History of mobile phones
The history of mobile phones begins with early efforts to develop mobile telephony concepts using two-way radios and continues through emergence of modern mobile phones and associated services!
Radiophones have a long and varied history going back to Reginald Fessenden's invention and shore-to-ship demonstration of radio telephony, through the Second World War with military use of radio telephony links and civil services in the 1950s, while hand-held mobile radio devices have been available since 1973. Mobile phone history is often divided into generations (first, second, third and so on) to mark significant step changes in capabilities as the technology has improved over the years. ;)
Pioneers of radio telephony
The early years of the 20th century saw the first attempts at wireless and mobile telephony. In 1908, U.S. patent 887,357 for a wireless telephone was issued to Nathan B. Stubblefield of Murray, Kentucky. He applied this patent to "cave radio" telephones and not directly to cellular telephony as the term is currently understood.[1] Two years later Lars Magnus Ericsson installed a telephone in his car, although this was not a radio telephone. While travelling across the country, he would stop at a place where telephone lines were accessible and using a pair of long electric wires he could connect to the national telephone network.[2]
In Europe, radio telephony was first used on the first-class passenger trains between Berlin and Hamburg in 1926. At the same time, radio telephony was introduced on passenger airplanes for air traffic security. Later radio telephony was introduced on a large scale in German tanks during the Second World War. After the war German police in the British zone of occupation first used disused tank telephony equipment to run the first radio patrol cars.[citation needed] In all of these cases the service was confined to specialists that were trained to use the equipment. In the early 1950s ships on the Rhine were among the first to use radio telephony with an untrained end customer as a user.
However it was the 1940s onwards that saw the seeds of technological development which would eventually produce the mobile phone that we know today. Motorola developed a backpacked two-way radio, the Walkie-Talkie and a large hand-held two-way radio for the US military. This battery powered "Handie-Talkie" (HT) was about the size of a man's forearm. In 1946 soviet engineers G. Shapiro and I. Zaharchenko successfully tested their version of a radio mobile phone mounted inside a car. The device could connect to local telephone network with a range of up to 20 kilometers.[citation needed]
In December 1947, Douglas H. Ring and W. Rae Young, Bell Labs engineers, proposed hexagonal cells for mobile phones in vehicles.[3] Philip T. Porter, also of Bell Labs, proposed that the cell towers be at the corners of the hexagons rather than the centers and have directional antennas that would transmit/receive in three directions (see picture at right) into three adjacent hexagon cells.[4] At this stage the technology to implement the ideas did not exist nor had the frequencies had been allocated and it would be some years until Richard H. Frenkiel and Joel S. Engel of Bell Labs developed the electronics to achieve this in the 1960s.
During the 1950s the experiments of the pioneers started to appear as usable services across society, both commercially and culturally. In the 1954 movie Sabrina, the businessman Linus Larrabee (played by Humphrey Bogart) makes a call from the phone in the back of his limousine. In 1957 a young Soviet radio engineer Leonid Kupriyanovich from Moscow created a portable mobile phone, and named it the LK-1 after himself.[5] This mobile phone consisted of a relatively small handset equipped with an antenna and rotary dial, and communicated with a base station. The LK-1 weighed 3 kilograms and could operate in a range of up to 20 or 30 kilometers. The battery lasted 20 to 30 hours. The LK-1 was depicted in popular Soviet magazines as Nauka i zhizn. Kupriyanovich patented his mobile phone in the same year. The base station serving the LK-1 (called ATR, or Automated Telephone Radiostation) could connect to local telephone network and serve several customers. During 1958, Kupriyanovich produced a "pocket" version. The weight of improved lighter handset was about 500 grams.
In 1969, a patent for a wireless phone using an acoustic coupler for incoming calls was issued in US Patent Number 3,449,750 to George Sweigert of Euclid, Ohio on June 10, 1969, but did not include dialing a number for outgoing calls.
In all these early examples, a mobile phone had to stay within the cell area serviced by one base station throughout the phone call, i.e. there was no continuity of service as the phones moved through several cell areas. The concepts of frequency reuse and handoff, as well as a number of other concepts that formed the basis of modern cell phone technology, were described in the 1970s (see below).
