Operating system: Difference between revisions
PeterStJohn (talk | contribs) |
|||
Line 24: | Line 24: | ||
Modern file systems comprise a hierarchy of directories. While the idea is conceptually similar across all general-purpose file systems, some differences in implementation exist. Two noticeable examples of this are the character used to separate directories, and case sensitivity. |
Modern file systems comprise a hierarchy of directories. While the idea is conceptually similar across all general-purpose file systems, some differences in implementation exist. Two noticeable examples of this are the character used to separate directories, and case sensitivity. |
||
Unix demarcates its [[Path (computing)|path]] components with a slash (/), a convention followed by operating systems that emulated it or at least its concept of hierarchical directories, such as Linux, Amiga OS and Mac OS X. MS-DOS also emulated this feature, but had already also adopted the CP/M convention of using slashes for additional options to commands, so instead used the backslash (\) as its component separator. Microsoft Windows continues with this convention; Japanese editions of Windows use ¥, and Korean editions use ₩. Versions of Mac OS prior to OS X use a [[Colon (punctuation)|colon]] (:) for a path separator. [[RISC OS]] uses a period (.). |
Unix demarcates its [[Path (computing)|path]] components with a slash (/), a convention followed by operating systems that emulated it or at least its concept of hierarchical directories, such as Linux, Amiga OS and Mac OS X. MS-DOS also emulated this feature, but had already also adopted the CP/M convention of using slashes for additional options to commands, so instead used the backslash (\) as its component separator. Microsoft Windows continues with this convention; Japanese editions of Windows use ¥, and Korean editions use ₩{{fact|date=August 2007}}. Versions of Mac OS prior to OS X use a [[Colon (punctuation)|colon]] (:) for a path separator. [[RISC OS]] uses a period (.). |
||
Unix and [[Unix-like]] operating allow for any character in file names other than the slash, and names are case sensitive. Microsoft Windows file names are not case sensitive. |
Unix and [[Unix-like]] operating allow for any character in file names other than the slash, and names are case sensitive. Microsoft Windows file names are not case sensitive. |
Revision as of 18:12, 1 August 2007
It has been suggested that Maintenance OS be merged into this article. (Discuss) Proposed since July 2007. |
An operating system (OS) is a set of computer programs that manage the hardware and software resources of a computer. An operating system processes raw system and user input and responds by allocating and managing tasks and internal system resources as a service to users and programs of the system. At the foundation of all system software, an operating system performs basic tasks such as controlling and allocating memory, prioritizing system requests, controlling input and output devices, facilitating networking and managing file systems. Most operating systems come with an application that provides an interface to the OS managed resources. These applications have had command line interpreters as a basic user interface but, since the mid-1980s, have been implemented as a graphical user interface (GUI) for ease of operation. Operating Systems themselves have no user interfaces; the user of an OS is an application, not a person. The operating system forms a platform for other system software and for application software. Windows, Linux, and Mac OS are some of the most popular OSes.
Services
Process management
Every program running on a computer, be it background services or applications, is a process. As long as a von Neumann architecture is used to build computers, only one process per CPU can be run at a time. Older microcomputer OSes such as MS-DOS did not attempt to bypass this limit, with the exception of interrupt processing, and only one process could be run under them (although DOS itself featured TSR as a very partial and not too easy to use solution). Mainframe operating systems have had multitasking capabilities since the early 1960s. Modern operating systems enable concurrent execution of many processes at once via multitasking even with one CPU. Process management is an operating system's way of dealing with running multiple processes. Since most computers contain one processor with one core, multitasking is done by simply switching processes quickly. Depending on the operating system, as more processes run, either each time slice will become smaller or there will be a longer delay before each process is given a chance to run. Process management involves computing and distributing CPU time as well as other resources. Most operating systems allow a process to be assigned a priority which affects its allocation of CPU time. Interactive operating systems also employ some level of feedback in which the task with which the user is working receives higher priority. Interrupt driven processes will normally run at a very high priority. In many systems there is a background process, such as the System Idle Process in Windows, which will run when no other process is waiting for the CPU.
