Jump to content

Ornithopter

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by HIST406-10109770231 (talk | contribs) at 02:51, 1 December 2010. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

File:Cybird.jpg
Cybird Radio-Controlled Ornithopter

An ornithopter (from Greek ornithos "bird" and pteron "wing") is an aircraft that flies by flapping its wings. Designers seek to imitate the flapping-wing flight of birds, bats, and insects. Though machines may differ in form, they are usually built on the same scale as these flying creatures. Manned ornithopters have also been built, and some have been successful. The machines are of two general types: those with engines, and those powered by the muscles of the pilot.

Early history of the ornithopter

The idea of constructing wings in order to resemble the flight of birds dates to the ancient Greek legend of Daedalus (Greek demigod engineer) and Icarus (Daedalus's son). The Chinese Book of Han records that Xin Dynasty Emperor Wang Mang oversaw the earliest ornithopter flight test in 19 AD.

One man said that he could fly a thousand li in a day, and spy out the (movements of the) Huns. (Wang) Mang tested him without delay. He took (as it were) the pinions of a great bird for his two wings, his head and whole body were covered over with feathers, and all this was interconnected by means of (certain) rings and knots. He flew a distance of several hundred paces, and then fell to the ground.[1]

Among the first recorded attempts with gliders were those by the 11th century monk Eilmer of Malmesbury (recorded in the 12th century) and the 9th century poet Abbas Ibn Firnas (recorded in the 17th century); the reported flights were probably just glides and resulted in injury.[2] Roger Bacon, writing in 1260, was also among the first to consider a technological means of flight. In 1485, Leonardo da Vinci began to study the flight of birds. He grasped that humans are too heavy, and not strong enough, to fly using wings simply attached to the arms. Therefore he proposed a device in which the aviator lies down on a plank and works two large, membranous wings using hand levers, foot pedals, and a system of pulleys.

The first ornithopters capable of flight were constructed in France in the 1870s. Gustave Trouvé's 1870 model flew a distance of 70 metres in a demonstration for the French Academy of Sciences. The wings were flapped by gunpowder charges activating a bourdon tube. Jobert in 1871 used a rubber band to power a small model bird. Alphonse Penaud, Hureau de Villeneuve, Victor Tatin, Frank Kieser, and others soon followed with their own designs.

Around 1890, Lawrence Hargrave built several ornithopters powered by steam or compressed air. He introduced the use of small flapping wings providing the thrust for a larger fixed wing. This eliminated the need for gear reduction, thereby simplifying the construction. To achieve a more birdlike appearance, this approach is not generally favored today.[citation needed]

In the 1930s, Erich von Holst carried the rubber band powered bird model to a high state of development and great realism. Also in the 1938, Alexander Lippisch and other researchers in Germany harnessed the piston internal combustion engine.

Manned flight

Otto Lilienthal on August 16th 1894 with his kleiner Schlagflügelapparat
Schmid 1942 Ornithopter
File:UTIAS Ornithopter Flight.jpg
The UTIAS Ornithopter No.1

Manned ornithopters fall into two general categories: Those powered by the muscular effort of the pilot (human-powered ornithopters), and those powered by an engine.

Around 1894, Otto Lilienthal became famous in Germany for his widely publicized and successful glider flights. Lilienthal also studied bird flight and conducted some related experiments. He constructed an ornithopter, although its complete development was prevented by his untimely death.

In 1929, a man-powered ornithopter designed by Alexander Lippisch (designer of the Me163 Komet) flew a distance of 250 to 300 metres after tow launch. Since a tow launch was used, some have questioned whether the aircraft was capable of flying on its own. Lippisch asserted that the aircraft was actually flying, not making an extended glide. (Precise measurement of altitude and velocity over time would be necessary to resolve this question.) Most of the subsequent human-powered ornithopters likewise used a tow launch, and flights were brief simply because human muscle power diminishes rapidly over time.