Emergence of commercial mobile phone services
Alongside the early developments outlined above, a different technology was also growing in popularity. Two-way mobile radios (known as mobile rigs) were used in vehicles such as taxicabs, police cruisers, and ambulances, but were not mobile phones, because they were not connected to the telephone network. A large community of mobile radio users, known as mobileers, popularized this technology that would eventually give way to the mobile phone. Originally, they were installed permanently in vehicles, but portable versions were later developed known as transportables or "bag phones".
The first fully automated mobile phone system for vehicles was launched in Sweden in 1960. Named MTA (Mobile Telephone system A), it allowed calls to be made and received in the car using a rotary dial. The car phone could also be paged. Calls from the car were direct dial, whereas incoming calls required an operator to determine which base station the phone was currently at. It was developed Sture Laurén and other engineers at Televerket network operator. Ericsson provided the switchboard while Svenska Radioaktiebolaget (SRA) and Marconi provided the telephones and base station equipment. MTA phones consisted of vacuum tubes and relays, and weighed 40 kg. In 1962, an upgraded version called Mobile System B (MTB) was introduced. This was a push-button telephone, and used transistors and DTMF signaling to improve its operational reliability. In 1971 the MTD version was launched, opening for several different brands of equipment and gaining commercial success.[6][7]. The network remained open until 1983 and still had 600 customers when it closed.
In 1958 development began on a similar system for motorists in the USSR.[8] The "Altay" national civil mobile phone service was based on Soviet MRT-1327 standard. The main developers of the Altay system were the Voronezh Science Research Institute of Communications (VNIIS) and the State Specialized Project Institute (GSPI). In 1963 the service started in Moscow, and by 1970 was deployed in 30 cities across the USSR. Versions of the Altay system are still in use today as a trunking system in some parts of Russia.
In 1959 a private telephone company located in Brewster, Kansas, USA, the S&T Telephone Company, (still in business today) with the use of Motorola Radio Telephone equipment and a private tower facility, offered to the public mobile telephone services in that local area of NW Kansas. This system was a direct dial up service through their local switchboard, and was installed in many private vehicles including grain combines, trucks, and automobiles. For some as yet unknown reason, the system, after being placed online and operated for a very brief time period, was shut down. The management of the company was immediately changed, and the fully operable system and related equipment was immediately dismantled in early 1960, not to be seen again.
In 1966, Bulgaria presented the pocket mobile automatic phone RAT-0,5 combined with a base station RATZ-10 (RATC-10) on Interorgtechnika-66 international exhibition. One base station, connected to one telephone wire line, could serve up to six customers.
One of the first successful public commercial mobile phone networks was the ARP network in Finland, launched in 1971. Posthumously, ARP is sometimes viewed as a zero generation (0G) cellular network, being slightly above previous proprietary and limited coverage networks.
Research continued during the 1970s and in 1970 Amos E. Joel, Jr., a Bell Labs engineer,[9] invented an automatic "call handoff" system to allow mobile phones to move through several cell areas during a single conversation without interruption. In December 1971, AT&T submitted a proposal for cellular service to the Federal Communications Commission (FCC). After years of hearings, the FCC approved the proposal in 1982 for Advanced Mobile Phone System (AMPS) and allocated frequencies in the 824–894 MHz band.[10] Analog AMPS was superseded by Digital AMPS in 1990.
Handheld cell phone
The modern handheld cell phone era began in 1973 when Motorola invented the first cellular portable telephone to be commercialised, known as Motorola DynaTAC 8000X. Martin Cooper, a Motorola researcher and executive is considered to be the inventor of this mobile phone for use in a non-vehicle setting. There was a long race between Motorola and Bell Labs to produce the first such portable mobile phone. Cooper is the first inventor named on "Radio telephone system" filed on October 17, 1973 with the US Patent Office and later issued as US Patent 3,906,166.[11] Other named contributors on the patent included Cooper's boss, John F. Mitchell, Motorola's chief of portable communication products, who successfully pushed Motorola to develop wireless communication products that would be small enough to use outside the home, office or automobile and he participated in the design of the cellular phone.[12][13] Using a heavy prototype mobile phone, Cooper made the first handheld cellular phone call on April 3, 1973 to Dr. Joel S. Engel of Bell Labs.[14].