Memory management
Current computer architectures arrange the computer's memory in a hierarchical manner, starting from the fastest registers, CPU cache, random access memory and disk storage. An operating system's memory manager coordinates the use of these various types of memory by tracking which one is available, which is to be allocated or deallocated and how to move data between them. This activity, usually referred to as virtual memory management, increases the amount of memory available for each process by making the disk storage seem like main memory. There is a speed penalty associated with using disks or other slower storage as memory – if running processes require significantly more RAM than is available, the system may start thrashing. This can happen either because one process requires a large amount of RAM or because two or more processes compete for a larger amount of memory than is available. This then leads to constant transfer of each process's data to slower storage.
Another important part of memory management is managing virtual addresses. If multiple processes are in memory at once, they must be prevented from interfering with each other's memory (unless there is an explicit request to utilise shared memory). This is achieved by having separate address spaces. Each process sees the whole virtual address space, typically from address 0 up to the maximum size of virtual memory, as uniquely assigned to it. The operating system maintains a page table that match virtual addresses to physical addresses. These memory allocations are tracked so that when a process terminates, all memory used by that process can be made available for other processes.
The operating system can also write inactive memory pages to secondary storage. This process is called "paging" or "swapping" – the terminology varies between operating systems.
It is also typical for operating systems to employ otherwise unused physical memory as a page cache; requests for data from a slower device can be retained in memory to improve performance. The operating system can also pre-load the in-memory cache with data that may be requested by the user in the near future; SuperFetch is an example of this.
Disk and file systems
All operating systems include support for a variety of file systems.
Modern file systems comprise a hierarchy of directories. While the idea is conceptually similar across all general-purpose file systems, some differences in implementation exist. Two noticeable examples of this are the character used to separate directories, and case sensitivity.
Unix demarcates its path components with a slash (/), a convention followed by operating systems that emulated it or at least its concept of hierarchical directories, such as Linux, Amiga OS and Mac OS X. MS-DOS also emulated this feature, but had already also adopted the CP/M convention of using slashes for additional options to commands, so instead used the backslash (\) as its component separator. Microsoft Windows continues with this convention; Japanese editions of Windows use ¥, and Korean editions use ₩[citation needed]. Versions of Mac OS prior to OS X use a colon (:) for a path separator. RISC OS uses a period (.).
Unix and Unix-like operating allow for any character in file names other than the slash, and names are case sensitive. Microsoft Windows file names are not case sensitive.
File systems may provide journaling, which provides safe recovery in the event of a system crash. A journaled file system writes information twice: first to the journal, which is a log of file system operations, then to its proper place in the ordinary file system. In the event of a crash, the system can recover to a consistent state by replaying a portion of the journal. In contrast, non-journaled file systems typically need to be examined in their entirety by a utility such as fsck or chkdsk. Soft updates is an alternative to journalling that avoids the redundant writes by carefully ordering the update operations. Log-structured file systems and ZFS also differ from traditional journaled file systems in that they avoid inconsistencies by always writing new copies of the data, eschewing in-place updates.
Many Linux distributions support some or all of ext2, ext3, ReiserFS, Reiser4, GFS, GFS2, OCFS, OCFS2, and NILFS. Linux also has full support for XFS and JFS, along with the FAT file systems, and NTFS.
Microsoft Windows includes support for FAT12, FAT16, FAT32, and NTFS. The NTFS file system is the most efficient and reliable of the four Windows file systems, and as of Windows Vista, is the only file system which the operating system can be installed on. Windows Embedded CE 6.0 introduced ExFAT, a file system suitable for flash drives.
Mac OS X supports HFS+ as its primary file system, and it supports several other file systems as well, including FAT16, FAT32, NTFS and ZFS.
Common to all these (and other) operating systems is support for file systems typically found on removable media. FAT12 is the file system most commonly found on floppy discs. ISO 9660 and Universal Disk Format are two common formats that target Compact Discs and DVDs, respectively. Mount Rainier is a newer extension to UDF supported by Linux 2.6 kernels and Windows-Vista that facilitates rewriting to DVDs in the same fashion as what has been possible with floppy disks.