In 1942, Adalbert Schmid made a much longer flight of a human-powered ornithopter at Munich-Laim. It travelled a distance of 900 metres, maintaining a height of 20 metres throughout most of the flight. Later this same aircraft was fitted with a 3 hp Sachs motorcycle engine. With the engine, it made flights up to 15 minutes in duration. Schmid later constructed a 10 hp ornithopter based on the Grunau-Baby IIa sailplane, which was flown in 1947. The second aircraft had flapping outer wing panels.[3]

In 2005, Yves Rousseau was given the Paul Tissandier Diploma, awarded by the FAI for contributions to the field of aviation. Rousseau attempted his first human-muscle-powered flight with flapping wings in 1995. On 20 April 2006, at his 212th attempt, he succeeded in flying a distance of 64 metres, observed by officials of the Aero Club de France. Unfortunately, on his 213th flight attempt, a gust of wind led to a wing breaking up, causing the pilot to be gravely injured and rendered paraplegic.[4]

A team at the University of Toronto Institute for Aerospace Studies, headed by Professor James DeLaurier, worked for several years on an engine-powered, piloted ornithopter. In July 2006, at the Bombardier Airfield at Downsview Park in Toronto, Professor DeLaurier's machine, the UTIAS Ornithopter No.1 made a jet-assisted takeoff and 14-second flight. According to DeLaurier,[5] the jet was necessary for sustained flight, but the flapping wings did most of the work.[6]

On August 2, 2010, Todd Reichert of the University of Toronto Institute for Aerospace Studies piloted a human-powered ornithopter named Snowbird. The 32-metre (105 ft 0 in) wingspan 92.59 pounds (42.00 kg) aircraft was constructed from carbon fibre, balsa and foam. The pilot sits in a small cockpit suspended below the wings and pumps a bar with his feet to operate a system of wires that flap the wings up and down. The pilot steers using a pair of metal bars attached to rudders on the back of the aircraft. Towed by a car until airborne, it then sustained 19.3 seconds of flight over a distance of 145 metres, an average speed of 15.91 miles per hour. Although similar tow-launched flights have been made in the past, improved data collection was used to verify that the ornithopter was capable of self-powered flight once aloft.[7]

Applications for Unmanned Ornithopters

Practical applications capitalize on the resemblance to birds or insects. The Colorado Division of Wildlife has used these machines to help save the endangered Gunnison Sage Grouse. An artificial hawk under the control of an operator causes the grouse to remain on the ground so they can be captured for study.

Because ornithopters resemble birds or insects, they could be used for military applications, such as spying without alerting the enemies that they are under surveillance. AeroVironment, Inc., led by Paul B. MacCready (Gossamer Albatross), has developed a remotely piloted ornithopter the size of a large insect for possible spy missions.

MacCready also developed in the mid-1980s, for the Smithsonian Institution, a half-scale radio controlled replica of the giant pterosaur, Quetzalcoatlus northropi. It was built to star in the IMAX movie On the Wing. The model had a wingspan of 5.5 metres (18 feet) and featured a complex, computerized autopilot control system, just as the full-size pterosaur relied on its neuromuscular system to make constant adjustments in flight.[8][9][10]

Researchers hope to eliminate the motors and gears of current designs by more closely imitating animal flight muscles. Georgia Tech scientist Robert C. Michelson is developing a Reciprocating Chemical Muscle for use in micro-scale flapping-wing aircraft. Michelson uses the term "entomopter" for this type of ornithopter. SRI International is developing polymer artificial muscles which may also be used for flapping-wing flight.

In 2002, Krister Wolff and Peter Nordin of Chalmers University of Technology in Sweden, built a flapping wing robot that learned flight techniques.[11] The balsa wood design was driven by machine learning software technology known as a steady state linear evolutionary algorithm. Inspired by natural evolution, the software “evolves” in response to feedback on how well it performs a given task. Although confined to a laboratory apparatus, their ornithopter evolved behavior for maximum sustained lift force and horizontal movement.[12]

Since 2002, Prof. Theo Van Holten has been working on an ornithopter which is constructed like a helicopter. The device is called the ornicopter [13] and was made by constructing the main rotor so that it would have no reaction torque at all.