In 1973 a cellular telephone switching plan was described by Fluhr and Nussbaum,[15] In 1977 a cellular telephone data signaling system was described by Hachenburg et al.[16]. In 1979 a U.S. patent 4,152,647, was issued May 1, 1979 to Charles A. Gladden and Martin H. Parelman, both of Las Vegas, Nevada for an emergency cellular system for rapid deployment in areas where there was no cellular service, and assigned by them to the United States Government.
First generation: Cellular networks
The main technological development that distinguished the First Generation mobile phones from the previous generation was the use of multiple cell sites, and the ability to transfer calls from one site to the next as the user travelled between cells during a conversation. The first commercially automated cellular network (the 1G generation) was launched in Japan by NTT in 1979. The initial launch network covered the full metropolitan area of Tokyo's over 20 million inhabitants with a cellular network of 23 base stations. Within five years, the NTT network had been expanded to cover the whole population of Japan and became the first nation-wide 1G network.
The next 1G network to launch was the Nordic Mobile Telephone (NMT) system in Denmark, Finland, Norway and Sweden in 1981.[17]. NMT was the first mobile phone network featuring international roaming. The Swedish electrical engineer Östen Mäkitalo started work on this vision in 1966, and is considered to be the father of the NMT system, and by some the father of the cellular phone itself.[18][19] The NMT installations were based on the Ericsson AXE digital exchange nodes.
Several other countries also launched 1G networks in the early 1980s including the UK, Mexico and Canada. A two year trial started in 1981 in Baltimore and Washington DC with 150 users and 300 Motorola DynaTAC pre-production phones. This took place on a seven tower cellular network that covered the area. The DC area trial turned into a commercial services in about 1983 with fixed cellular car phones also built by Motorola. They later added the 8000X to their Cellular offerings. A similar trial and commercial launch also took place in Chicago by Ameritech in 1983 using the famous first hand-held mobile phone Motorola DynaTAC.
As mentioned above, in 1982 the FCC approved AT&T's 1971 proposal for Advanced Mobile Phone System (AMPS) and allocated frequencies in the 824–894 MHz band.[20] Analog AMPS was superseded by Digital AMPS in 1990.
In 1984, Bell Labs developed modern commercial cellular technology (based, to a large extent, on the Gladden, Parelman Patent), which employed multiple, centrally controlled base stations (cell sites), each providing service to a small area (a cell). The cell sites would be set up such that cells partially overlapped. In a cellular system, a signal between a base station (cell site) and a terminal (phone) only need be strong enough to reach between the two, so different base stations could operate using the same frequencies with little or no interference.
Vodafone made the UK's first mobile call at a few minutes past midnight on 1 January 1985.[21]
The technology in these early networks was pushed to the limit to accommodate increasing usage. The base stations and the mobile phones utilised variable transmission power, which allowed range and cell size to vary. As the system expanded and neared capacity, the ability to reduce transmission power allowed new cells to be added, resulting in more, smaller cells and thus more capacity. The evidence of this growth can still be seen in the many older, tall cell site towers with no antennae on the upper parts of their towers. These sites originally created large cells, and so had their antennae mounted atop high towers; the towers were designed so that as the system expanded—and cell sizes shrank—the antennae could be lowered on their original masts to reduce range.
Second generation: Digital networks
In the 1990s, the 'second generation' (2G) mobile phone systems emerged, primarily using the GSM standard. These 2G phone systems differed from the previous generation in their use of digital transmission instead of analog transmission, and also by the introduction of advanced and fast phone-to-network signaling. The rise in mobile phone usage as a result of 2G was explosive and this era also saw the advent of prepaid mobile phones
In 1991 the first GSM network (Radiolinja) launched in Finland. In general the frequencies used by 2G systems in Europe were higher than those in America, though with some overlap. For example, the 900 MHz frequency range was used for both 1G and 2G systems in Europe, so the 1G systems were rapidly closed down to make space for the 2G systems. In America the IS-54 standard was deployed in the same band as AMPS and displaced some of the existing analog channels.
