woolwich Formation

 United Kingdom

A member of the family Nyctitheriidae.

Other mammals

Name Novelty Status Authors Age Type locality Country Notes Images

Galulatherium[211]

Gen. et sp. nov

Valid

O’Connor et al.

Late Cretaceous

Galula Formation

 Tanzania

Possibly a member of Gondwanatheria and the family Sudamericidae. The type species is G. jenkinsi.

Qishou[212]

Gen. et sp. nov

Valid

Mao & Meng

Late Jurassic (Oxfordian)

Tiaojishan Formation

 China

A member of Euharamiyida. Genus includes new species Q. jizantang.

References

  1. ^ Tai Kubo; Manabu Sakamoto; Andrew Meade; Chris Venditti (2019). "Transitions between foot postures are associated with elevated rates of body size evolution in mammals". Proceedings of the National Academy of Sciences of the United States of America. 116 (7): 2618–2623. doi:10.1073/pnas.1814329116. PMC 6377445. PMID 30692262.
  2. ^ Bhart-Anjan S. Bhullar; Armita R. Manafzadeh; Juri A. Miyamae; Eva A. Hoffman; Elizabeth L. Brainerd; Catherine Musinsky; Alfred W. Crompton (2019). "Rolling of the jaw is essential for mammalian chewing and tribosphenic molar function". Nature. 566 (7745): 528–532. doi:10.1038/s41586-019-0940-x. PMID 30760927.
  3. ^ David W. Krause; Joseph J.W. Sertich; Patrick M. O'Connor; Kristina Curry Rogers; Raymond R. Rogers (2019). "The Mesozoic biogeographic history of Gondwanan terrestrial vertebrates: insights from Madagascar's fossil record". Annual Review of Earth and Planetary Sciences. 47. doi:10.1146/annurev-earth-053018-060051.
  4. ^ Alexandria L. Brannick; Gregory P. Wilson (2019). "New specimens of the Late Cretaceous metatherian Eodelphis and the evolution of hard-object feeding in the Stagodontidae". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9451-z.
  5. ^ Wendy Den Boer; Nicolás E. Campione; Benjamin P. Kear (2019). "Climbing adaptations, locomotory disparity and ecological convergence in ancient stem 'kangaroos'". Royal Society Open Science. 6 (2): Article ID 181617. doi:10.1098/rsos.181617.
  6. ^ Manuela Cascini; Kieren J. Mitchell; Alan Cooper; Matthew J. Phillips (2019). "Reconstructing the evolution of giant extinct kangaroos: comparing the utility of DNA, morphology, and total evidence". Systematic Biology. in press. doi:10.1093/sysbio/syy080. PMID 30481358.
  7. ^ D. Rex Mitchell; Stephen Wroe (2019). "Biting mechanics determines craniofacial morphology among extant diprotodont herbivores: dietary predictions for the giant extinct short-faced kangaroo, Simosthenurus occidentalis". Paleobiology. 45 (1): 167–181. doi:10.1017/pab.2018.46.
  8. ^ Michael C. Westaway; Gilbert Price; Tony Miscamble; Jane McDonald; Jonathon Cramb; Jeremy Ringma; Rainer Grün; Darryl Jones; Mark Collard (2019). "A palaeontological perspective on the proposal to reintroduce Tasmanian devils to mainland Australia to suppress invasive predators". Biological Conservation. 232: 187–193. doi:10.1016/j.biocon.2019.02.002.
  9. ^ Russell K. Engelman; Federico Anaya; Darin A. Croft (2019). "Australogale leptognathus, gen. et sp. nov., a second species of small sparassodont (Mammalia: Metatheria) from the middle Miocene locality of Quebrada Honda, Bolivia". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9443-z.
  10. ^ Kenny J. Travouillon; Bruno F. Simões; Roberto Portela Miguez; Selina Brace; Philippa Brewer; David Stemmer; Gilbert J. Price; Jonathan Cramb; Julien Louys (2019). "Hidden in plain sight: reassessment of the pig-footed bandicoot, Chaeropus ecaudatus (Peramelemorphia, Chaeropodidae), with a description of a new species from central australia, and use of the fossil record to trace its past distribution". Zootaxa. 4566 (1): 1–69. doi:10.11646/zootaxa.4566.1.1.
  11. ^ Francisco J. Goin; Emma C. Vieytes; Javier N. Gelfo; Laura Chornogubsky; Ana N. Zimicz; Marcelo A. Reguero (2019). "New metatherian mammal from the early Eocene of Antarctica". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9449-6.
  12. ^ Jaelyn J. Eberle; William A. Clemens; Paul J. McCarthy; Anthony R. Fiorillo; Gregory M. Erickson; Patrick S. Druckenmiller (2019). "Northern-most record of the Metatheria: a new Late Cretaceous pediomyid from the North Slope of Alaska". Journal of Systematic Palaeontology. Online edition: 1–20. doi:10.1080/14772019.2018.1560369.
  13. ^ Thomas J. D. Halliday; Mario dos Reis; Asif U. Tamuri; Henry Ferguson-Gow; Ziheng Yang; Anjali Goswami (2019). "Rapid morphological evolution in placental mammals post-dates the origin of the crown group". Proceedings of the Royal Society B: Biological Sciences. 286 (1898): Article ID 20182418. doi:10.1098/rspb.2018.2418. PMID 30836875.
  14. ^ Manuela Aiglstorfer; Elmar P.J. Heizmann; Stéphane Peigné (2019). "Who killed Micromeryx flourensianus? A case study of taphonomy and predation on ruminants in the middle Miocene of France". Lethaia. in press. doi:10.1111/let.12322.
  15. ^ Daniel De Miguel; Beatriz Azanza; Jorge Morales (2019). "Regional impacts of global climate change: a local humid phase in central Iberia in a late Miocene drying world". Palaeontology. 62 (1): 77–92. doi:10.1111/pala.12382.
  16. ^ Nikolay Spassov; Denis Geraads; Latinka Hristova; Georgi N. Markov (2019). "The late Miocene mammal fauna from Gorna Sushitsa, southwestern Bulgaria, and the early/middle Turolian transition". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 291 (3): 317–350. doi:10.1127/njgpa/2019/0804.
  17. ^ Laurence Dumouchel; René Bobe (2019). "Paleoecological implications of dental mesowear and hypsodonty in fossil ungulates from Kanapoi". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.11.004. PMID 30638945.
  18. ^ Meir Orbach; Reuven Yeshurun (2019). "The hunters or the hunters: Human and hyena prey choice divergence in the Late Pleistocene Levant". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2019.01.005. PMID 30850235.
  19. ^ E. Morin; J. Meier; K. El Guennouni; A.-M. Moigne; L. Lebreton; L. Rusch; P. Valensi; J. Conolly; D. Cochard (2019). "New evidence of broader diets for archaic Homo populations in the northwestern Mediterranean". Science Advances. 5 (3): eaav9106. doi:10.1126/sciadv.aav9106. PMC 6402852. PMID 30854435.
  20. ^ Gustavo G. Politis; Pablo G. Messineo; Thomas W. Stafford Jr; Emily L. Lindsey (2019). "Campo Laborde: A Late Pleistocene giant ground sloth kill and butchering site in the Pampas". Science Advances. 5 (3): eaau4546. doi:10.1126/sciadv.aau4546. PMC 6402857. PMID 30854426.
  21. ^ A.Yu. Puzachenko; A.K. Markova (2019). "Evolution of mammal species composition and species richness during the Late Pleistocene - Holocene transition in Europe: A general view at the regional scale". Quaternary International. in press. doi:10.1016/j.quaint.2018.12.025.
  22. ^ Peter M. Kappeler; Charles L. Nunn; Alexander Q. Vining; Steven M. Goodman (2019). "Evolutionary dynamics of sexual size dimorphism in non-volant mammals following their independent colonization of Madagascar". Scientific Reports. 9 (1): Article number 1454. doi:10.1038/s41598-018-36246-x. PMC 6363729. PMID 30723219.
  23. ^ Luciano Varela; P. Sebastián Tambusso; H. Gregory McDonald; Richard A. Fariña (2019). "Phylogeny, macroevolutionary trends and historical biogeography of sloths: insights from a Bayesian morphological clock analysis". Systematic Biology. 68 (2): 204–218. doi:10.1093/sysbio/syy058. PMID 30239971.
  24. ^ P. Sebastián Tambusso; Luciano Varela; H. Gregory McDonald (2019). "Fusion of anterior thoracic vertebrae in Pleistocene ground sloths". Historical Biology: An International Journal of Paleobiology. in press: 1–8. doi:10.1080/08912963.2018.1487419.
  25. ^ Alberto Boscaini; Dawid A. Iurino; Raffaele Sardella; German Tirao; Timothy J. Gaudin; François Pujos (2019). "Digital cranial endocasts of the extinct sloth Glossotherium robustum (Xenarthra, Mylodontidae) from the late Pleistocene of Argentina: description and comparison with the extant sloths". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9441-1.
  26. ^ Alberto Boscaini; Timothy J. Gaudin; Bernardino Mamani Quispe; Philippe Münch; Pierre-Olivier Antoine; François Pujos (2019). "New well-preserved craniodental remains of Simomylodon uccasamamensis (Xenarthra: Mylodontidae) from the Pliocene of the Bolivian Altiplano: phylogenetic, chronostratigraphic and palaeobiogeographical implications". Zoological Journal of the Linnean Society. 185 (2): 459–486. doi:10.1093/zoolinnean/zly075.
  27. ^ H. Gregory McDonald; Robert S. Feranec; Norton Miller (2019). "First record of the extinct ground sloth, Megalonyx jeffersonii, (Xenarthra, Megalonychidae) from New York and contributions to its paleoecology". Quaternary International. in press. doi:10.1016/j.quaint.2018.11.021.
  28. ^ Jean T. Larmon; H. Gregory McDonald; Stanley Ambrose; Larisa R. G. DeSantis; Lisa J. Lucero (2019). "A year in the life of a giant ground sloth during the Last Glacial Maximum in Belize". Science Advances. 5 (2): eaau1200. doi:10.1126/sciadv.aau1200. PMC 6392778. PMID 30820449.
  29. ^ Victoria M. Arbour; Lindsay E. Zanno (2019). "Tail weaponry in ankylosaurs and glyptodonts: an example of a rare but strongly convergent phenotype". The Anatomical Record. in press. doi:10.1002/ar.24093. PMID 30835954.
  30. ^ Francisco Cuadrelli; Alfredo E. Zurita; Pablo Toriño; Ángel R. Miño-Boilini; Santiago Rodríguez-Bualó; Daniel Perea; Gabriel E. Acuña Suárez (2019). "Late Pleistocene Glyptodontinae (Mammalia, Xenarthra, Glyptodontidae) from southern South America: a comprehensive review". Journal of Vertebrate Paleontology. in press: 1–18. doi:10.1080/02724634.2018.1525390.
  31. ^ Esteban Soibelzon (2019). "Using paleoclimate and the fossil record to explain past and present distributions of armadillos (Xenarthra, Dasypodidae)". Journal of Mammalian Evolution. 26 (1): 61–70. doi:10.1007/s10914-017-9395-8.
  32. ^ M. R. Ciancio; C. M. Krmpotic; A. C. Scarano; M. B. Epele (2019). "Internal morphology of osteoderms of extinct armadillos and its relationship with environmental conditions". Journal of Mammalian Evolution. 26 (1): 71–83. doi:10.1007/s10914-017-9404-y.
  33. ^ Luciano Brambilla; Damián Alberto Ibarra (2019). "Archaeomylodon sampedrinensis, gen. et sp. nov., a new mylodontine from the middle Pleistocene of Pampean Region, Argentina". Journal of Vertebrate Paleontology. Online edition: e1542308. doi:10.1080/02724634.2018.1542308.
  34. ^ Pavel Gol’din; Oleksandr M. Kovalchuk; Tatiana Krakhmalnaya (2019). "The first record of Sirenia (Mammalia) from the early Oligocene of the Paratethys". Historical Biology: An International Journal of Paleobiology. in press: 1–6. doi:10.1080/08912963.2018.1454444.
  35. ^ George E. Konidaris; George D. Koufos (2019). "Late Miocene proboscideans from Samos Island (Greece) revisited: new specimens from old collections". PalZ. 93 (1): 115–134. doi:10.1007/s12542-018-0432-6.
  36. ^ William J. Sanders (2019). "Proboscidea from Kanapoi, Kenya". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.10.013. PMID 30745193.
  37. ^ Shi-Qi Wang; Xue-Ping Ji; Tao Deng; Li-Ya Fu; Jia-Hua Zhang; Chun-Xiao Li; Zi-Ling He (2019). "Yunnan, a refuge for trilophodont proboscideans during the late Miocene aridification of East Asia". Palaeogeography, Palaeoclimatology, Palaeoecology. 515: 162–171. Bibcode:2019PPP...515..162W. doi:10.1016/j.palaeo.2017.07.034.
  38. ^ Hilary H. Birks; Bas van Geel; Daniel C. Fisher; Eric C. Grimm; Wim J. Kuijper; Jan van Arkel; Guido B.A. van Reenen (2019). "Evidence for the diet and habitat of two late Pleistocene mastodons from the Midwest, USA". Quaternary Research. in press: 1–21. doi:10.1017/qua.2018.100.
  39. ^ Dimila Mothé; Marco P. Ferretti; Leonardo S. Avilla (2019). "Running Over the Same Old Ground: Stegomastodon Never Roamed South America". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9392-y.
  40. ^ George E. Konidaris; Socrates J. Roussiakis (2019). "The first record of Anancus (Mammalia, Proboscidea) in the late Miocene of Greece and reappraisal of the primitive anancines from Europe". Journal of Vertebrate Paleontology. in press: e1534118. doi:10.1080/02724634.2018.1534118.
  41. ^ Sebastian J. Pfeifer; Wolfram L. Hartramph; Ralf-Dietrich Kahlke; Frank A. Müller (2019). "Mammoth ivory was the most suitable osseous raw material for the production of Late Pleistocene big game projectile points". Scientific Reports. 9 (1): Article number 2303. doi:10.1038/s41598-019-38779-1. PMC 6381109. PMID 30783179.
  42. ^ M. Kuitems; T. van Kolfschoten; A.N. Tikhonov; J. van der Plicht (2019). "Woolly mammoth δ13C and δ15N values remained amazingly stable throughout the last ∼50,000 years in north-eastern Siberia". Quaternary International. in press. doi:10.1016/j.quaint.2019.03.001.
  43. ^ Anatoly V. Lozhkin; Patricia M. Anderson (2018). "Another perspective on the age and origin of the Berelyokh mammoth site (northeast Siberia)". Quaternary Research. 89 (2): 459–477. Bibcode:2018QuRes..89..459L. doi:10.1017/qua.2018.3.
  44. ^ Vladimir V. Pitulko; Elena Y. Pavlova; Aleksandr E. Basilyan; Pavel A. Nikolskiy (2019). "Another perspective on the age and origin of the Berelyokh mammoth site—Comment to the paper published by Lozhkin and Anderson, Quaternary Research 89 (2018), 459–477". Quaternary Research. in press: 1–4. doi:10.1017/qua.2018.86.
  45. ^ Anatoly V. Lozhkin; Patricia M. Anderson (2019). "Another perspective on the age and origin of the Berelyokh mammoth site: response to Pitulko et al". Quaternary Research. in press: 1–2. doi:10.1017/qua.2018.97.
  46. ^ Jorge Velez-Juarbe; Aaron R. Wood (2019). "An early Miocene dugongine (Sirenia: Dugongidae) from Panama". Journal of Vertebrate Paleontology. Online edition: e1511799. doi:10.1080/02724634.2018.1511799.
  47. ^ Lucila I. Amador; Nancy B. Simmons; Norberto P. Giannini (2019). "Aerodynamic reconstruction of the primitive fossil bat Onychonycteris finneyi (Mammalia: Chiroptera)". Biology Letters. 15 (3): Article ID 20180857. doi:10.1098/rsbl.2018.0857.
  48. ^ Valentina V. Rosina; Sergei Kruskop; Yuriy Semenov (2019). "New Late Miocene plecotine bats (Chiroptera, Vespertilionidae: Plecotini) from Gritsev, Ukraine". Palæovertebrata. 42 (1): e2. doi:10.18563/pv.42.1.e2.
  49. ^ a b c d e Gregg F. Gunnell; Fredrick K. Manthi (2019). "Pliocene bats (Chiroptera) from Kanapoi, Turkana Basin, Kenya". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.01.001. PMID 29628118.
  50. ^ Jamie A. MacLaren; Sandra Nauwelaerts (2019). "Modern tapirs as morphofunctional analogues for locomotion in endemic Eocene European perissodactyls". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-019-09460-1.
  51. ^ Quentin Vautrin; Rodolphe Tabuce; Yves Laurent; Dominique Vidalenc; Fabrice Lihoreau (2019). "Intraspecific variation of Eolophiodon laboriense, a basal Lophiodontidae (Mammalia, Perissodactyla) from the early Eocene of Southern France". Geobios. in press. doi:10.1016/j.geobios.2019.02.005.
  52. ^ Bryn J. Mader (2019). "The narial morphology of Metarhinus and Sphenocoelus (Mammalia, Perissodactyla, Brontotheriidae)". Palaeontologia Electronica. 22 (1): Article number 22.1.8. doi:10.26879/919.
  53. ^ Pavel Kosintsev; Kieren J. Mitchell; Thibaut Devièse; Johannes van der Plicht; Margot Kuitems; Ekaterina Petrova; Alexei Tikhonov; Thomas Higham; Daniel Comeskey; Chris Turney; Alan Cooper; Thijs van Kolfschoten; Anthony J. Stuart; Adrian M. Lister (2019). "Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions". Nature Ecology & Evolution. 3 (1): 31–38. doi:10.1038/s41559-018-0722-0. PMID 30478308.
  54. ^ Jenelle P. Wallace; Brooke E. Crowley; Joshua H. Miller (2019). "Investigating equid mobility in Miocene Florida, USA using strontium isotope ratios". Palaeogeography, Palaeoclimatology, Palaeoecology. 516: 232–243. Bibcode:2019PPP...516..232W. doi:10.1016/j.palaeo.2018.11.036.
  55. ^ Damien Becker; Jérémy Tissier (2019). "Rhinocerotidae from the early middle Miocene locality Gračanica (Bugojno Basin, Bosnia-Herzegovina)". Palaeobiodiversity and Palaeoenvironments. Online edition. doi:10.1007/s12549-018-0352-1.
  56. ^ Juan P. Zurano; Felipe M. Magalhães; Ana E. Asato; Gabriel Silva; Claudio J. Bidau; Daniel O. Mesquita; Gabriel C. Costa (2019). "Cetartiodactyla: updating a time-calibrated molecular phylogeny". Molecular Phylogenetics and Evolution. 133: 256–262. doi:10.1016/j.ympev.2018.12.015. PMID 30562611.