In 2008, Schiphol Airport started using a real looking mechanical hawk designed by falconer Robert Musters. The radio controlled robot bird is used to scare away birds that could damage the engines of airplanes.[14][15]

Ornithopters as a hobby

File:FlyTech Dragonfly 1.jpg
The Dragonfly is a toy made by Wow-Wee.

Hobbyists can build and fly their own ornithopters. These range from light-weight models powered by rubber band, to larger models with radio control.

The rubber-band-powered model can be fairly simple in design and construction. Hobbyists compete for the longest flight times with these models. An introductory model can be fairly simple in design and construction, but the advanced competition designs are extremely delicate and challenging to build. Roy White holds the US national record for indoor rubber-powered, with his flight time of 21 minutes, 44 seconds.

Commercial free-flight rubber-band powered toy ornithopters have long been available. The first of these was sold under the name Tim Bird in Paris in 1879.[16] Later models were also sold as Tim Bird (made by G de Ruymbeke, France, since 1969).

Commercial radio controlled designs stem from Percival Spencer's engine-powered Seagulls, developed circa 1958, and Sean Kinkade's work in the late 1990s to present day. The wings are usually driven by an electric motor. Many hobbyists enjoy experimenting with their own new wing designs and mechanisms. The opportunity to interact with real birds in their own domain also adds great enjoyment to this hobby. Birds are often curious and will follow or investigate the model while it is flying. In a few cases, RC birds have been attacked by birds of prey, crows, and even cats. More recent cheaper models such as the Dragonfly from WowWee have extended the market from dedicated hobbyists to the general toy market,

Some helpful resources for hobbyists include The Ornithopter Design Manual, book written by Nathan Chronister, and The Ornithopter Zone web site, which includes a large amount of information about building and flying these models.

Aerodynamics

As demonstrated by birds, flapping wings offer potential advantages in maneuverability and energy savings compared with fixed-wing aircraft, as well as potentially vertical take-off and landing. It has been suggested that these advantages are greatest at small sizes and low flying speeds.[17]

Unlike airplanes and helicopters, the driving airfoils of the ornithopter have a flapping or oscillating motion, instead of rotary. As with helicopters, the wings usually have a combined function of providing both lift and thrust. Theoretically, the flapping wing can be set to zero angle of attack on the upstroke, so it passes easily through the air. Since typically the flapping airfoils produce both lift and thrust, drag-inducing structures are minimized. These two advantages potentially allow a high degree of efficiency.

In propeller- or jet-driven aircraft, the propeller creates a relatively narrow stream of relatively fast moving air. The energy carried by the air is lost. The same amount of force can be produced by accelerating a larger mass of air to a smaller velocity, for example by using a larger propeller or adding a bypass fan to a jet engine. Use of flapping wings offers even larger displaced air mass, moved at lower velocity, thus improving efficiency.[citation needed]

Wing Design

Birds inspired Leonardo da Vinci when he designed his ornithopter in 1490. Leonardo da Vinci was interested in flying during 1488 – 1514. He never saw his dream of flight take place because his ornithopter was too heavy and required too much energy to produce lift or thrust. In 1929, the human-powered ornithopter constructed by Alexander Lippisch was towed into the air and glided around. In 1959, in England, another ornithopter was towed into the air and demonstrated the ornithopter being a birdlike machine. [32] By the 1960s, there were powered unmanned ornithopter flights of various sizes demonstrating how ornithopters flew. In 1991 Harris and DeLaurier flew the first successful engine-powered remotely piloted ornithopter in Toronto, Canada. By 1999, there was an ornithopter design that was designed to take off from a level pavement. [32]

Lift is the force that uses Bernoulli's principle to keep things in the air and weight is the force that pulls things towards the ground. Thrust is the force that moves things through the air while Drag is the force of flight that is an aerodynamic force that reduces speed.