Networking
Most current operating systems are capable of using the TCP/IP networking protocols. This means that one system can appear on a network of the other and share resources such as files, printers, and scanners using either wired or wireless connections.
Many operating systems also support one or more vendor-specific legacy networking protocols as well, for example, SNA on IBM systems, DECnet on systems from Digital Equipment Corporation, and Microsoft-specific protocols on Windows. Specific protocols for specific tasks may also be supported such as NFS for file access.
Security
Many operating systems include some level of security. Security is based on the two ideas that:
- The operating system provides access to a number of resources, directly or indirectly, such as files on a local disk, privileged system calls, personal information about users, and the services offered by the programs running on the system;
- The operating system is capable of distinguishing between some requesters of these resources who are authorized (allowed) to access the resource, and others who are not authorized (forbidden). While some systems may simply distinguish between "privileged" and "non-privileged", systems commonly have a form of requester identity, such as a user name. Requesters, in turn, divide into two categories:
- Internal security: an already running program. On some systems, a program once it is running has no limitations, but commonly the program has an identity which it keeps and is used to check all of its requests for resources.
- External security: a new request from outside the computer, such as a login at a connected console or some kind of network connection. To establish identity there may be a process of authentication. Often a username must be quoted, and each username may have a password. Other methods of authentication, such as magnetic cards or biometric data, might be used instead. In some cases, especially connections from the network, resources may be accessed with no authentication at all.
In addition to the allow/disallow model of security, a system with a high level of security will also offer auditing options. These would allow tracking of requests for access to resources (such as, "who has been reading this file?").
Security of operating systems has long been a concern because of highly sensitive data held on computers, both of a commercial and military nature. The United States Government Department of Defense (DoD) created the Trusted Computer System Evaluation Criteria (TCSEC) which is a standard that sets basic requirements for assessing the effectiveness of security. This became of vital importance to operating system makers, because the TCSEC was used to evaluate, classify and select computer systems being considered for the processing, storage and retrieval of sensitive or classified information.
Internal security
Internal security can be thought of as protecting the computer's resources from the programs concurrently running on the system. Most operating systems set programs running natively on the computer's processor, so the problem arises of how to stop these programs doing the same task and having the same privileges as the operating system (which is after all just a program too). Processors used for general purpose operating systems generally have a hardware concept of privilege. Generally less privileged programs are automatically blocked from using certain hardware instructions, such as those to read or write from external devices like disks. Instead, they have to ask the privileged program (operating system kernel) to read or write. The operating system therefore gets the chance to check the program's identity and allow or refuse the request.
An alternative strategy, and the only sandbox strategy available in systems that do not meet the Popek and Goldberg virtualization requirements, is the operating system not running user programs as native code, but instead either emulates a processor or provides a host for a p-code based system such as Java.
Internal security is especially relevant for multi-user systems; it allows each user of the system to have private files that the other users cannot tamper with or read. Internal security is also vital if auditing is to be of any use, since a program can potentially bypass the operating system, inclusive of bypassing auditing.
External security
Typically an operating system offers (or hosts) various services to other network computers and users. These services are usually provided through ports or numbered access points beyond the operating systems network address. Services include offerings such as file sharing, print services, email, web sites, and file transfer protocols (FTP), most of which can have compromised security.
At the front line of security are hardware devices known as firewalls. At the operating system level, there are a number of software firewalls available. Most modern operating systems include a software firewall, which is enabled by default. A software firewall can be configured to allow or deny network traffic to or from a service or application running on the operating system. Therefore, one can install and be running an insecure service, such as Telnet or FTP, and not have to be threatened by a security breach because the firewall would deny all traffic trying to connect to the service on that port.
Graphical user interfaces
Today, most modern operating systems contain Graphical User Interfaces (GUIs, pronounced goo-eez). A few older operating systems tightly integrated the GUI to the kernel—for example, the original implementations of Microsoft Windows and Mac OS. More modern operating systems are modular, separating the graphics subsystem from the kernel (as is now done in Linux, Mac OS X, and to a limited extent in Windows).
Many operating systems allow the user to install or create any user interface they desire. The X Window System in conjunction with GNOME or KDE is a commonly found setup on most Unix and Unix derivative (BSD, Linux, Minix) systems.
Graphical user interfaces evolve over time. For example, Windows has modified its user interface almost every time a new major version of Windows is released, and the Mac OS GUI changed dramatically with the introduction of Mac OS X in 2001.
Device drivers
A device driver is a specific type of computer software developed to allow interaction with hardware devices. Typically this constitutes an interface for communicating with the device, through the specific computer bus or communications subsystem that the hardware is connected to, providing commands to and/or receiving data from the device, and on the other end, the requisite interfaces to the operating system and software applications. It is a specialized hardware-dependent computer program which is also operating system specific that enables another program, typically an operating system or applications software package or computer program running under the operating system kernel, to interact transparently with a hardware device, and usually provides the requisite interrupt handling necessary for any necessary asynchronous time-dependent hardware interfacing needs.
The key design goal of device drivers is abstraction. Every model of hardware (even within the same class of device) is different. Newer models also are released by manufacturers that provide more reliable or better performance and these newer models are often controlled differently. Computers and their operating systems cannot be expected to know how to control every device, both now and in the future. To solve this problem, OSes essentially dictate how every type of device should be controlled. The function of the device driver is then to translate these OS mandated function calls into device specific calls. In theory a new device, which is controlled in a new manner, should function correctly if a suitable driver is available. This new driver will ensure that the device appears to operate as usual from the operating systems' point of view for any person.
History
The first computers did not have operating systems. By the early 1960s, commercial computer vendors were supplying quite extensive tools for streamlining the development, scheduling, and execution of jobs on batch processing systems. Examples were produced by UNIVAC and Control Data Corporation, amongst others.
Through the 1960s, several major concepts were developed, driving the development of operating systems. The development of the IBM System/360 produced a family of mainframe computers available in widely differing capacities and price points, for which a single operating system OS/360 was planned (rather than developing ad-hoc programs for every individual model). This concept of a single OS spanning an entire product line was crucial for the success of System/360 and, in fact, IBM's current mainframe operating systems are distant descendants of this original system; applications written for the OS/360 can still be run on modern machines. OS/360 also contained another important advance: the development of the hard disk permanent storage device (which IBM called DASD). Another key development was the concept of time-sharing: the idea of sharing the resources of expensive computers amongst multiple computer users interacting in real time with the system. Time sharing allowed all of the users to have the illusion of having exclusive access to the machine; the Multics timesharing system was the most famous of a number of new operating systems developed to take advantage of the concept.
Multics, particularly, was an inspiration to a number of operating systems developed in the 1970s, notably Unix by Dennis Richie and Ken Thompson. Another commercially-popular minicomputer operating system was VMS.
The first microcomputers did not have the capacity or need for the elaborate operating systems that had been developed for mainframes and minis; minimalistic operating systems were developed, often loaded from ROM and known as Monitors. One notable early disk-based operating system was CP/M, which was supported on many early microcomputers and was largely cloned in creating MS-DOS, which became wildly popular as the operating system chosen for the IBM PC (IBM's version of it was called IBM-DOS or PC-DOS), its successors making Microsoft one of the world's most profitable companies. The major alternative throughout the 1980s in the microcomputer market was Mac OS, tied intimately to the Apple Macintosh computer.
By the 1990s, the microcomputer had evolved to the point where, as well as extensive GUI facilities, the robustness and flexibility of operating systems of larger computers became increasingly desirable. Microsoft's response to this change was the development of Windows NT, which served as the basis for Microsoft's desktop operating system line starting in 2001. Apple rebuilt their operating system on top of a Unix core as Mac OS X, also released in 2001. Hobbyist-developed reimplementations of Unix, assembled with the tools from the GNU Project, also became popular; versions based on the Linux kernel are by far the most popular, with the BSD derived UNIXes holding a small portion of the server market.
The growing complexity of embedded devices has led to increasing use of embedded operating systems.
Today
Modern operating systems usually feature a Graphical user interface (GUI) which uses a pointing device such as a mouse or stylus for input in addition to the keyboard. Older models and Operating Systems not designed for direct-human interaction (such as web-servers) generally use a Command line interface (or CLI) typically with only the keyboard for input. Both models are centered around a "shell" which accepts and processes commands from the user (eg. clicking on a button, or a typed command at a prompt).
The choice of OS may be dependant on the hardware architecture, specifically the CPU, with only Linux and BSD running on almost any CPU. Windows NT 3.1, which is no longer supported, was ported to the DEC Alpha and MIPS Magnum. Since the mid-1990s, the most commonly used operating systems have been the Microsoft Windows family, Linux, and other Unix-like operating systems, most notably Mac OS X. Mainframe computers and embedded systems use a variety of different operating systems, many with no direct connection to Windows or Unix. QNX and VxWorks are two common embedded operating systems, the latter being used in network infrastructure hardware equipment.
Personal computers
- IBM PC compatible - Microsoft Windows, Unix variants, and Linux variants.
- Apple Macintosh - Mac OS X (a Unix variant), Windows (on x86 Macintosh machines only), Linux and BSD
Mainframe computers
The earliest operating systems were developed for mainframe computer architectures in the 1960s. The enormous investment in software for these systems caused most of the original computer manufacturers to continue to develop hardware and operating systems that are compatible with those early operating systems. Those early systems pioneered many of the features of modern operating systems. Mainframe operating systems that are still supported include:
- Burroughs MCP-- B5000,1961 to Unisys Clearpath/MCP, present.
- IBM OS/360 -- IBM System/360, 1964 to IBM zSeries, present
- UNIVAC EXEC 8 -- UNIVAC 1108, 1964, to Unisys Clearpath IX, present.
Modern mainframes typically also run Linux or Unix variants. A "Datacenter" variant of Windows Server 2003 is also available for some mainframe systems.
Embedded systems
Embedded systems use a variety of dedicated operating systems. In some cases, the "operating system" software is directly linked to the application to produce a monolithic special-purpose program. In the simplest embedded systems, there is no distinction between the OS and the application. Embedded systems that have certain time requirements are known as Real-time operating systems.
Unix-like operating systems
Linux Market Share Trend for 2007[1] |
---|
January - 0.35% |
February - 0.42% |
March - 0.57% |
April - 0.80% |
May - 0.70% |
June - 0.71% |
The Unix-like family is a diverse group of operating systems, with several major sub-categories including System V, BSD, and Linux. The name "UNIX" is a trademark of The Open Group which licenses it for use with any operating system that has been shown to conform to their definitions. "Unix-like" is commonly used to refer to the large set of operating systems which resemble the original Unix.
Unix systems run on a wide variety of machine architectures. They are used heavily as server systems in business, as well as workstations in academic and engineering environments. Free software Unix variants, such as Linux and BSD, are popular in these areas. Unix and Unix-like systems have not reached significant market share in the consumer and corporate desktop market, although there is some growth in this area, notably by the Ubuntu Linux distribution. Linux on the desktop is also popular in the developer and hobbyist operating system development communities. (see below)
Some Unix variants like HP's HP-UX and IBM's AIX are designed to run only on that vendor's hardware. Others, such as Solaris, can run on multiple types of hardware, including x86 servers and PCs. Apple's Mac OS X, a hybrid kernel-based BSD variant derived from NeXTSTEP, Mach, and FreeBSD, has replaced Apple's earlier (non-Unix) Mac OS.
Open source
Over the past several years, the trend in the Unix and Unix-like space has been to open source operating systems. Many areas previously dominated by UNIX have seen significant inroads by Linux; Solaris source code is now the basis of the OpenSolaris project.
The team at Bell Labs that designed and developed Unix went on to develop Plan 9 and Inferno, which were designed for modern distributed environments. They had graphics built-in, unlike Unix counterparts that added it to the design later. Plan 9 did not become popular because, unlike many Unix distributions, it was not originally free. It has since been released under Free Software and Open Source Lucent Public License, and has an expanding community of developers. Inferno was sold to Vita Nuova and has been released under a GPL/MIT license.
Microsoft Windows
Windows OS Market Share Trend for 2007[2] |
---|
January - 92.58% |
February - 93.05% |
March - 93.24% |
April - 92.85% |
May - 92.68% |
June - 92.93% |
The Microsoft Windows family of operating systems originated as a graphical layer on top of the older MS-DOS environment for the IBM PC. Modern versions are based on the newer Windows NT core that first took shape in OS/2 and borrowed from VMS. Windows runs on 32-bit and 64-bit Intel and AMD processors, although earlier versions also ran on the DEC Alpha, MIPS, Fairchild (later Intergraph) Clipper and PowerPC architectures (some work was done to port it to the SPARC architecture).
As of May-2007, Microsoft Windows held a near-monopoly of 92.68% of the worldwide desktop market share, although some [attribution needed] predict this to dwindle due to Microsoft's restrictive licensing, (CD-Key) registration, and customer practices causing an increased interest in open source operating systems.[3] Windows is also used on low-end and mid-range servers, supporting applications such as web servers and database servers. In recent years, Microsoft has spent significant marketing and research & development money to demonstrate that Windows is capable of running any enterprise application, which has resulted in consistent price/performance records (see the TPC) and significant acceptance in the enterprise market.
The most widely used version of the Microsoft Windows family is Microsoft Windows XP, released on October 25, 2001. The latest release of Windows XP is Windows XP Service Pack 2, released on August 6, 2004.
In November 2006, after more than five years of development work, Microsoft released Windows Vista, a major new version of Microsoft Windows which contains a large number of new features and architectural changes. Chief amongst these are a new user interface and visual style called Windows Aero, a number of new security features such as User Account Control, and new multimedia applications such as Windows DVD Maker.
Mac OS X
Mac OS and MacIntel Market Share Trend for 2007[4] |
---|
January - 6.22% |
February - 6.38% |
March - 6.08% |
April - 6.21% |
May - 6.46% |
June - 6.00% |
Mac OS X is a line of proprietary, graphical operating systems developed, marketed, and sold by Apple Inc., the latest of which is pre-loaded on all currently shipping Macintosh computers. Mac OS X is the successor to the original Mac OS, which had been Apple's primary operating system since 1984. Unlike its predecessor, Mac OS X is a Unix-like operating system built on technology that had been developed at NeXT through the second half of the 1980s and up until Apple purchased the company in early 1997.
The operating system was first released in 1999 as Mac OS X Server 1.0, with a desktop-oriented version (Mac OS X v10.0) following in March 2001. Since then, four more distinct "end-user" and "server" editions of Mac OS X have been released, the most recent being Mac OS X v10.4, which was first made available in April 2005. Releases of Mac OS X are named after big cats; Mac OS X v10.4 is usually referred to by Apple and users as "Tiger". In October 2007, Apple will release Mac OS X 10.5, nicknamed "Leopard".
The server edition, Mac OS X Server, is architecturally identical to its desktop counterpart but usually runs on Apple's line of Macintosh server hardware. Mac OS X Server includes workgroup management and administration software tools that provide simplified access to key network services, including a mail transfer agent, a Samba server, an LDAP server, a domain name server, and others.
TRON Project
TRON is an open real-time operating system kernel design, and is a backronym for "The Real-time Operating System Nucleus". The project was begun by Prof. Dr. Ken Sakamura of the University of Tokyo in 1984, Japan. The project's goal is to create an ideal computer architecture and network, to provide for all of society's needs.[citation needed]
As of 2003, the TRON system (or more specifically the ITRON derivative) is one of the world's most used operating systems, being present in millions of electronic devices. The operating system is mainly used by Japanese companies, although interest in its use is growing worldwide.[citation needed] However it has been said that there is much misinformation in the English speaking world about TRON due to majority of the documentation being in Japanese [1].
Hobby operating system development
Operating system development, or OSDev for short, as a hobby has a large cult following. As such, operating systems, such as Linux, have derived from hobby operating system projects. The design and implementation of an operating system requires skill and determination, and the term can cover anything from a basic "Hello World" boot loader, to a fully featured kernel, user desktop, and office suite.
Other
Mainframe operating systems, such as IBM's z/OS, and embedded operating systems such as VxWorks, eCos, and Palm OS, are usually unrelated to Unix and Windows, except for Windows CE, Windows NT Embedded 4.0 and Windows XP Embedded which are descendants of Windows, and several *BSDs, and Linux distributions tailored for embedded systems. OpenVMS from Hewlett-Packard (formerly DEC), is still under active development.
Older operating systems which are still used in niche markets include OS/2 from IBM; Mac OS, the non-Unix precursor to Apple's Mac OS X; BeOS; XTS-300.
Popular prior to the Dot COM era, operating systems such as AmigaOS and RISC OS continue to be developed as minority platforms for enthusiast communities and specialist applications.
Research and development of new operating systems continues. GNU Hurd is designed to be backwards compatible with Unix, but with enhanced functionality and a microkernel architecture. Singularity is a project at Microsoft Research to develop an operating system with better memory protection based on the .Net managed code model.
See also
- Operating systems category
- History of operating systems
- List of operating systems
- Comparison of operating systems
- Comparison of open source operating systems
- Comparison of BSD operating systems
- Comparison of kernels
- Operating systems timeline
- Trusted operating system
- Important publications in operating systems
- Hollywood operating system - computer clichés in movies and television
Other topics
- Monolithic Kernel – Microkernel – Nanokernel – Exokernel – Virtual machine – System call
- Asymmetric and Symmetric Multiprocessing (SMP) – Clustering – Distributed computing
- Real-time operating system – Time-sharing – Multitasking – Embedded system – Single-user – Multi-user
- Orthogonally persistent capabilities versus access control lists
- Object-oriented operating system
- Disk operating systems
- Hard disk drive partitioning
- Pseudo-OS is a OS that runs inside others OS
- LiveCD OS - Operating Systems bootable from a CD without need of hard disk installation.
- Operating system advocacy
- OS-tan (Personification of operating systems)
References
- Bibliography
- Deitel, Harvey M. (2004). Operating Systems. Upper Saddle River, NJ: Pearson/Prentice Hall. ISBN 978-0-13-182827-8.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Silberschatz, Abraham (2004). Operating System Concepts. Hoboken, NJ: John Wiley & Sons. ISBN 978-0-471-69466-3.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Tanenbaum, Andrew S. (2006). Operating Systems. Design and Implementation. Upper Saddle River, N.J.: Prentice Hall. ISBN 978-0-13-142938-3.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Tanenbaum, Andrew S. (2001). Modern Operating Systems. Upper Saddle River, N.J.: Prentice Hall. ISBN 978-0-13-092641-8.
- References
- Note on "Market Share"
The use of the term "Market Share" can be ambiguous in this context. The article Market Share gives two definitions which are generally considered equivalent in the business sphere: percentage of sales (A's Market share is A's Sales divided by all sales of that product), vs percentage of market served. In the case of operating systems, percentage installed base (number of CPUs with the OS installed, divided by the total number of CPUs) would approximately measure percentage of market served, but that number is not directly measured by anyone. Since most versions of Unix are free, the percentage of sales is effectively zero. Some of the "Market Share" citations above attempt to measure approximately the percentage of clients of browsers hitting web servers which attempt to detect the client's OS, which is of debateable reliablility and scalability.
External links
- All operating Systems Information
- Template:Dmoz
- Multics History and the history of operating systems
- How Stuff Works - Operating Systems