Jump to content

Broad-gauge railway

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Aceman87~enwiki (talk | contribs) at 18:47, 21 October 2012 (→‎Broad gauges: Added Finnish gauge). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Broad-gauge railways use a track gauge (distance between the rails) greater than the standard gauge of 1435 mm (4ft 8½in.).

History

Great Western Railway broad-gauge steam locomotives awaiting scrapping in 1892 after the conversion of the tracks to standard gauge.

In Britain the Great Western Railway, designed by Isambard Kingdom Brunel, pioneered broad gauge from 1838 with a gauge of 7 ft 0¼ in. (2,140 mm), and retained this gauge until 1892. A number of harbours also used railways of this gauge for construction and maintenance. These included Portland Harbour and Holyhead Breakwater, which used a locomotive for working sidings. As it was not connected to the national network, this broad-gauge operation continued until the locomotive wore out in 1913.[1]

It became apparent that standardization on a single gauge throughout a rail transport system was advantageous. Rolling stock did not need to match the gauge exactly; a difference of a few millimeters could be coped with, so that interoperability on systems with gauges only slightly different was possible.

While the parliament of the United Kingdom of Great Britain and Ireland was initially prepared to authorise lines built to the broad gauge of 7 ft 0¼ in. (2,140 mm), it was eventually rejected by the Gauge Commission in favour of all railways in the British Isles being built to standard gauge of 1,435 mm (4 ft 8½ in.), this being the gauge with the highest route-mileage. Ireland, using the same criteria, was allocated a different standard gauge, the Irish gauge, of 5 ft 3 in. (This gauge is also used in the Australian state of Victoria). Broad-gauge lines in Britain were gradually converted to dual gauge or standard gauge from 1864, and finally the last of Brunel's broad gauge was converted over a single weekend in 1892.

Irish broad gauge tracks

Many countries have broad-gauge railways. Ireland (see History of rail transport in Ireland) and some states in Australia (see History of rail transport in Australia) and Brazil have a gauge of 63, but Luas, the Dublin light rail system, is built to standard gauge. Russia and the other former Soviet Republics use a 1520 (originally 60) gauge while Finland continues to use the 60 gauge inherited from Imperial Russia (the two standards are close enough to allow full interoperability between Finland and Russia).

In 1839 the Netherlands started its railway system with two broad-gauge railways. The chosen gauge was 1,945 mm (6 ft 4+916 in) after a visit of engineers to England and a large consignment of Brunel's lighter bridge rail removed from his "Bath Road" was imported for the construction.[citation needed] This was applied between 1839 and 1866 by the Hollandsche IJzeren Spoorweg-Maatschappij (HSM) for its Amsterdam-The Hague-Rotterdam line and between 1842 and 1855, firstly by the Dutch state, but soon by the Nederlandsche Rhijnspoorweg-Maatschappij, for its Amsterdam-Utrecht-Arnhem line. But the neighboring countries Prussia and Belgium already used standard gauge, so the two companies had to regauge their first lines. In 1855, NRS regauged its line and shortly afterwards connected to the Prussian railways. The HSM followed in 1866. There are replicas of one broad-gauge 2-2-2 locomotive (De Arend) and three carriages in the Dutch Railway Museum in Utrecht. These replicas were built for the 100th anniversary of the Dutch Railways in 1938–39.

The Baltic states have received funding from the European Union to build new lines with standard gauge.[citation needed] Portugal and the Spanish Renfe system use a gauge of 1668 called "Ancho Ibérico" in Spanish or "Bitola Ibérica" in Portuguese (see Iberian gauge & Rail gauge); there are plans to convert to standard gauge.[2][3] In India, Pakistan and Bangladesh, a gauge of 66 is widespread. This is also used by the Bay Area Rapid Transit (BART) system of the San Francisco Bay Area.