In order to create an effective ornithopter, it had to be able to flap its wings to generate enough power to get off the ground and travel through the air. Efficient flapping of the wing is characterized by pitching angles, lagging plunging displacements by approximately 90 degrees. [23] Flapping wings increase drag and are not as efficient as propeller-powered aircraft. To increase efficiency of the ornithopter, more power is required on the down stroke then on the upstroke. [24] If the wing on the ornithopter was not flexible and flapped at the same angle while moving up and down, it would act like a huge board moving in two dimensions, not producing lift or thrust. The flexibility and move-ability of the wing let it twist and bend to the reactions of the ornithopter while in flight.

The interest in developing a successful powered ornithopter similar to birds and bats, was one many sought after. In order to get around the problem of not having enough energy for sustained flight, the ornithopter would be required to produce enough lift and thrust to travel through the air. Alphonse Pénaud introduced the idea of a powered ornithopter in 1874. His design had limited power and was uncontrollable causing it to be transformed into a toy for children. [24]

The wing design is designed with the spar as far forward of the airfoil but still having acceptable dimensions of strength. Engineers and researchers have experimented with wings that require carbon fiber, plywood, fabric, ribs, and the trailing edge to be stiff, strong, and for the mass to be as low as possible. Any mass located to the aft or empennage, reduce the wings performance and hinder the design of the ornithopter. In order to calculate the performance of the ornithopter, the wings lift is determined by the lift of the wing versus weight, drag and thrust. A smooth aerodynamic surface with a double-surface airfoil is more efficient then a single-surface airfoil to produce more lift.

A variation of ornithopters has the wings and flapping surfaces towards the empennage to increase stabilizing forces and thrust. With different designs, ornithopters do not act like birds or bats in flight. Typically birds and bats have thin and cambered wings to produce lift and thrust. Ornithopters with thinner wings have a limited angle of attack but provide optimum minimum-drag performance in a single value of lift coefficient.

Although Hummingbirds fly with fully extended wings, an ornithopter would not be able to effectively fly that way. If an ornithopter wing were to fully extend and twist and flap in small movements it would cause a stall but if it were to twist and flap in very large motions, then it would act like a windmill causing an inefficient flying situation.

A team of engineers and researchers called “Fullwing” has created an ornithopter that has an average lift of over 8 pounds, an average thrust of 0.88 pounds, and has a propulsive efficiency of 54%. The wings were tested in a low speed wing tunnel measuring the aerodynamic performance. Discovering that the higher the frequency of the win beat, the higher the average thrust of the ornithopter.

It is unclear what the ornithopters future would be. With the development of Airplanes, Helicopters, VTOL, UAV, and other aircraft, it is unclear where the ornithopter will fit into society. Canada is currently working with ornithopters to produce more effective flying machines. Although the idea of the ornithopter is not new, there is not little understanding behind the idea.