  57. ^ Helder Gomes Rodrigues; Fabrice Lihoreau; Maëva Orliac; J. G. M. Thewissen; Jean-Renaud Boisserie (2019). "Unexpected evolutionary patterns of dental ontogenetic traits in cetartiodactyl mammals". Proceedings of the Royal Society B: Biological Sciences. 286 (1896): Article ID 20182417. doi:10.1098/rspb.2018.2417.
  58. ^ Germán Mariano Gasparini; Rodrigo Parisi Dutra; Guillermo N. Lamenza; Eduardo Pedro Tonni; Agustín Ruella (2019). "Parachoerus carlesi (Mammalia, Tayassuidae) in the Late Pleistocene (northern Argentina, South America): paleoecological and palaeobiogeographic considerations". Historical Biology: An International Journal of Paleobiology. in press: 1–7. doi:10.1080/08912963.2017.1418340.
  59. ^ Hailay G. Reda; Ignacio A. Lazagabaster; Yohannes Haile-Selassie (2019). "Newly discovered crania of Nyanzachoerus jaegeri (Tetraconodontinae, Suidae, Mammalia) from the Woranso-Mille (Ethiopia) and reappraisal of its generic status". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9398-5.
  60. ^ Sukuan Hou; Denise F. Su; Jay Kelley; Tao Deng; Nina G. Jablonski; Lawrence J. Flynn; Xueping Ji; Jiayong Cao; Xin Yang (2019). "New fossil suid specimens from the terminal Miocene hominoid locality of Shuitangba, Zhaotong, Yunnan Province, China". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9431-3.
  61. ^ Roman Croitor; Montserrat Sanz; Joan Daura (2019). "The endemic deer Haploidoceros mediterraneus (Bonifay) (Cervidae, Mammalia) from the Late Pleistocene of Cova del Rinoceront (Iberian Peninsula): origin, ecomorphology, and paleobiology". Historical Biology: An International Journal of Paleobiology. in press: 1–19. doi:10.1080/08912963.2018.1499018.
  62. ^ George A. Lyras; Aggeliki Giannakopoulou; Theodoros Lillis; Alexandra A.E. van der Geer (2019). "Paradise lost: Evidence for a devastating metabolic bone disease in an insular Pleistocene deer". International Journal of Paleopathology. 24: 213–226. doi:10.1016/j.ijpp.2018.12.003. PMID 30572299.
  63. ^ Rolf W. Mathewes; Michael Richards; Thomas E. Reimchen (2019). "Late Pleistocene age, size, and paleoenvironment of a caribou antler from Haida Gwaii, British Columbia". Canadian Journal of Earth Sciences. in press. doi:10.1139/cjes-2018-0246.
  64. ^ Bastien Mennecart; Daniel Zoboli; Loïc Costeur; Gian Luigi Pillola (2019). "On the systematic position of the oldest insular ruminant Sardomeryx oschiriensis (Mammalia, Ruminantia) and the early evolution of the Giraffomorpha". Journal of Systematic Palaeontology. in press: 1–14. doi:10.1080/14772019.2018.1472145.
  65. ^ Sukuan Hou; Michael Cydylo; Melinda Danowitz; Nikos Solounias (2019). "Comparisons of Schansitherium tafeli with Samotherium boissieri (Giraffidae, Mammalia) from the Late Miocene of Gansu Province, China". PLoS ONE. 14 (2): e0211797. doi:10.1371/journal.pone.0211797. PMC 6376930. PMID 30753231.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  66. ^ Elnaz Parizad; Majid Mirzaie Ataabadi; Marjan Mashkour; Nikos Solounias (2019). "First giraffid skulls (Bohlinia attica) from the late Miocene Maragheh fauna, Northwest Iran". Geobios. in press. doi:10.1016/j.geobios.2019.02.007.
  67. ^ Shi-Qi Wang; Qing Yang; Ya Zhao; Chun-Xiao Li; Qin-Qin Shi; Li-Yi Zong; Jie Ye (2019). "New Olonbulukia material and its related assemblage reveal an early radiation of stem Caprini along the north of the Tibetan Plateau". Journal of Paleontology. 93 (2): 385–397. doi:10.1017/jpa.2018.65.
  68. ^ Stéphane Ducrocq; Yaowalak Chaimanee; Jean-Jacques Jaeger (2019). "First record of Entelodontidae (Mammalia, Artiodactyla) from the late Eocene of Southeast Asia". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2018.10.001.
  69. ^ Advait M. Jukar; Rajeev Patnaik; Parth R. Chauhan; Hong-Chun Li; Jih-Pai Lin (2019). "The youngest occurrence of Hexaprotodon Falconer and Cautley, 1836 (Hippopotamidae, Mammalia) from South Asia with a discussion on its extinction". Quaternary International. in press. doi:10.1016/j.quaint.2019.01.005.
  70. ^ Stéphane Ducrocq (2019). "Pakkokuhyus and Progenitohyus (Artiodactyla, Mammalia) from the Eocene of Southeast Asia are not Helohyidae: paleobiogeographical implications". PalZ. 93 (1): 105–113. doi:10.1007/s12542-018-0425-5.
  71. ^ Wei Dong; Qi Wei; Weipeng Bai; Limin Zhang; Wenhui Liu; Zheying Chen; Yongbing Bai; Yongchun Wu (2019). "New material of the Early Pleistocene Elaphurus (Artiodactyla, Mammalia) from North China and discussion on taxonomy of Elaphurus". Quaternary International. in press. doi:10.1016/j.quaint.2018.05.015.
  72. ^ Su-Kuan Hou; Tao Deng (2019). "A new species of Kubanochoerus (Suidae, Artiodactyla) from the Linxia Basin, Gansu Province, China". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.180402.
  73. ^ Jan van der Made (2019). "The dwarfed "giant deer" Megaloceros matritensis n.sp. from the Middle Pleistocene of Madrid - A descendant of M. savini and contemporary to M. giganteus". Quaternary International. in press. doi:10.1016/j.quaint.2018.06.006.
  74. ^ Carolina Loch; Monica R. Buono; Daniela C. Kalthoff; Thomas Mörs; Marta S. Fernández (2019). "Enamel microstructure in Eocene cetaceans from Antarctica (Archaeoceti and Mysticeti)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-09456-3.
  75. ^ Svitozar Davydenko; Manuel J. Laime; Pavel Gol'din (2019). "The earliest record of a marine mammal (Cetacea: Basilosauridae) from the Eocene of the Amazonia". Journal of Vertebrate Paleontology. in press: e1549060. doi:10.1080/02724634.2018.1549060.
  76. ^ Manja Voss; Mohammed Sameh M. Antar; Iyad S. Zalmout; Philip D. Gingerich (2019). "Stomach contents of the archaeocete Basilosaurus isis: Apex predator in oceans of the late Eocene". PLoS ONE. 14 (1): e0209021. doi:10.1371/journal.pone.0209021. PMC 6326415. PMID 30625131.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  77. ^ Matthew R. McCurry; Nicholas D. Pyenson (2019). "Hyper-longirostry and kinematic disparity in extinct toothed whales". Paleobiology. 45 (1): 21–29. doi:10.1017/pab.2018.33.
  78. ^ Carlos M. Gaetán (2019). "Prosqualodon australis (Cetacea: Odontoceti) from the early Miocene of Patagonia, Argentina: redescription and phylogenetic analysis". Ameghiniana. in press. doi:10.5710/AMGH.21.11.2018.3208.
  79. ^ Robert W. Boessenecker (2019). "Problematic archaic whale Phococetus (Cetacea: Odontoceti) from the Lee Creek Mine, North Carolina, USA, with comments on geochronology of the Pungo River Formation". PalZ. 93 (1): 93–103. doi:10.1007/s12542-018-0419-3.
  80. ^ Mariana Viglino; Mónica R. Buono; R. Ewan Fordyce; José I. Cuitiño; Erich M. G. Fitzgerald (2019). "Anatomy and phylogeny of the large shark-toothed dolphin Phoberodon arctirostris Cabrera, 1926 (Cetacea: Odontoceti) from the early Miocene of Patagonia (Argentina)". Zoological Journal of the Linnean Society. 185 (2): 511–542. doi:10.1093/zoolinnean/zly053.
  81. ^ Emanuele Peri; Alberto Collareta; Gianni Insacco; Giovanni Bianucci (2019). "An Inticetus-like (Cetacea: Odontoceti) postcanine tooth from the Pietra leccese (Miocene, southeastern Italy) and its palaeobiogeographical implications". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 291 (2): 221–228. doi:10.1127/njgpa/2019/0799.
  82. ^ Ervan G. Garrison; Gary S. Morgan; Krista McGrath; Camilla Speller; Alexander Cherkinsky (2019). "Recent dating of extinct Atlantic gray whale fossils, (Eschrichtius robustus), Georgia Bight and Florida, western Atlantic Ocean". PeerJ. 7: e6381. doi:10.7717/peerj.6381. PMC 6368218. PMID 30746309.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  83. ^ Toshiyuki Kimura; Yoshikazu Hasegawa (2019). "A new species of Kentriodon (Cetacea, Odontoceti, Kentriodontidae) from the Miocene of Japan". Journal of Vertebrate Paleontology. Online edition: e1566739. doi:10.1080/02724634.2019.1566739.
  84. ^ Yoshihiro Tanaka; Mahito Watanabe (2019). "An early and new member of Balaenopteridae from the upper Miocene of Hokkaido, Japan". Journal of Systematic Palaeontology. Online edition: 1–15. doi:10.1080/14772019.2018.1532968.
  85. ^ Azucena Solis-Añorve; Gerardo González-Barba; René Hernández-Rivera (2019). "Description of a new toothed mysticete from the Late Oligocene of San Juan de La Costa, B.C.S., México". Journal of South American Earth Sciences. 89: 337–346. Bibcode:2019JSAES..89..337S. doi:10.1016/j.jsames.2018.11.015.
