Isotopes of copper
| |||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Cu) | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 28 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours. Most of the others have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β− decay. 64Cu decays by both β+ and β−.[1]
There are at least 10 metastable isomers of copper, including two each for 70Cu and 75Cu. The most stable of these is 68mCu with a half-life of 3.75 minutes. The least stable is 75m2Cu with a half-life of 149 ns.[1]
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da)[4] [n 2][n 3] |
Half-life[1] |
Decay mode[1] [n 4] |
Daughter isotope [n 5] |
Spin and parity[1] [n 6][n 7] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 7] | Normal proportion[1] | Range of variation | |||||||||||||||||
55Cu | 29 | 26 | 54.96604(17) | 55.9(15) ms | β+ | 55Ni | 3/2−# | ||||||||||||
β+, p? | 54Co | ||||||||||||||||||
56Cu | 29 | 27 | 55.9585293(69) | 80.8(6) ms | β+ (99.60%) | 56Ni | (4+) | ||||||||||||
β+, p (0.40%) | 55Co | ||||||||||||||||||
57Cu | 29 | 28 | 56.94921169(54) | 196.4(7) ms | β+ | 57Ni | 3/2− | ||||||||||||
58Cu | 29 | 29 | 57.94453228(60) | 3.204(7) s | β+ | 58Ni | 1+ | ||||||||||||
59Cu | 29 | 30 | 58.93949671(57) | 81.5(5) s | β+ | 59Ni | 3/2− | ||||||||||||
60Cu | 29 | 31 | 59.9373638(17) | 23.7(4) min | β+ | 60Ni | 2+ | ||||||||||||
61Cu | 29 | 32 | 60.9334574(10) | 3.343(16) h | β+ | 61Ni | 3/2− | ||||||||||||
62Cu | 29 | 33 | 61.9325948(07) | 9.672(8) m | β+ | 62Ni | 1+ | ||||||||||||
63Cu | 29 | 34 | 62.92959712(46) | Stable | 3/2− | 0.6915(15) | |||||||||||||
64Cu | 29 | 35 | 63.92976400(46) | 12.7004(13) h | β+ (61.52%) | 64Ni | 1+ | ||||||||||||
β− (38.48%) | 64Zn | ||||||||||||||||||
65Cu | 29 | 36 | 64.92778948(69) | Stable | 3/2− | 0.3085(15) | |||||||||||||
66Cu | 29 | 37 | 65.92886880(70) | 5.120(14) min | β− | 66Zn | 1+ | ||||||||||||
66mCu | 1154.2(14) keV | 600(17) ns | IT | 68Cu | (6)− | ||||||||||||||
67Cu | 29 | 38 | 66.92772949(96) | 61.83(12) h | β− | 67Zn | 3/2− | ||||||||||||
68Cu | 29 | 39 | 67.9296109(17) | 30.9(6) s | β− | 68Zn | 1+ | ||||||||||||
68mCu | 721.26(8) keV | 3.75(5) min | IT (86%) | 68Cu | 6− | ||||||||||||||
β− (14%) | 68Zn | ||||||||||||||||||
69Cu | 29 | 40 | 68.929429267(15) | 2.85(15) min | β− | 69Zn | 3/2− | ||||||||||||
69mCu | 2742.0(7) keV | 357(2) ns | IT | 69Cu | (13/2+) | ||||||||||||||
70Cu | 29 | 41 | 69.9323921(12) | 44.5(2) s | β− | 70Zn | 6− | ||||||||||||
70m1Cu | 101.1(3) keV | 33(2) s | β− (52%) | 70Zn | 3− | ||||||||||||||
IT (48%) | 70Cu | ||||||||||||||||||
70m2Cu | 242.6(5) keV | 6.6(2) s | β− (93.2%) | 70Zn | 1+ | ||||||||||||||
IT (6.8%) | 70Cu | ||||||||||||||||||
71Cu | 29 | 42 | 70.9326768(16) | 19.4(14) s | β− | 71Zn | 3/2− | ||||||||||||
71mCu | 2755.7(6) keV | 271(13) ns | IT | 71Cu | (19/2−) | ||||||||||||||
72Cu | 29 | 43 | 71.9358203(15) | 6.63(3) s | β− | 72Zn | 2− | ||||||||||||
72mCu | 270(3) keV | 1.76(3) μs | IT | 72Cu | (6−) | ||||||||||||||
73Cu | 29 | 44 | 72.9366744(21) | 4.20(12) s | β− (99.71%) | 73Zn | 3/2− | ||||||||||||
β−, n (0.29%) | 72Zn | ||||||||||||||||||
74Cu | 29 | 45 | 73.9398749(66) | 1.606(9) s | β− (99.93%) | 74Zn | 2− | ||||||||||||
β−, n (0.075%) | 73Zn | ||||||||||||||||||
75Cu | 29 | 46 | 74.94152382(77) | 1.224(3) s | β− (97.3%) | 75Zn | 5/2− | ||||||||||||
β−, n (2.7%) | 74Zn | ||||||||||||||||||
75m1Cu | 61.7(4) keV | 0.310(8) μs | IT | 75Cu | 1/2− | ||||||||||||||
75m2Cu | 66.2(4) keV | 0.149(5) μs | IT | 75Cu | 3/2− | ||||||||||||||
76Cu | 29 | 47 | 75.94526897(98) | 637.7(55) ms | β− (92.8%) | 76Zn | 3− | ||||||||||||
β−, n (7.2%) | 75Zn | ||||||||||||||||||
77Cu | 29 | 48 | 76.9475436(13) | 470.3(17) ms | β− (69.9%) | 77Zn | 5/2− | ||||||||||||
β−, n (30.1%) | 76Zn | ||||||||||||||||||
78Cu | 29 | 49 | 77.951917(14) | 330.7(20) ms | β−, n (50.6%) | 77Zn | (6−) | ||||||||||||
β− (49.4%) | 78Zn | ||||||||||||||||||
β−, 2n? | 76Zn | ||||||||||||||||||
79Cu | 29 | 50 | 78.95447(11) | 241.3(21) ms | β−, n (66%) | 78Zn | (5/2−) | ||||||||||||
β− (34%) | 79Zn | ||||||||||||||||||
β−, 2n? | 77Zn | ||||||||||||||||||
80Cu | 29 | 51 | 79.96062(32)# | 113.3(64) ms | β−, n (59%) | 79Zn | |||||||||||||
β− (41%) | 80Zn | ||||||||||||||||||
β−, 2n? | 78Zn | ||||||||||||||||||
81Cu | 29 | 52 | 80.96574(32)# | 73.2(68) ms | β−, n (81%) | 80Zn | 5/2−# | ||||||||||||
β− (19%) | 81Zn | ||||||||||||||||||
β−, 2n? | 79Zn | ||||||||||||||||||
82Cu | 29 | 53 | 81.97238(43)# | 34(7) ms | β− | 82Zn | 5/2−# | ||||||||||||
β−, n? | 81Zn | ||||||||||||||||||
β−, 2n? | 80Zn | ||||||||||||||||||
83Cu | 29 | 54 | 82.97811(54)# | 21# ms [>410 ns] | β−? | 83Zn | 5/2−# | ||||||||||||
β−, n? | 82Zn | ||||||||||||||||||
β−, 2n? | 81Zn | ||||||||||||||||||
84Cu[5] | 29 | 55 | 83.98527(54)# | β−? | 84Zn | ||||||||||||||
β−, n? | 84Zn | ||||||||||||||||||
This table header & footer: |
- ^ mCu – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^
Modes of decay:
IT: Isomeric transition n: Neutron emission p: Proton emission - ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
Copper nuclear magnetic resonance
Both stable isotopes of copper (63Cu and 65Cu) have nuclear spin of 3/2−, and thus produce nuclear magnetic resonance spectra, although the spectral lines are broad due to quadrupolar broadening. 63Cu is the more sensitive nucleus while 65Cu yields very slightly narrower signals. Usually though 63Cu NMR is preferred.[6]
Medical applications
Copper offers a relatively large number of radioisotopes that are potentially useful for nuclear medicine.
There is growing interest in the use of 64Cu, 62Cu, 61Cu, and 60Cu for diagnostic purposes and 67Cu and 64Cu for targeted radiotherapy. For example, 64Cu has a longer half-life than most positron-emitters (12.7 hours) and is thus ideal for diagnostic PET imaging of biological molecules.[7]
References
- ^ a b c d e f g Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ "Standard Atomic Weights: Copper". CIAAW. 1969.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
- ^ Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313.
- ^ "(Cu) Copper NMR".
- ^ Harris, M. "Clarity uses a cutting-edge imaging technique to guide drug development". Nature Biotechnology September 2014: 34
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.
- Application of Copper radioisotopes in Medicine (Review Paper):
- Pejman Rowshanfarzad; Mahsheed Sabet; AmirReza Jalilian; Mohsen Kamalidehghan (2006). "An overview of copper radionuclides and production of 61Cu by proton irradiation of natZn at a medical cyclotron". Applied Radiation and Isotopes. 64 (12): 1563–1573. doi:10.1016/j.apradiso.2005.11.012. PMID 16377202.