  • Robert Altman's 1970 movie, Brewster McCloud, centers around a young man and his project to build a manned ornithopter.
  • in Birdy , Alan Parker's 1984 film, Birdy (Matthew Modine) brings a small home-made ornithopter to school, makes it flit around the class-room, and amazes his buddies...
  • Frank Herbert's Dune universe features ornithopters (colloquially called 'thopters) as one of the primary modes of transportation on the desert planet Arrakis.
  • In the Bioware game Jade Empire, ornithopters are used by the characters to travel over long distances and are pivotal to many of the games sidequests.
  • In Michael Moorcock's Hawkmoon series the evil empire of Granbretan uses ornithopters.
  • Many of the movies made by Hayao Miyazaki feature ornithopters, many featuring wings like insects.
  • The Star Wars film Revenge of the Sith depicts a dragonfly-like vehicle being operated by the Wookiees during battle on their home planet of Kashyyyk.[18]
  • In the movie Chicken Run, the "crate" that the chickens build to escape from Mrs. Tweedy's Farm closely resembles the design of an ornithopter. However, it also utilizes a propeller and a tail fin like that of an airplane.
  • In the Airborn trilogy written by Kenneth Oppel, ornithopters are a major form of transportation.
  • The Novel Soft Target: The Air (2007) by Joel Narlock has as a central feature the use of the Entomopter in a spy plot.[19]
  • In the collectible card game Magic: The Gathering there is a card named Ornithopter. The artwork on various versions of the card depict different forms of flying machines. There is also a larger group of Ornithopter like machines, called Thopters. Ornithopters play a large role in the game's plot as well.[20]
  • In Madagascar 2, the penguins build an ornithopter-like airplane powered by chimps.
  • In the book Freak the Mighty, Freak owns a ornithopter.
  • In the Ubisoft game Assassin's Creed II, Leonardo Da Vinci builds a proto-type Ornithopter for the game's main character for use in two missions. However, in use the machine seems to owe more to the hang glider and is dependent on thermal updraughts to keep it airborne.
  • In Chip n' Dale Rescue Rangers an ornithopter and half blimp is used as the Ranger plane.
  • In the PC game of Obsidian, the player gets to operate a moth-like ornithopter which, in a dreamy rendering, is powered via a zoetrope driven by robotic pillbugs.
  • In the book Peter and the Sword of Mercy, Wendy Darling travels to Mollusk Island on a wooden ornithopter invented by her uncle Neville.
  • in the TV series Lexx, The heretic Thoden uses a small ornithopter-type robot to sabotage his restraints and escape execution.[21] The Moths used as transportation to and from Lexx by the crew are also a form of ornithopter resembling large insects.

See also

References

Notes
  1. ^ Joseph Needham and Ling Wang, Science and civilisation in China: Physics and physical technology. Mechanical engineering, Volume 4, Part 2, Cambridge University Press, 1965, p. 588.
  2. ^ White, Lynn. "Eilmer of Malmesbury, an Eleventh Century Aviator: A Case Study of Technological Innovation, Its Context and Tradition." Technology and Culture, Volume 2, Issue 2, 1961, pp. 97–111 (97–99 resp. 100–101).
  3. ^ Bruno Lange, Typenhandbuch der deutschen Luftfahrttechnik, Koblenz, 1986.
  4. ^ FAI web site.
  5. ^ Dr. James DeLaurier's report on the Flapper's Flight July 8, 2006
  6. ^ University of Toronto ornithopter takes off July 31, 2006
  7. ^ Human-Powered Ornithopter Project
  8. ^ Anderson, Ian (10 October 1985), "Winged lizard takes to the air of California", New Scientist (No.1477): 31, retrieved 20 October 2010 {{citation}}: |issue= has extra text (help)
  9. ^ MacCready, Paul (November 1985), "The Great Pterodactyl Project" (PDF), Engineering & Science: 18–24, retrieved 20 October 2010
  10. ^ Schefter, Jim (March 1986), "Look! Up in the sky! It's a bird, it's a plane it's a pterodactyl", Popular Science: 78–79, 124, retrieved 20 October 2010
  11. ^ Winged robot learns to fly New Scientist, August 2002
  12. ^ Creation of a learning, flying robot by means of Evolution In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2002 (pp. 1279-1285). New York, 9–13 July 2002. Morgan Kaufmann. Awarded "Best Paper in Evolutionary Robotics" at GECCO 2002.
  13. ^ Ornicopter project
  14. ^ Article in Dutch newspaper Trouw, partial translation:..."The so-called 'Horck', an electrical controllable bird is the newest means to scare birds. Because they can cause much damage to airplanes. (...) ...it is a design by Robert Musters, a falconer from Enschede"
  15. ^ A picture of the bird with English description
  16. ^ "FLYING HIGH: Bird Man". Scientific American Frontiers Archive. Retrieved 2007-10-26.
  17. ^ T.J. Mueller and J.D. DeLaurier, "An Overview of Micro Air Vehicle Aerodynamics", Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Paul Zarchan, Editor-in-Chief, Volume 195, AIAA, 2001
  18. ^ StarWars.com | Wookiee ornithopter
  19. ^ Narlock, Joel (2007-07-20). "Soft Target: The Air". Dan River Press/Conservatory of American Letters, ISBN 0-89754-227-4, ISBN 978-0-89754-227-2, 304 pages. Retrieved 2007-08-28.
  20. ^ Magic: The Gathering Card database | Ornithopter card
  21. ^ Lexx - The Dark Zone Stories: Bug Bomb