Coinciding with the introduction of 2G systems was a trend away from the larger "brick" phones toward tiny 100–200g hand-held devices. This change was possible not only through technological improvements such as more advanced batteries and more energy-efficient electronics, but also related to the higher density of cellular sites needed because of increasing usage. The latter meant that the average distance transmission from phone to handset shortened. Both factors led to increased battery life for customers whilst on the move.
The second generation introduced a new variant of communication called SMS or text messaging. It was initially available only on GSM networks but spread eventually on all digital networks. The first machine-generated SMS message was sent in the UK on 3 December 1992 followed in 1993 by the first person-to-person SMS sent in Finland. The advent of prepaid services in the late 1990s soon made SMS the communication method of choice amongst the young, a trend which spread across all ages.
2G also introduced the ability to access media content on mobile phones. In 1998 the first downloadable content sold to mobile phones was the ring tone, launched by Finland's Radiolinja (now Elisa). Advertising on the mobile phone first appeared in Finland when a free daily SMS news headline service was launched in 2000, sponsored by advertising.
Mobile payments were trialled in 1998 in Finland and Sweden where a mobile phone was used to pay for a Coca Cola vending machine and car parking. Commercial launches followed in 1999 in Norway. The first commercial payment system to mimic banks and credit cards was launched in the Philippines in 1999 simultaneously by mobile operators Globe and Smart.
The first full internet service on mobile phones was introduced by NTT DoCoMo in Japan in 1999.
Third generation: High speed IP data networks
As the use of 2G phones became more widespread and people began to utilize mobile phones in their daily lives, it became clear that demand for data services (such as access to the internet) was growing. Furthermore, experience from fixed broadband services showed there would also be an ever increasing demand for greater data speeds. The 2G technology was nowhere near up to the job, so the industry began to work on the next generation of technology known as 3G. The main technological difference that distinguishes 3G technology from 2G technology is the use of packet switching rather than circuit switching for data transmission[22]. In addition, the standardization process focused on requirements more than technology (2 Mbit/s maximum data rate indoors, 384 kbit/s outdoors, for example).
Inevitably this led to many competing standards with different contenders pushing their own technologies, and the vision of a single unified worldwide standard looked far from reality. The standard 2G CDMA networks became 3G compliant with the adoption of Revision A to EV-DO, which made several additions to the protocol whilst retaining backwards compatibility:
- the introduction of several new forward link data rates that increase the maximum burst rate from 2.45 Mbit/s to 3.1 Mbit/s.
- protocols that would decrease connection establishment time.
- the ability for more than one mobile to share the same time slot.
- the introduction of QoS flags.
All these were put in place to allow for low latency, low bit rate communications such as VoIP.[23]
The first pre-commercial trial network with 3G was launched by NTT DoCoMo in Japan in the Tokyo region in May 2001. NTT DoCoMo launched the first commercial 3G network on October 1, 2001, using the WCDMA technology. In 2002 the first 3G networks on the rival CDMA2000 1xEV-DO technology were launched by SK Telecom and KTF in South Korea, and Monet in the USA. Monet has since gone bankrupt. By the end of 2002, the second WCDMA network was launched in Japan by Vodafone KK (now Softbank). European launches of 3G were in Italy and the UK by the Three/Hutchison group, on WCDMA. 2003 saw a further 8 commercial launches of 3G, six more on WCDMA and two more on the EV-DO standard.
During the development of 3G systems, 2.5G systems such as CDMA2000 1x and GPRS were developed as extensions to existing 2G networks. These provide some of the features of 3G without fulfilling the promised high data rates or full range of multimedia services. CDMA2000-1X delivers theoretical maximum data speeds of up to 307 kbit/s. Just beyond these is the EDGE system which in theory covers the requirements for 3G system, but is so narrowly above these that any practical system would be sure to fall short.
The high connection speeds of 3G technology enabled a transformation in the industry: for the first time, media streaming of radio (and even television) content to 3G handsets became possible [2], with companies such as RealNetworks [3] and Disney [4] among the early pioneers in this type of offering.
In the mid 2000s an evolution of 3G technology begun to be implemented, namely High-Speed Downlink Packet Access (HSDPA). It is an enhanced 3G (third generation) mobile telephony communications protocol in the High-Speed Packet Access (HSPA) family, also coined 3.5G, 3G+ or turbo 3G, which allows networks based on Universal Mobile Telecommunications System (UMTS) to have higher data transfer speeds and capacity. Current HSDPA deployments support down-link speeds of 1.8, 3.6, 7.2 and 14.0 Mbit/s. Further speed increases are available with HSPA+, which provides speeds of up to 42 Mbit/s downlink and 84 Mbit/s with Release 9 of the 3GPP standards.
By the end of 2007 there were 295 Million subscribers on 3G networks worldwide, which reflected 9% of the total worldwide subscriber base. About two thirds of these were on the WCDMA standard and one third on the EV-DO standard. The 3G telecoms services generated over 120 Billion dollars of revenues during 2007 and at many markets the majority of new phones activated were 3G phones. In Japan and South Korea the market no longer supplies phones of the second generation. Earlier in the decade there were doubts about whether 3G might happen, and also whether 3G might become a commercial success. By the end of 2007 it had become clear that 3G was a reality and was clearly on the path to become a profitable venture.
Growth of mobile broadband and the emergence of 4G
Although mobile phones had long had the ability to access data networks such as the Internet, it was not until the widespread availability of good quality 3G coverage in the mid 2000s that specialised devices appeared to access the mobile internet. The first such devices, known as "dongles", plugged directly into a computer through the USB port. Another new class of device appeared subsequently, the so-called "compact wireless router" such as the Novatel MiFi, which makes 3G internet connectivity available to multiple computers simultaneously over Wi-Fi, rather than just to a single computer via a USB plug-in.
Such devices became especially popular for use with laptop computers due to the added portability they bestow. Consequently, some computer manufacturers started to embed the mobile data function directly into the laptop so a dongle or MiFi wasn't needed. Instead, the SIM card could be inserted directly into the device itself to access the mobile data services. Such 3G-capable laptops became commonly known as "netbooks". Other types of data-aware devices followed in the netbooks' footsteps. By the beginning of 2010, E-readers, such as the Amazon Kindle and the Nook from Barnes & Noble, had already become available with embedded wireless internet, and Apple Computer had announced plans for embedded wireless internet on its iPad tablet devices beginning that Fall.
By 2009, it had become clear that, at some point, 3G networks would be overwhelmed by the growth of bandwidth-intensive applications like streaming media[24]. Consequently, the industry began looking to data-optimized 4th-generation technologies, with the promise of speed improvements up to 10-fold over existing 3G technologies. The first two commercially available technologies billed as 4G were the WiMAX standard (offered in the U.S. by Sprint) and the LTE standard, first offered in Scandinavia by TeliaSonera.
One of the main ways in which 4G differed technologically from 3G was in its elimination of circuit switching, instead employing an all-IP network. Thus, 4G ushered in a treatment of voice calls just like any other type of streaming audio media, utilizing packet switching over internet, LAN or WAN networks via VoIP.[25]
Patents
- U.S. patent 3,663,762: Cellular Mobile Communication System — Amos Edward Joel (Bell Labs), filed December 21, 1970, issued May 16, 1972
- U.S. patent 3,906,166: Radio Telephone System (Dyna-Tac) — Martin Cooper et al. (Motorola), filed October 17, 1973, issued September 16, 1975
- U.S. patent 4,144,411: Cellular Radiotelephone System for Different Cell Sizes — Richard H. Frenkiel (Bell Labs), filed September 22, 1976, issued March 13, 1979
- U.S. patent 4,399,555: Cellular Mobile Radiotelephone System — Verne MacDonald, Philip Porter, Rae Young, (Bell Labs) filed April 28, 1980, issued August 16, 1983
- U.S. patent 5,129,098: Radio telephone using received signal strength in controlling transmission power — Andrew McGirr, Barry Cassidy (Novatel), filed September 24, 1990, issued July 7, 1992
- U.S. patent 5,265,158: Construction of a stand alone portable telephone unit — Jouko Tattari (Nokia), filed May 11, 1992, issued November 23, 1993
- U.S. patent 5,722,067: Security cellular telecommunications system — Douglas Fougnies et al. (Freedom Wireless), filed December 1994, issued February 24, 1998
- U.S. patent 5,826,185: Cellular phone system wherein the air time use is predetermined — Andrew Wise et al. (Banana Communications), filed November 1994, issued October 20, 1998
- U.S. patent 5,841,856: Hands-free telephone set — Yoshiyuki Ide (NEC), filed May 21, 1997, issued November 24, 1998
- U.S. patent 7,324,480: Mobile communication apparatus and method including base station and mobile station having multi-antenna: Per-User Unitary Rate Control (PU2RC) — James S. Kim, Kwangbok Lee, Kiho Kim and Changsoon Park, filed July 10, 2003, issued January 29, 2008
See also
- Mobile phone
- History of the prepaid mobile phone
- Cellular network
- Personal Communications Service PCS
Notes
- ^ "Special History Issue" (PDF). Speleonics 15. IV (3). 1990.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - ^ Agar, Jon (2003). Constant Touch: a brief history of the mobile phone. Icon. pp. 8–9. ISBN 9781840464191.
{{cite book}}
: Cite has empty unknown parameter:|coauthors=
(help) - ^ see external link for the 1947 memo
- ^ article by Tom Farley "Cellular Telephone Basics"
- ^ History of mobile telephones in the USSR (in Russian)
- ^ Mingtao Shi, Technology base of mobile cellular operators in Germany and China, page 55
- ^ Facts about the Mobile. A Journey through Time
- ^ The first Russian mobile phone
- ^ See Amos Joel patent 3,663,762.
- ^ AT&T article
- ^ Cooper, et al., "Radio Telephone System", US Patent number 3,906,166; Filing date: Oct 17, 1973; Issue date: September 1975; Assignee Motorola
- ^ "Motorola Executive Helped spur Cellphone Revolution, Oversaw Ill-fated Iridium Project". The Wall Street Journal, June 20–21, 2009, p. A10.
- ^ "John F. Mitchell, 1928-2009: Was president of Motorola from 1980 to '95, Chicago Tribune, June 17, 2009, retrieved June 17, 2009". Chicagotribune.com. Retrieved 2009-07-29.
- ^ Shiels, Maggie (April 21, 2003). "BBC interview with Martin Cooper". BBC News.
- ^ "Switching Plan for a Cellular Mobile Telephone System:, Z. Fluhr and E. Nussbaum, IEEE Transactions on Communications volume 21, #11 p. 1281 (1973)
- ^ "Data signaling functions for a cellular mobile telephone system", V. Hachenburg, B. Holm and J. Smith, IEEE Trans Vehicular Technology, volume 26, #1 p. 82 (1977)
- ^ "Swedish National Museum of Science and Technology". Tekniskamuseet.se. Retrieved 2009-07-29.
- ^ Mobile and technology: The Basics of Mobile Phones
- ^ The cell phone 50 years - facts and numbers
- ^ AT&T article
- ^ [1]
- ^ Privateline.com: 3G and Cellular radio Information
- ^ Gopal, Thawatt (11–15 March 2007). "IEEE Wireless Communications and Networking Conference". IEEE: 3262–7. doi:10.1109/WCNC.2007.601.
{{cite journal}}
:|contribution=
ignored (help); Cite journal requires|journal=
(help) - ^ Fahd Ahmad Saeed. "Capacity Limit Problem in 3G Networks". Purdue School of Engineering. Retrieved April 23, 2010.
- ^ "VoIP Support in Nokia Devices". Retrieved 2009-08-16. [dead link]
References
- Farley, Tom (2007). "The Cell-Phone Revolution". American heritage of invention & technology. 22 (3). New York: American Heritage: 8–19. ISSN 8756-7296. OCLC 108126426. BL Shelfmark 0817.734000. Retrieved 2008-04-21.
{{cite journal}}
: Cite has empty unknown parameter:|month=
(help)
External links
- 1947 memo by Douglas H. Ring proposing hexagonal cells
- The history of cellular telephones in the US
- Mobile Phone Museum from Europe
- Mobile Forum
- Mobile Phone Forum
- Cell Phone Basics
- Cellular Convergence: Evolution, Revolution and Speculation
- Thoughts about next generation phones: end-user applications matter, open systems, phones based on GNU/Linux, phones serving as desktop computers. Original draft designs of phones
- The history of mobile telephones in the USSR - in Russian
- Mobile Phone Technology Old Patents
- Mobile Phone Museum from Ireland