  86. ^ Felix G. Marx; Klaas Post; Mark Bosselaers; Dirk K. Munsterman (2019). "A large Late Miocene cetotheriid (Cetacea, Mysticeti) from the Netherlands clarifies the status of Tranatocetidae". PeerJ. 7: e6426. doi:10.7717/peerj.6426. PMC 6377596. PMID 30783574.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  87. ^ Julia A. Schwab; Jürgen Kriwet; Gerhard W. Weber; Cathrin Pfaff (2019). "Carnivoran hunting style and phylogeny reflected in bony labyrinth morphometry". Scientific Reports. 9 (1): Article number 70. doi:10.1038/s41598-018-37106-4. PMC 6329752. PMID 30635617.
  88. ^ Damián Ruiz-Ramoni; Marisol Montellano-Ballesteros (2019). "Taxonomía y biogeografía del extinto lobo gigante, Canis dirus Leidy, 1858, en México" (PDF). Boletín de la Sociedad Geológica Mexicana. 71 (1): 121–137. doi:10.18268/BSGM2019v71n1a7 (inactive 2019-03-02).{{cite journal}}: CS1 maint: DOI inactive as of March 2019 (link)
  89. ^ Angela Perri; Chris Widga; Dennis Lawler; Terrance Martin; Thomas Loebel; Kenneth Farnsworth; Luci Kohn; Brent Buenger (2019). "New evidence of the earliest domestic dogs in the Americas". American Antiquity. 84 (1): 68–87. doi:10.1017/aaq.2018.74.
  90. ^ Han Han; Wei Wei; Yibo Hu; Yonggang Nie; Xueping Ji; Li Yan; Zejun Zhang; Xiaoxue Shi; Lifeng Zhu; Yunbing Luo; Weicai Chen; Fuwen Wei (2019). "Diet evolution and habitat contraction of giant pandas via stable isotope analysis". Current Biology. 29 (4): 664–669.e2. doi:10.1016/j.cub.2018.12.051. PMID 30713107.
  91. ^ Carlo Meloro; Alessandro Marques de Oliveira (2019). "Elbow joint geometry in bears (Ursidae, Carnivora): a tool to infer paleobiology and functional adaptations of Quaternary fossils". Journal of Mammalian Evolution. 26 (1): 133–146. doi:10.1007/s10914-017-9413-x.
  92. ^ Deano D. Stynder; Larisa R. G. DeSantis; Shelly L. Donohue; Blaine W. Schubert; Peter S. Ungar (2019). "A dental microwear texture analysis of the early Pliocene African ursid Agriotherium africanum (Mammalia, Carnivora, Ursidae)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9436-y.
  93. ^ Luca Bellucci; Italo Biddittu; Mauro Brilli; Jacopo Conti; Marco Germani; Francesca Giustini; Dawid Adam Iurino; Ilaria Mazzini; Raffaele Sardella (2019). "First occurrence of the short-faced bear Agriotherium (Ursidae, Carnivora) in Italy: biochronological and palaeoenvironmental implications". Italian Journal of Geosciences. 138 (1): 124–135. doi:10.3301/IJG.2018.31. hdl:10261/171952.
  94. ^ Hervé Bocherens (2019). "Isotopic insights on cave bear palaeodiet". Historical Biology: An International Journal of Paleobiology. 31 (4): 410–421. doi:10.1080/08912963.2018.1465419.
  95. ^ Anneke H. van Heteren; Mikel Arlegi; Elena Santos; Juan-Luis Arsuaga; Asier Gómez-Olivencia (2019). "Cranial and mandibular morphology of Middle Pleistocene cave bears (Ursus deningeri): implications for diet and evolution". Historical Biology: An International Journal of Paleobiology. 31 (4): 485–499. doi:10.1080/08912963.2018.1487965.
  96. ^ Alejandro Pérez-Ramos; Kornelius Kupczik; Anneke H. Van Heteren; Gernot Rabeder; Aurora Grandal-D’Anglade; Francisco J. Pastor; Francisco J. Serrano; Borja Figueirido (2019). "A three-dimensional analysis of tooth-root morphology in living bears and implications for feeding behaviour in the extinct cave bear". Historical Biology: An International Journal of Paleobiology. 31 (4): 461–473. doi:10.1080/08912963.2018.1525366.
  97. ^ Gabriele Terlato; Hervé Bocherens; Matteo Romandini; Nicola Nannini; Keith A. Hobson; Marco Peresani (2019). "Chronological and Isotopic data support a revision for the timing of cave bear extinction in Mediterranean Europe". Historical Biology: An International Journal of Paleobiology. 31 (4): 474–484. doi:10.1080/08912963.2018.1448395.
  98. ^ Doris Döppes; Gernot Rabeder; Christine Frischauf; Nadja Kavcik-Graumann; Bernd Kromer; Susanne Lindauer; Ronny Friedrich; Wilfried Rosendahl (2019). "Extinction pattern of Alpine cave bears - new data and climatological interpretation". Historical Biology: An International Journal of Paleobiology. 31 (4): 422–428. doi:10.1080/08912963.2018.1487422.
  99. ^ Gennady Baryshnikov; Dmitry Gimranov; Pavel Kosintsev (2019). "Variability of the upper incisors in the cave bears (Carnivora, Ursidae) from the Caucasus and Urals". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2018.08.001.
  100. ^ Gennady F. Baryshnikov; Andrey Y. Puzachenko (2019). "Morphometry of upper cheek teeth of cave bears (Carnivora, Ursidae)". Boreas. in press. doi:10.1111/bor.12360.
  101. ^ Daniel Charters; Grégory Abrams; Isabelle De Groote; Kévin Di Modica; Dominique Bonjean; Carlo Meloro (2019). "Temporal variation in cave bear (Ursus spelaeus) dentition: The stratigraphic sequence of Scladina Cave, Belgium". Quaternary Science Reviews. 205: 76–85. doi:10.1016/j.quascirev.2018.12.012.
  102. ^ Alixandra N. Prybyla; Zhijie Jack Tseng; John J. Flynn (2019). "Biomechanical simulations of Leptarctus primus (Leptarctinae, Carnivora), and new evidence for a badger-like feeding capability". Journal of Vertebrate Paleontology. in press: e1531290. doi:10.1080/02724634.2018.1531290.
  103. ^ Mauro Ignacio Schiaffini; Prevosti Francisco Juan (2019). "Taxonomy and systematic of fossil hog-nosed skunks, genus Conepatus (Carnivora: Mephitidae) from Argentina". Journal of South American Earth Sciences. 89: 140–157. doi:10.1016/j.jsames.2018.11.010.
  104. ^ Qigao Jiangzuo; Jinyuan Liu; Changzhu Jin; Yayun Song; Sizhao Liu; Sheng Lü; Yuan Wang; Jinyi Liu (2019). "Discovery of Enhydrictis (Mustelidae, Carnivora, Mammalia) cranium in Puwan, Dalian, Northeast China demonstrates repeated intracontinental migration during the Pleistocene". Quaternary International. in press. doi:10.1016/j.quaint.2019.01.024.
  105. ^ Leonard Dewaele; Olivier Lambert; Michel Laurin; Tim De Kock; Stephen Louwye; Vivian de Buffrénil (2019). "Generalized osteosclerotic condition in the skeleton of Nanophoca vitulinoides, a dwarf seal from the Miocene of Belgium". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9438-9.
  106. ^ Sulman Rahmat; Fernando Muñiz; Antonio Toscano; Raúl Esperante; Irina Koretsky (2019). "First European record of Homiphoca (Phocidae: Monachinae: Lobodontini) and its bearing on the paleobiogeography of the genus". Historical Biology: An International Journal of Paleobiology. in press: 1–9. doi:10.1080/08912963.2018.1507030.
  107. ^ Lindsay Renee Meador; Laurie Rohde Godfrey; Jean Claude Rakotondramavo; Lovasoa Ranivoharimanana; Andrew Zamora; Michael Reed Sutherland; Mitchell T. Irwin (2019). "Cryptoprocta spelea (Carnivora: Eupleridae): What Did It Eat and How Do We Know?". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9391-z.
  108. ^ Brigette F. Cohen; Hannah J. O’Regan; Christine M. Steininger (2019). "Mongoose Manor: Herpestidae remains from the Early Pleistocene Cooper 's D locality in the Cradle of Humankind, Gauteng, South Africa". Palaeontologia Africana. 53: 97–113. hdl:10539/26300.
  109. ^ Ashley R. Reynolds; Kevin L. Seymour; David C. Evans (2019). "Late Pleistocene records of felids from Medicine Hat, Alberta, including the first Canadian record of the sabre-toothed cat Smilodon fatalis". Canadian Journal of Earth Sciences. in press. doi:10.1139/cjes-2018-0272.
  110. ^ Federico L. Agnolin; Nicolás R. Chimento; Denise H. Campo; Mariano Magnussen; Daniel Boh; Francisco De Cianni (2019). "Large carnivore footprints from the Late Pleistocene of Argentina". Ichnos: An International Journal for Plant and Animal Traces. in press: 1–8. doi:10.1080/10420940.2018.1479962.
  111. ^ Víctor Adrián Pérez-Crespo; Peter Schaaf; Gabriela Solís-Pichardo; Joaquín Arroyo-Cabrales; José Ramón Torres-Hernández (2019). "Investigation of the mobility of American lion (Panthera atrox) from México (Cedral, San Luis Potosí) using Sr isotopes". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 291 (3): 351–357. doi:10.1127/njgpa/2019/0806.
  112. ^ Qigao Jiangzuo; Chunxiao Li; Shiqi Wang; Danhui Sun (2019). "Amphicyon zhanxiangi, sp. nov., a new amphicyonid (Mammalia, Carnivora) from northern China". Journal of Vertebrate Paleontology. Online edition: e1539857. doi:10.1080/02724634.2018.1539857.
  113. ^ Damián Ruiz-Ramoni; Ascanio D. Rincón; Marisol Montellano-Ballesteros (2019). "Taxonomic revision of a Machairodontinae (Felidae) from the Late Hemphillian of México". Historical Biology: An International Journal of Paleobiology. Online edition: 1–8. doi:10.1080/08912963.2019.1583750.
  114. ^ Jorge Morales; Serdar Mayda; Alberto Valenciano; Daniel DeMiguel; Tanju Kaya (2019). "A new lophocyonid, Izmirictis cani gen. et sp. nov. (Carnivora: Mammalia), from the lower Miocene of Turkey". Journal of Systematic Palaeontology. Online edition: 1–12. doi:10.1080/14772019.2018.1529000.
  115. ^ Manuel J. Salesa; Gema Siliceo; Mauricio Antón; Stéphane Peigné; Jorge Morales (2019). "Functional and systematic implications of the postcranial anatomy of a late Miocene feline (Carnivora, Felidae) from Batallones-1 (Madrid, Spain)". Journal of Mammalian Evolution. 26 (1): 101–131. doi:10.1007/s10914-017-9414-9.
  116. ^ Sarah R. Stinnesbeck; Wolfgang Stinnesbeck; Eberhard Frey; Jerónimo Avilés Olguín; Carmen Rojas Sandoval; Adriana Velázquez Morlet; Arturo H. González (2019). "Panthera balamoides and other Pleistocene felids from the submerged caves of Tulum, Quintana Roo, Mexico". Historical Biology: An International Journal of Paleobiology. in press: 1–10. doi:10.1080/08912963.2018.1556649.
  117. ^ Oliver C. C. Paine; Jennifer N. Leichliter; Nico Avenant; Daryl Codron; Austin Lawrence; Matt Sponheimer (2019). "The ecomorphology of southern African rodent incisors: Potential applications to the hominin fossil record". PLoS ONE. 14 (2): e0205476. doi:10.1371/journal.pone.0205476. PMC 6382097. PMID 30785886.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  118. ^ a b Myriam Boivin; Laurent Marivaux; Pierre-Olivier Antoine (2019). "New insight from the Paleogene record of Amazonia into the early diversification of Caviomorpha (Hystricognathi, Rodentia): phylogenetic, macroevolutionary, and paleobiogeographic implications". Geodiversitas. 41 (4): 143–245. doi:10.5252/geodiversitas2019v41a4 (inactive 2019-03-02).{{cite journal}}: CS1 maint: DOI inactive as of March 2019 (link)
  119. ^ Myriam Boivin; Laurent Marivaux; Rodolfo Salas-Gismondi; Emma C. Vieytes; Pierre-Olivier Antoine (2019). "Incisor enamel microstructure of Paleogene caviomorph rodents from Contamana and Shapaja (Peruvian Amazonia)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9430-4.
  120. ^ Myriam Boivin; Samuel Ginot; Laurent Marivaux; Ali J. Altamirano-Sierra; François Pujos; Rodolfo Salas-Gismondi; Julia V. Tejada-Lara; Pierre-Olivier Antoine (2019). "Tarsal morphology and locomotor adaptation of some late middle Eocene caviomorph rodents from Peruvian Amazonia reveal early ecological diversity". Journal of Vertebrate Paleontology. in press: e1555164. doi:10.1080/02724634.2018.1555164.
  121. ^ Nahuel A. Muñoz; Néstor Toledo; Adriana M. Candela; Sergio F. Vizcaíno (2019). "Functional morphology of the forelimb of Early Miocene caviomorph rodents from Patagonia". Lethaia. 52 (1): 91–106. doi:10.1111/let.12292.
  122. ^ Laurent Marivaux; Myriam Boivin; Sylvain Adnet; Mohamed Benammi; Rodolphe Tabuce; Mouloud Benammi (2019). "Incisor enamel microstructure of hystricognathous and anomaluroid rodents from the earliest Oligocene of Dakhla, Atlantic Sahara (Morocco)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9426-5.
  123. ^ Diego H. Verzi; A. Itatí Olivares; Cecilia C. Morgan (2019). "Morphology of the lower deciduous premolars of South American hystricomorph rodents and age of the Octodontoidea". Historical Biology: An International Journal of Paleobiology. in press: 1–9. doi:10.1080/08912963.2018.1427089.
  124. ^ María Carolina Madozzo-Jaén (2019). "Systematic and phylogeny of Prodolichotis prisca (Caviidae, Dolichotinae) from the Northwest of Argentina (late Miocene–early Pliocene): Advances in the knowledge of the evolutionary history of maras". Comptes Rendus Palevol. 18 (1): 33–50. doi:10.1016/j.crpv.2018.07.003.
  125. ^ Leonardo Kerber; Elver Luiz Mayer; Anny Caroliny Gomes; Norma Nasif (2019). "On the morphological, taxonomic, and phylogenetic status of South American Quaternary dinomyid rodents (Rodentia: Dinomyidae)". PalZ. in press. doi:10.1007/s12542-018-0435-3.
  126. ^ Andrés Rinderknecht; Washington W. Jones; Ney Araújo; Gustavo Grinspan; R. Ernesto Blanco (2019). "Bite force and body mass of the fossil rodent Telicomys giganteus (Caviomorpha, Dinomyidae)". Historical Biology: An International Journal of Paleobiology. in press: 1–9. doi:10.1080/08912963.2017.1384475.
  127. ^ Leonardo Kerber; Marcelo R. Sánchez-Villagra (2019). "Morphology of the middle ear ossicles in the rodent Perimys (Neoepiblemidae) and a comprehensive anatomical and morphometric study of the phylogenetic transformations of these structures in caviomorphs". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9422-9.
  128. ^ Leonardo Kerber; Francisco Ricardo Negri; Daniela Sanfelice (2019). "Morphology of cheek teeth and dental replacement in the extinct rodent Neoepiblema Ameghino, 1889 (Caviomorpha, Chinchilloidea, Neoepiblemidae)". Journal of Vertebrate Paleontology. in press: e1549061. doi:10.1080/02724634.2018.1549061.
  129. ^ Luciano Luis Rasia; Adriana M. Candela (2019). "Upper molar morphology, homologies and evolutionary patterns of chinchilloid rodents (Mammalia, Caviomorpha)". Journal of Anatomy. 234 (1): 50–65. doi:10.1111/joa.12895. PMID 30402944.
  130. ^ Felipe Busker; María Teresa Dozo (2019). "Rediscovering a forgotten rodent of Patagonia and its phylogenetic implications". Journal of Systematic Palaeontology. in press: 1–15. doi:10.1080/14772019.2018.1457727.
  131. ^ Ornella C. Bertrand; Farrah Amador-Mughal; Madlen M. Lang; Mary T. Silcox (2019). "New virtual endocasts of Eocene Ischyromyidae and their relevance in evaluating neurological changes occurring through time in Rodentia". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9425-6.
  132. ^ Maxim V. Sinitsa; Natalia V. Pogodina; Lyudmila Y. Кryuchkova (2019). "The skull of Spermophilus nogaici (Rodentia: Sciuridae: Xerinae) and the affinities of the earliest Old World ground squirrels". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zly092.
  133. ^ Yangheshan Yang; Qiang Li; Łucja Fostowicz-Frelik; Xijun Ni (2019). "Last record of Trogontherium cuvieri (Mammalia, Rodentia) from the late Pleistocene of China". Quaternary International. in press. doi:10.1016/j.quaint.2019.01.025.
  134. ^ Pauline M. Coster; Aung Naing Soe; K. Christopher Beard; Yaowalak Chaimanee; Chit Sein; Vincent Lazzari; Jean-Jacques Jaeger (2019). "Astragalus of Pondaungimys (Rodentia, Anomaluroidea) from the late middle Eocene Pondaung Formation, central Myanmar". Journal of Vertebrate Paleontology. in press: e1552156. doi:10.1080/02724634.2018.1552156.
  135. ^ Brooke Erin Crowley; Yurena Yanes; Stella Grace Mosher; Juan Carlos Rando (2019). "Revisiting the foraging ecology and extinction history of two endemic vertebrates from Tenerife, Canary Islands". Quaternary. 2 (1): Article 10. doi:10.3390/quat2010010.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  136. ^ a b c d William W. Korth; Robert J. Emry; Clint A. Boyd; Jeff J. Person (2019). "Rodents (Mammalia) from Fitterer Ranch, Brule Formation (Oligocene), North Dakota". Smithsonian Contributions to Paleobiology. 103: 1–45. doi:10.5479/si.1943-6688.103.
  137. ^ a b c Gary S. Morgan; Ross D.E. Macphee; Roseina Woods; Samuel T. Turvey (2019). "Late Quaternary fossil mammals from the Cayman Islands, West Indies". Bulletin of the American Museum of Natural History. 428: 1–82. doi:10.1206/0003-0090.428.1.1. hdl:2246/6928.
  138. ^ Esperanza Cerdeño; María E. Pérez; Cecilia M. Deschamps; Víctor H. Contreras (2019). "A new capybara from the late Miocene of San Juan Province, Argentina, and its phylogenetic implications". Acta Palaeontologica Polonica. 64 (1): 199–212. doi:10.4202/app.00544.2018.
  139. ^ Enric Torres-Roig; Pedro Piñero; Jordi Agustí; Pere Bover; Josep Antoni Alcover (2019). "First evidence of endemic Murinae (Rodentia, Mammalia) in the early Pliocene of the Balearic Islands (western Mediterranean)". Geological Magazine. in press: 1–9. doi:10.1017/S0016756818000985.
  140. ^ Judit Marigó; Nicole Verrière; Marc Godinot (2019). "Systematic and locomotor diversification of the Adapis group (Primates, Adapiformes) in the late Eocene of the Quercy (Southwest France), revealed by humeral remains". Journal of Human Evolution. 126: 71–90. doi:10.1016/j.jhevol.2018.10.009. PMID 30583845.
  141. ^ Daniele Silvestro; Marcelo F. Tejedor; Martha L. Serrano-Serrano; Oriane Loiseau; Victor Rossier; Jonathan Rolland; Alexander Zizka; Sebastian Höhna; Alexandre Antonelli; Nicolas Salamin (2019). "Early arrival and climatically-linked geographic expansion of New World monkeys from tiny African ancestors". Systematic Biology. 68 (1): 78–92. doi:10.1093/sysbio/syy046. PMC 6292484. PMID 29931325.
  142. ^ Lauren Halenar‐Price; Melissa Tallman (2019). "Investigating the effect of endocranial volume on cranial shape in platyrrhines and the relevance of this relationship to interpretations of the fossil record". American Journal of Physical Anthropology. in press. doi:10.1002/ajpa.23804. PMID 30802306.
  143. ^ Craig Wuthrich; Laura M. MacLatchy; Isaiah O. Nengo (2019). "Wrist morphology reveals substantial locomotor diversity among early catarrhines: an analysis of capitates from the early Miocene of Tinderet (Kenya)". Scientific Reports. 9: Article number 3728. doi:10.1038/s41598-019-39800-3. PMC 6403298. PMID 30842461.
  144. ^ Ashley S. Hammond; Kimberly K. Foecke; Jay Kelley (2019). "Hominoid anterior teeth from the late Oligocene site of Losodok, Kenya". Journal of Human Evolution. 128: 59–75. doi:10.1016/j.jhevol.2018.12.010. PMID 30825982.
  145. ^ Jeremy DeSilva; Ellison McNutt; Julien Benoit; Bernhard Zipfel (2019). "One small step: A review of Plio‐Pleistocene hominin foot evolution". American Journal of Physical Anthropology. 168 (S67): 63–140. doi:10.1002/ajpa.23750. PMID 30575015.
  146. ^ René Bobe; Susana Carvalho (2019). "Hominin diversity and high environmental variability in the Okote Member, Koobi Fora Formation, Kenya". Journal of Human Evolution. 126: 91–105. doi:10.1016/j.jhevol.2018.10.012. PMID 30583846.
  147. ^ Alessandro Riga; Tommaso Mori; Travis Rayne Pickering; Jacopo Moggi‐Cecchi; Colin G. Menter (2019). "Ages‐at‐death distribution of the early Pleistocene hominin fossil assemblage from Drimolen (South Africa)". American Journal of Physical Anthropology. 168 (3): 632–636. doi:10.1002/ajpa.23771. PMID 30613947.
  148. ^ Geoff M. Smith; Karen Ruebens; Sabine Gaudzinski-Windheuser; Teresa E. Steele (2019). "Subsistence strategies throughout the African Middle Pleistocene: Faunal evidence for behavioral change and continuity across the Earlier to Middle Stone Age transition". Journal of Human Evolution. 127: 1–20. doi:10.1016/j.jhevol.2018.11.011. PMID 30777352.
  149. ^ Scott W. Simpson; Naomi E. Levin; Jay Quade; Michael J. Rogers; Sileshi Semaw (2019). "Ardipithecus ramidus postcrania from the Gona Project area, Afar Regional State, Ethiopia". Journal of Human Evolution. 129: 1–45. doi:10.1016/j.jhevol.2018.12.005.
  150. ^ Robyn Pickering; Andy I. R. Herries; Jon D. Woodhead; John C. Hellstrom; Helen E. Green; Bence Paul; Terrence Ritzman; David S. Strait; Benjamin J. Schoville; Phillip J. Hancox (2019). "U–Pb-dated flowstones restrict South African early hominin record to dry climate phases". Nature. 565 (7738): 226–229. doi:10.1038/s41586-018-0711-0. PMID 30464348.
  151. ^ Michael R. Lague; Habiba Chirchir; David J. Green; Emma Mbua; John W.K. Harris; David R. Braun; Nicole L. Griffin; Brian G. Richmond (2019). "Cross-sectional properties of the humeral diaphysis of Paranthropus boisei: Implications for upper limb function". Journal of Human Evolution. 126: 51–70. doi:10.1016/j.jhevol.2018.05.002. PMID 30583844.
  152. ^ Ian Towle; Joel D. Irish (2019). "A probable genetic origin for pitting enamel hypoplasia on the molars of Paranthropus robustus". Journal of Human Evolution. 129: 54–61. doi:10.1016/j.jhevol.2019.01.002.
  153. ^ Amélie Beaudet; Ronald J. Clarke; Edwin J. de Jager; Laurent Bruxelles; Kristian J. Carlson; Robin Crompton; Frikkie de Beer; Jelle Dhaene; Jason L. Heaton; Kudakwashe Jakata; Tea Jashashvili; Kathleen Kuman; Juliet McClymont; Travis R. Pickering; Dominic Stratford (2019). "The endocast of StW 573 ("Little Foot") and hominin brain evolution". Journal of Human Evolution. 126: 112–123. doi:10.1016/j.jhevol.2018.11.009. PMID 30583840.
  154. ^ Amélie Beaudet; Ronald J. Clarke; Laurent Bruxelles; Kristian J. Carlson; Robin Crompton; Frikkie de Beer; Jelle Dhaene; Jason L. Heaton; Kudakwashe Jakata; Tea Jashashvili; Kathleen Kuman; Juliet McClymont; Travis R. Pickering; Dominic Stratford (2019). "The bony labyrinth of StW 573 ("Little Foot"): Implications for early hominin evolution and paleobiology". Journal of Human Evolution. 127: 67–80. doi:10.1016/j.jhevol.2018.12.002. PMID 30777359.
  155. ^ C.V. Ward; J.M. Plavcan; F.K. Manthi (2019). "New fossils of Australopithecus anamensis from Kanapoi, West Turkana, Kenya (2012–2015)". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.07.008. PMID 28844328.
  156. ^ Lee R. Berger; John Hawks (2019). "Australopithecus prometheus is a nomen nudum". American Journal of Physical Anthropology. 168 (2): 383–387. doi:10.1002/ajpa.23743. PMID 30552667.
  157. ^ G. Philip Rightmire; Ann Margvelashvili; David Lordkipanidze (2019). "Variation among the Dmanisi hominins: Multiple taxa or one species?". American Journal of Physical Anthropology. 168 (3): 481–495. doi:10.1002/ajpa.23759. PMID 30578552.
  158. ^ Song Xing; Paul Tafforeau; Mackie O’Hara; Mario Modesto-Mata; Laura Martín-Francés; María Martinón-Torres; Limin Zhang; Lynne A. Schepartz; José María Bermúdez de Castro; Debbie Guatelli-Steinberg (2019). "First systematic assessment of dental growth and development in an archaic hominin (genus Homo) from East Asia". Science Advances. 5 (1): eaau0930. doi:10.1126/sciadv.aau0930. PMC 6357757. PMID 30746445.
  159. ^ José María Bermúdez de Castro; María Martinón-Torres; Marina Martínez de Pinillos; Cecilia García-Campos; Mario Modesto-Mata; Laura Martín-Francés; Juan Luis Arsuaga (2019). "Metric and morphological comparison between the Arago (France) and Atapuerca-Sima de los Huesos (Spain) dental samples, and the origin of Neanderthals". Quaternary Science Reviews. in press. doi:10.1016/j.quascirev.2018.04.003.
  160. ^ Eva María Poza-Rey; Aida Gómez-Robles; Juan Luis Arsuaga (2019). "Brain size and organization in the Middle Pleistocene hominins from Sima de los Huesos. Inferences from endocranial variation". Journal of Human Evolution. 129: 67–90. doi:10.1016/j.jhevol.2019.01.006.
  161. ^ Yul Altolaguirre; José M. Postigo-Mijarra; Eduardo Barrón; José S. Carrión; Suzanne A.G. Leroy; Angela A. Bruch (2019). "An environmental scenario for the earliest hominins in the Iberian Peninsula: Early Pleistocene palaeovegetation and palaeoclimate". Review of Palaeobotany and Palynology. 260: 51–64. doi:10.1016/j.revpalbo.2018.10.008.
  162. ^ Stefanie Stelzer; Simon Neubauer; Jean‐Jacques Hublin; Fred Spoor; Philipp Gunz (2019). "Morphological trends in arcade shape and size in Middle Pleistocene Homo". American Journal of Physical Anthropology. 168 (1): 70–91. doi:10.1002/ajpa.23721. PMID 30351445.
  163. ^ Annemieke Milks; David Parker; Matt Pope (2019). "External ballistics of Pleistocene hand-thrown spears: experimental performance data and implications for human evolution". Scientific Reports. 9 (1): Article number 820. doi:10.1038/s41598-018-37904-w. PMC 6347593. PMID 30683877.
  164. ^ María Martinón-Torres; José María Bermúdez de Castro; Marina Martínez de Pinillos; Mario Modesto-Mata; Song Xing; Laura Martín-Francés; Cecilia García-Campos; Xiujie Wu; Wu Liu (2019). "New permanent teeth from Gran Dolina-TD6 (Sierra de Atapuerca). The bearing of Homo antecessor on the evolutionary scenario of Early and Middle Pleistocene Europe". Journal of Human Evolution. 127: 93–117. doi:10.1016/j.jhevol.2018.12.001. PMID 30777361.
  165. ^ Gaël Becam; Tony Chevalier (2019). "Neandertal features of the deciduous and permanent teeth from Portel‐Ouest Cave (Ariège, France)". American Journal of Physical Anthropology. 168 (1): 45–69. doi:10.1002/ajpa.23719. PMID 30462354.
  166. ^ Yue Hu; Ben Marwick; Jia-Fu Zhang; Xue Rui; Ya-Mei Hou; Jian-Ping Yue; Wen-Rong Chen; Wei-Wen Huang; Bo Li (2019). "Late Middle Pleistocene Levallois stone-tool technology in southwest China". Nature. 565 (7737): 82–85. doi:10.1038/s41586-018-0710-1. PMID 30455423.
  167. ^ Zenobia Jacobs; Bo Li; Michael V. Shunkov; Maxim B. Kozlikin; Nataliya S. Bolikhovskaya; Alexander K. Agadjanian; Vladimir A. Uliyanov; Sergei K. Vasiliev; Kieran O’Gorman; Anatoly P. Derevianko; Richard G. Roberts (2019). "Timing of archaic hominin occupation of Denisova Cave in southern Siberia". Nature. 565 (7741): 594–599. doi:10.1038/s41586-018-0843-2. PMID 30700870.
  168. ^ Katerina Douka; Viviane Slon; Zenobia Jacobs; Christopher Bronk Ramsey; Michael V. Shunkov; Anatoly P. Derevianko; Fabrizio Mafessoni; Maxim B. Kozlikin; Bo Li; Rainer Grün; Daniel Comeskey; Thibaut Devièse; Samantha Brown; Bence Viola; Leslie Kinsley; Michael Buckley; Matthias Meyer; Richard G. Roberts; Svante Pääbo; Janet Kelso; Tom Higham (2019). "Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave". Nature. 565 (7741): 640–644. doi:10.1038/s41586-018-0870-z. PMID 30700871.
  169. ^ Antonio Rosas; Markus Bastir; Jose Antonio Alarcón (2019). "Tempo and mode in the Neandertal evolutionary lineage: A structuralist approach to mandible variation". Quaternary Science Reviews. in press. doi:10.1016/j.quascirev.2019.02.025.
  170. ^ Fernando A. Villanea; Joshua G. Schraiber (2019). "Multiple episodes of interbreeding between Neanderthal and modern humans". Nature Ecology & Evolution. 3 (1): 39–44. doi:10.1038/s41559-018-0735-8. PMC 6309227. PMID 30478305.
  171. ^ Penny Spikins; Andy Needham; Barry Wright; Calvin Dytham; Maurizio Gatta; Gail Hitchens (2019). "Living to fight another day: The ecological and evolutionary significance of Neanderthal healthcare". Quaternary Science Reviews. in press. doi:10.1016/j.quascirev.2018.08.011.
  172. ^ J.R. Stewart; O. García-Rodríguez; M.V. Knul; L. Sewell; H. Montgomery; M.G. Thomas; Y. Diekmann (2019). "Palaeoecological and genetic evidence for Neanderthal power locomotion as an adaptation to a woodland environment". Quaternary Science Reviews. in press. doi:10.1016/j.quascirev.2018.12.023.
  173. ^ L. Ríos; T. L. Kivell; C. Lalueza-Fox; A. Estalrrich; A. García-Tabernero; R. Huguet; Y. Quintino; M. de la Rasilla; A. Rosas (2019). "Skeletal anomalies in the Neandertal family of El Sidrón (Spain) support a role of inbreeding in Neandertal extinction". Scientific Reports. 9 (1): Article number 1697. doi:10.1038/s41598-019-38571-1. PMC 6368597. PMID 30737446.
  174. ^ Klervia Jaouen; Michael P. Richards; Adeline Le Cabec; Frido Welker; William Rendu; Jean-Jacques Hublin; Marie Soressi; Sahra Talamo (2019). "Exceptionally high δ15N values in collagen single amino acids confirm Neandertals as high-trophic level carnivores". Proceedings of the National Academy of Sciences of the United States of America. 116 (11): 4928–4933. doi:10.1073/pnas.1814087116. PMID 30782806.
  175. ^ Martin Haeusler; Erik Trinkaus; Cinzia Fornai; Jonas Müller; Noémie Bonneau; Thomas Boeni; Nakita Frater (2019). "Morphology, pathology, and the vertebral posture of the La Chapelle-aux-Saints Neandertal". Proceedings of the National Academy of Sciences of the United States of America. 116 (11): 4923–4927. doi:10.1073/pnas.1820745116. PMID 30804177.
  176. ^ Martin Petr; Svante Pääbo; Janet Kelso; Benjamin Vernot (2019). "Limits of long-term selection against Neandertal introgression". Proceedings of the National Academy of Sciences of the United States of America. 116 (5): 1639–1644. doi:10.1073/pnas.1814338116. PMC 6358679. PMID 30647110.
  177. ^ Mayukh Mondal; Jaume Bertranpetit; Oscar Lao (2019). "Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania". Nature Communications. 10 (1): Article number 246. doi:10.1038/s41467-018-08089-7. PMC 6335398. PMID 30651539.
  178. ^ Philipp Gunz; Amanda K. Tilot; Katharina Wittfeld; Alexander Teumer; Chin Yang Shapland; Theo G.M. van Erp; Michael Dannemann; Benjamin Vernot; Simon Neubauer; Tulio Guadalupe; Guillén Fernández; Han G. Brunner; Wolfgang Enard; James Fallon; Norbert Hosten; Uwe Völker; Antonio Profico; Fabio Di Vincenzo; Giorgio Manzi; Janet Kelso; Beate St. Pourcain; Jean-Jacques Hublin; Barbara Franke; Svante Pääbo; Fabio Macciardi; Hans J. Grabe; Simon E. Fisher (2019). "Neandertal introgression sheds light on modern human endocranial globularity". Current Biology. 29 (1): 120–127.e5. doi:10.1016/j.cub.2018.10.065. PMC 6380688. PMID 30554901.
  179. ^ Miguel Cortés-Sánchez; Francisco J. Jiménez-Espejo; María D. Simón-Vallejo; Chris Stringer; María Carmen Lozano Francisco; Antonio García-Alix; José L. Vera Peláez; Carlos P. Odriozola; José A. Riquelme-Cantal; Rubén Parrilla Giráldez; Adolfo Maestro González; Naohiko Ohkouchi; Arturo Morales-Muñiz (2019). "An early Aurignacian arrival in southwestern Europe". Nature Ecology & Evolution. 3 (2): 207–212. doi:10.1038/s41559-018-0753-6. PMID 30664696.
  180. ^ Isabell Schmidt; Andreas Zimmermann (2019). "Population dynamics and socio-spatial organization of the Aurignacian: Scalable quantitative demographic data for western and central Europe". PLoS ONE. 14 (2): e0211562. doi:10.1371/journal.pone.0211562. PMC 6373918. PMID 30759115.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  181. ^ Thibaut Devièse; Diyendo Massilani; Seonbok Yi; Daniel Comeskey; Sarah Nagel; Birgit Nickel; Erika Ribechini; Jungeun Lee; Damdinsuren Tseveendorj; Byambaa Gunchinsuren; Matthias Meyer; Svante Pääbo; Tom Higham (2019). "Compound-specific radiocarbon dating and mitochondrial DNA analysis of the Pleistocene hominin from Salkhit Mongolia". Nature Communications. 10 (1): Article number 274. doi:10.1038/s41467-018-08018-8. PMC 6353915. PMID 30700710.
  182. ^ Hirofumi Matsumura; Hsiao-chun Hung; Charles Higham; Chi Zhang; Mariko Yamagata; Lan Cuong Nguyen; Zhen Li; Xue-chun Fan; Truman Simanjuntak; Adhi Agus Oktaviana; Jia-ning He; Chung-yu Chen; Chien-kuo Pan; Gang He; Guo-ping Sun; Wei-jin Huang; Xin-wei Li; Xing-tao Wei; Kate Domett; Siân Halcrow; Kim Dung Nguyen; Hoang Hiep Trinh; Chi Hoang Bui; Khanh Trung Kien Nguyen; Andreas Reinecke (2019). "Craniometrics reveal "two layers" of prehistoric human dispersal in eastern Eurasia". Scientific Reports. 9 (1): Article number 1451. doi:10.1038/s41598-018-35426-z. PMC 6363732. PMID 30723215.
  183. ^ Yanhua Song; Stefano Grimaldi; Fabio Santaniello; David J. Cohen; Jinming Shi; Ofer Bar-Yosef (2019). "Re-thinking the evolution of microblade technology in East Asia: Techno-functional understanding of the lithic assemblage from Shizitan 29 (Shanxi, China)". PLoS ONE. 14 (2): e0212643. doi:10.1371/journal.pone.0212643. PMC 6388932. PMID 30802253.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  184. ^ Oshan Wedage; Noel Amano; Michelle C. Langley; Katerina Douka; James Blinkhorn; Alison Crowther; Siran Deraniyagala; Nikos Kourampas; Ian Simpson; Nimal Perera; Andrea Picin; Nicole Boivin; Michael Petraglia; Patrick Roberts (2019). "Specialized rainforest hunting by Homo sapiens ~45,000 years ago". Nature Communications. 10 (1): Article number 739. doi:10.1038/s41467-019-08623-1. PMC 6381157. PMID 30783099.
  185. ^ Wei Liao; Song Xing; Dawei Li; María Martinón-Torres; Xiujie Wu; Christophe Soligo; José María Bermúdez de Castro; Wei Wang; Wu Liu (2019). "Mosaic dental morphology in a terminal Pleistocene hominin from Dushan Cave in southern China". Scientific Reports. 9 (1): Article number 2347. doi:10.1038/s41598-019-38818-x. PMC 6382942. PMID 30787352.
  186. ^ Thomaz Pinotti; Anders Bergström; Maria Geppert; Matt Bawn; Dominique Ohasi; Wentao Shi; Daniela R. Lacerda; Arne Solli; Jakob Norstedt; Kate Reed; Kim Dawtry; Fabricio González-Andrade; Cesar Paz-y-Miño; Susana Revollo; Cinthia Cuellar; Marilza S. Jota; José E. Santos Jr.; Qasim Ayub; Toomas Kivisild; José R. Sandoval; Ricardo Fujita; Yali Xue; Lutz Roewer; Fabrício R. Santos; Chris Tyler-Smith (2019). "Y chromosome sequences reveal a short Beringian standstill, rapid expansion, and early population structure of Native American founders". Current Biology. 29 (1): 149–157.e3. doi:10.1016/j.cub.2018.11.029. PMID 30581024.
  187. ^ Jonathan Santana; Francisco Javier Rodríguez‐Santos; María Dolores Camalich‐Massieu; Dimas Martín‐Socas; Rosa Fregel (2019). "Aggressive or funerary cannibalism? Skull‐cup and human bone manipulation in Cueva de El Toro (Early Neolithic, southern Iberia)". American Journal of Physical Anthropology. in press. doi:10.1002/ajpa.23805. PMID 30802307.
  188. ^ Stefania Vai; Stefania Sarno; Martina Lari; Donata Luiselli; Giorgio Manzi; Marina Gallinaro; Safaa Mataich; Alexander Hübner; Alessandra Modi; Elena Pilli; Mary Anne Tafuri; David Caramelli; Savino di Lernia (2019). "Ancestral mitochondrial N lineage from the Neolithic 'green' Sahara". Scientific Reports. 9: Article number 3530. doi:10.1038/s41598-019-39802-1. PMC 6401177. PMID 30837540.
  189. ^ G. González-Fortes; F. Tassi; E. Trucchi; K. Henneberger; J. L. A. Paijmans; D. Díez-del-Molino; H. Schroeder; R. R. Susca; C. Barroso-Ruíz; F. J. Bermudez; C. Barroso-Medina; A. M. S. Bettencourt; H. A. Sampaio; A. Grandal-d'Anglade; A. Salas; A. de Lombera-Hermida; R. Fabregas Valcarce; M. Vaquero; S. Alonso; M. Lozano; X. P. Rodríguez-Alvarez; C. Fernández-Rodríguez; A. Manica; M. Hofreiter; G. Barbujani (2019). "A western route of prehistoric human migration from Africa into the Iberian Peninsula". Proceedings of the Royal Society B: Biological Sciences. 286 (1895): Article ID 20182288. doi:10.1098/rspb.2018.2288.
  190. ^ D. Tab Rasmussen; Anthony R. Friscia; Mercedes Gutierrez; John Kappelman; Ellen R. Miller; Samuel Muteti; Dawn Reynoso; James B. Rossie; Terry L. Spell; Neil J. Tabor; Elizabeth Gierlowski-Kordesch; Bonnie F. Jacobs; Benson Kyongo; Mathew Macharwas; Francis Muchemi (2019). "Primitive Old World monkey from the earliest Miocene of Kenya and the evolution of cercopithecoid bilophodonty". Proceedings of the National Academy of Sciences of the United States of America. in press. doi:10.1073/pnas.1815423116.
  191. ^ Paul E. Morse; Stephen G.B. Chester; Doug M. Boyer; Thierry Smith; Richard Smith; Paul Gigase; Jonathan I. Bloch (2019). "New fossils, systematics, and biogeography of the oldest known crown primate Teilhardina from the earliest Eocene of Asia, Europe, and North America". Journal of Human Evolution. 128: 103–131. doi:10.1016/j.jhevol.2018.08.005. PMID 30497682.
  192. ^ Achim H. Schwermann; Kai He; Benjamin J. Peters; Thorsten Plogschties; Gabriele Sansalone (2019). "Systematics and macroevolution of extant and fossil scalopine moles (Mammalia, Talpidae)". Palaeontology. in press. doi:10.1111/pala.12422.
  193. ^ Joe Cameron; Sarah L. Shelley; Thomas E. Williamson; Stephen L. Brusatte (2019). "The brain and inner ear of the early Paleocene 'condylarth' Carsioptychus coarctatus: Implications for early placental mammal neurosensory biology and behavior". The Anatomical Record. 302 (2): 306–324. doi:10.1002/ar.23903. PMID 30290063.
  194. ^ Andrea Corona; Martín Ubilla; Daniel Perea (2019). "New records and diet reconstruction using dental microwear analysis for Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae)". Andean Geology. 46 (1): 153–167. doi:10.5027/andgeoV46n1-3136.
  195. ^ Elizabeth Morosi; Martin Ubilla (2019). "Dietary and palaeoenvironmental inferences in Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae) using carbon and oxygen stable isotopes (Late Pleistocene; Uruguay)". Historical Biology: An International Journal of Paleobiology. 31 (2): 196–202. doi:10.1080/08912963.2017.1355914.
  196. ^ Andréa Filippo; Daniela C. Kalthoff; Guillaume Billet; Helder Gomes Rodrigues (2019). "Evolutionary and functional implications of incisor enamel microstructure diversity in Notoungulata (Placentalia, Mammalia)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-019-09462-z.
  197. ^ Malena Lorente; Javier N. Gelfo; Guillermo M. López (2019). "First skeleton of the notoungulate mammal Notostylops murinus and palaeobiology of Eocene Notostylopidae". Lethaia. in press. doi:10.1111/let.12310.
  198. ^ Marcos Fernández-Monescillo; Pierre-Olivier Antoine; François Pujos; Helder Gomes Rodrigues; Bernardino Mamani Quispe; Maeva Orliac (2019). "Virtual endocast morphology of Mesotheriidae (Mammalia, Notoungulata, Typotheria): new insights and implications on notoungulate encephalization and brain evolution". Journal of Mammalian Evolution. 26 (1): 85–100. doi:10.1007/s10914-017-9416-7.
  199. ^ Bárbara Vera; Laureano González Ruiz; Nelson Novo; Gabriel Martin; Agustina Reato; Marcelo F. Tejedor (2019). "The Interatheriinae (Mammalia, Notoungulata) of the Friasian sensu stricto and Mayoan (middle to late Miocene), and the fossils from Cerro Zeballos, Patagonia, Argentina". Journal of Systematic Palaeontology. in press: 1–21. doi:10.1080/14772019.2018.1511387.
  200. ^ Federico Damián Seoane; Esperanza Cerdeño (2019). "Systematic revision of Hegetotherium and Pachyrukhos (Hegetotheriidae, Notoungulata) and a new phylogenetic analysis of Hegetotheriidae". Journal of Systematic Palaeontology. in press: 1–29. doi:10.1080/14772019.2018.1545146.
  201. ^ Matthew R. Borths; Nancy J. Stevens (2019). "Taxonomic affinities of the enigmatic Prionogale breviceps, early Miocene, Kenya". Historical Biology: An International Journal of Paleobiology. in press: 1–10. doi:10.1080/08912963.2017.1393075.
  202. ^ Shawn P. Zack (2019). "A skeleton of a Uintan machaeroidine 'creodont' and the phylogeny of carnivorous eutherian mammals". Journal of Systematic Palaeontology. in press: 1–37. doi:10.1080/14772019.2018.1466374.
  203. ^ Stephen G.B. Chester; Thomas E. Williamson; Mary T. Silcox; Jonathan I. Bloch; Eric J. Sargis (2019). "Skeletal morphology of the early Paleocene plesiadapiform Torrejonia wilsoni (Euarchonta, Palaechthonidae)". Journal of Human Evolution. 128: 76–92. doi:10.1016/j.jhevol.2018.12.004. PMID 30825983.
  204. ^ a b c d Floréal Solé; Olivia Plateau; Kévin Le Verger; Alain Phélizon (2019). "New paroxyclaenid mammals from the early Eocene of the Paris Basin (France) shed light on the origin and evolution of these endemic European cimolestans". Journal of Systematic Palaeontology. Online edition: 1–33. doi:10.1080/14772019.2018.1551248.
  205. ^ Jerry J. Hooker (2019). "A mammal fauna from the Paleocene-Eocene Thermal Maximum of Croydon, London, UK". Proceedings of the Geologists' Association. in press. doi:10.1016/j.pgeola.2018.01.001.
  206. ^ Fang-Yuan Mao; Xiao-Ting Zheng; Xiao-Li Wang; Yuan-Qing Wang; Shun-Dong Bi; Jin Meng (2019). "Evidence of diphyodonty and heterochrony for dental development in euharamiyidan mammals from Jurassic Yanliao Biota". Vertebrata PalAsiatica. 57 (1): 51–76. doi:10.19615/j.cnki.1000-3118.180803.
  207. ^ Fangyuan Mao; Jin Meng (2019). "Tooth microwear and occlusal modes of euharamiyidans from the Jurassic Yanliao Biota reveal mosaic tooth evolution in Mesozoic allotherian mammals". Palaeontology. in press. doi:10.1111/pala.12421.
  208. ^ Elsa Panciroli; Julia A. Schultz; Zhe‐Xi Luo (2019). "Morphology of the petrosal and stapes of Borealestes (Mammaliaformes, Docodonta) from the Middle Jurassic of Skye, Scotland". Papers in Palaeontology. 5 (1): 139–156. doi:10.1002/spp2.1233.
  209. ^ Julia A. Schultz; Bhart-Anjan S. Bhullar; Zhe-Xi Luo (2019). "Re-examination of the Jurassic mammaliaform Docodon victor by computed tomography and occlusal functional analysis". Journal of Mammalian Evolution. 26 (1): 9–38. doi:10.1007/s10914-017-9418-5.
  210. ^ Tony Harper; Ana Parras; Guillermo W. Rougier (2019). "Reigitherium (Meridiolestida, Mesungulatoidea) an enigmatic Late Cretaceous mammal from Patagonia, Argentina: morphology, affinities, and dental evolution". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9437-x.
  211. ^ Patrick M. O’Connor; David W. Krause; Nancy J. Stevens; Joseph R. Groenke; Ross D.E. MacPhee; Daniela C. Kalthoff; Eric M. Roberts (2019). "A new mammal from the Turonian–Campanian (Upper Cretaceous) Galula Formation, southwestern Tanzania". Acta Palaeontologica Polonica. 64 (1): 65–84. doi:10.4202/app.00568.2018.
  212. ^ Fang-Yuan Mao; Jin Meng (2019). "A new haramiyidan mammal from the Jurassic Yanliao Biota and comparisons with other haramiyidans". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zly088.