23. DeLaurier, J.D.. "The development of an efficient ornithopter wing(1993), 152-162, http://www.ornithopter.net/Publications/TheDevelopmentOfAnEfficientOrnithopterWing.pdf. (accessed November 30, 2010).

24. DeLaurier, James D. "An Ornithopter Wing Design40. 1 (1994), 10-18, http://ornithopter.net/Publications/AnOrnithopterWingDesign.pdf. (accessed November 30, 2010).

25. DeLaurier, James D. "The Development and Testing of a Full-Scale Piloted OrnithopterCanadian Aeronautics and Space Journal". 45. 2 (1999), 72-82, http://web.tech-domain.com/attachments/bbsxp/2008-7/TheDevelopmentandTestingofaFull-ScalePilotedOrnithopter.pdf. (accessed November 30, 2010).

26. Liger, Matthieu, Nick Pornsin-Sirirak, Yu-Chong Tai, Steve Ho, and Chih-Ming Ho. "LARGE-AREA ELECTROSTATIC-VALVED SKINS FOR ADAPTIVE FLOW CONTROL ON ORNITHOPTER WINGS." (2002): 247-250. Web. 30 Nov 2010. <http://ho.seas.ucla.edu/publications/conference/2002/hiltonhead2002_microbat.pdf>.

27. Warrick, Douglas, Bret Tobalske, Donald Powers, and Michael Dickinson. "The Aerodynamics of Hummingbird Flight." American Institute of Aeronautics and Astronautics 1-5. Web. 30 Nov 2010. <http://dbs.umt.edu/research_labs/flightlab/documents/Warrick_Tobalske_Powers_Dickinson_2007_AIAA.PDF>.

28. Crouch,Tom D. Aircraft of the National Air and Space Museum. Fourth ed. Lilienthal Standard Glider. Smithsonian Institution, 1991.

29. Bilstein,Roger E. Flight in America 1900 - 1983. First ed. Gliders and Airplanes. Baltimore, MD: Johns Hopkins University Press, 1984. (Page 8 - 9)

30. Crouch,Tom D. Wings. First ed. A History of Aviation from Kites to the Space Age. New York, NY: W.W. Norton & Company, Inc., 2003. (Page 44 – 53)

31. Anderson,John D. A history of aerodynamics and its impact on flying machines. Cambridge: United Kingdom, 1997.

32. Benedict , Moble. "3-4." http://uwmav.uwaterloo.ca/Aeroelastic%20Design%20and%20Manufacture%20of%20an%20Efficient%20Ornithopter%20Wing.pdf

Bibliography

Further reading

  • Chronister, Nathan. (1999). The Ornithopter Design Manual. Published by The Ornithopter Zone.
  • Mueller, Thomas J. (2001). "Fixed and flapping wing aerodynamics for micro air vehicle applications". Virginia: American Inst. of Aeronautics and Astronautics. ISBN 1-56347-517-0
  • Azuma, Akira (2006). "The Biokinetics of Flying and Swimming". Virginia: American Institute of Aeronautics and Astronautics 2nd Edition. ISBN 1-56347-781-5.

General Interest:

Specific Projects: