Triakis icosahedron

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Triakis icosahedron
Triakis icosahedron
(Click here for rotating model)
Type Catalan solid
Coxeter diagram CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node.png
Conway notation kI
Face type V3.10.10
DU26 facets.png

isosceles triangle
Faces 60
Edges 90
Vertices 32
Vertices by type 20{3}+12{10}
Symmetry group Ih, H3, [5,3], (*532)
Rotation group I, [5,3]+, (532)
Dihedral angle 160° 36' 45"
 \arccos ( -\frac{24 + 15\sqrt{5}}{61} )
Properties convex, face-transitive
Truncated dodecahedron.png
Truncated dodecahedron
(dual polyhedron)
Triakis icosahedron Net
Net

In geometry, the triakis icosahedron is an Archimedean dual solid, or a Catalan solid. Its dual is the truncated dodecahedron.

Orthogonal projections[edit]

The triakis icosahedron has three symmetry positions, two on vertices, and one on a midedge: The Triakis icosahedron has five special orthogonal projections, centered, on a vertex, on two types of edges, and two types of faces: hexagonal and pentagonal. The last two correspond to the A2 and H2 Coxeter planes.

Orthogonal projections of wireframe modes
Projective
symmetry
[2] [6] [10]
Image Dual dodecahedron t12 exx.png Dual dodecahedron t12 A2.png Dual dodecahedron t12 H3.png
Dual
image
Dodecahedron t01 exx.png Dodecahedron t01 A2.png Dodecahedron t01 H3.png

Kleetope[edit]

It can be seen as an icosahedron with triangular pyramids augmented to each face; that is, it is the Kleetope of the icosahedron. This interpretation is expressed in the name, triakis.

Tetrahedra augmented icosahedron.png

Other triakis icosahedra[edit]

This interpretation can also apply to other similar nonconvex polyhedra with pyramids of different heights:

Stellations[edit]

Stellation of triakis icosahedron.png
The triakis icosahedron has numerous stellations, including this one.

Related polyhedra[edit]

Spherical triakis icosahedron
Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532) [5,3]+, (532)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-53-t0.png Uniform polyhedron-53-t01.png Uniform polyhedron-53-t1.png Uniform polyhedron-53-t12.png Uniform polyhedron-53-t2.png Uniform polyhedron-53-t02.png Uniform polyhedron-53-t012.png Uniform polyhedron-53-s012.png
{5,3} t{5,3} r{5,3} 2t{5,3}=t{3,5} 2r{5,3}={3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
CDel node f1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 5.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Icosahedron.svg Triakisicosahedron.jpg Rhombictriacontahedron.svg Pentakisdodecahedron.jpg Dodecahedron.svg Deltoidalhexecontahedron.jpg Disdyakistriacontahedron.jpg Pentagonalhexecontahedronccw.jpg
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

The triakis icosahedron is a part of a sequence of polyhedra and tilings, extending into the hyperbolic plane. These face-transitive figures have (*n32) reflectional symmetry.

Dimensional family of truncated polyhedra and tilings: 3.2n.2n
Symmetry
*n32
[n,3]
Spherical Euclidean Compact hyperbolic Paracompact
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
 
*832
[8,3]...
 
*∞32
[∞,3]
 
Truncated
figures
Spherical triangular prism.png
3.4.4
Uniform tiling 332-t01-1-.png
3.6.6
Uniform tiling 432-t01.png
3.8.8
Uniform tiling 532-t01.png
3.10.10
Uniform tiling 63-t01.png
3.12.12
Uniform tiling 73-t01.png
3.14.14
Uniform tiling 83-t01.png
3.16.16
H2 tiling 23i-3.png
3.∞.∞
Coxeter
Schläfli
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
t{2,3}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t{3,3}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
t{4,3}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
t{5,3}
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
t{6,3}
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png
t{7,3}
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node.png
t{8,3}
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png
t{∞,3}
Uniform dual figures
Triakis
figures
Triangular dipyramid.png
V3.4.4
Triakistetrahedron.jpg
V3.6.6
Triakisoctahedron.jpg
V3.8.8
Triakisicosahedron.jpg
V3.10.10
Tiling Dual Semiregular V3-12-12 Triakis Triangular.svg
V3.12.12
Ord7 triakis triang til.png
V3.14.14
Ord8 triakis triang til.png
V3.16.16
Ord-infin triakis triang til.png
V3.∞.∞
Coxeter CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.png

See also[edit]

References[edit]

External links[edit]