In Toronto, Canada the gauge for TTC subways and streetcars was chosen in 1861, years after the establishment of 'standard gauge' in Britain, but well before 'standard gauge' in the US and Canada. Toronto uses a unique gauge of 4 ft 10⅞ in. (1.495 mm), an "overgauge" originally stated to 'allow horse-drawn wagons to use the rails', but with the practical effect of precluding the use of standard-gauge equipment in the street. In 1861, the province was supplying subsidies only to broad 'provincial gauge' railways.

The value of interoperability was initially not obvious to the industry. The standardization movement was gradual; over time the value of a proprietary gauge diminished, being replaced by the idea of charging money for equipment used on other railroad lines.

The use of a non-standard gauge precludes interoperability of rolling stock on railway networks. On the GWR the 7 ft 0¼ in. (2,140 mm) gauge was supposed to allow high speed, but the company had difficulty with locomotive design in the early years, losing much of the advantage, and rapid advances in permanent way and suspension technology allowed standard-gauge speeds to approach broad-gauge speeds within a decade or two. On the 63 and 66 gauges, the extra width allowed bigger inside cylinders and greater power, a problem solvable by using outside cylinders and higher steam pressure on standard gauge. In the event, the most powerful engines on standard gauge in North America and Scandinavia far exceeded the power of any broad-gauge locomotive.

Broad gauges

For list see: List of broad gauges, by gauge and country

Indian gauge

South Asia

The British Raj in India adopted 66 gauge, although some standard-gauge railways were built in the initial period. The standard-gauge railways were soon converted to broad gauge. Reputedly, broad gauge was thought necessary to keep trains stable in the face of strong monsoon winds[citation needed]. Attempts to economise on the cost of construction led to the adoption of 1 gauge and then 30 and 24 narrow gauges for many secondary and feeder lines, particularly in mountainous terrain. However, broad gauge remained the most prevalent gauge across the Indian Subcontinent, reaching right across from Iran into Pakistan to Burma and Kashmir to Sri Lanka. After independence, the Indian Railways adopted 66 as the standard Indian gauge, and began Project Unigauge to convert metre-gauge and narrow-gauge lines to this gauge.

Some of the newer specialized rail projects in India, such as the Konkan Railway and the Delhi Metro also use Indian gauge. The project manager of Delhi Metro initially requested standard gauge for the Metro, but due to Indian Railways having complete control over all railways built in India, the lines were initially built using Indian gauge. However, as Delhi Metro trains do not use Indian Railways infrastructure, and the widespread manufacturing of standard gauge trains around the world enabling lower cost, standard gauge is used in the new lines on Delhi Metro, including the Airport Express Line which uses rolling stock imported from Europe. The new Bangalore Metro is on a standard gauge, and other metros being planned or under construction (Mumbai Metro, Chennai Metro and Hyderabad Metro systems) as of 2011 are also planned to be built to standard gauge specifications.

Broad gauge offers an advantage to freight movement, as trains in India can carry standard shipping containers double-stacked on standard flatcars, which is more economical than single containers. In contrast, standard-gauge railways in North American and elsewhere must use special double-stack cars to lower the center of gravity and reduce the loading gauge requirements.[original research?][citation needed]

Canada

The first railway in British North America, the Champlain and St. Lawrence Railroad, was built in 1835-36 to 66 gauge, setting the standard for Britain's colonies for several decades. Today, this is commonly known as Indian gauge, but in 1851 the 66 broad gauge was officially adopted as the standard gauge for the Province of Canada, becoming known as the Provincial gauge, and government subsidies were unavailable for railways that chose other gauges. However, this caused problems in interchanging freight cars with northern United States railroads, most of which were built to standard gauge or a gauge similar to it. In the 1870s, mainly between 1872 and 1874, Canadian broad-gauge lines were changed to standard gauge to facilitate interchange and the exchange of rolling stock with American railroads. Today, all Canadian freight railways are standard-gauge, with only the Toronto Transit Commission operating the Toronto streetcar system and three of the Toronto subway lines on its own unique gauge of 58.875.

Finnish gauge

The Finnish gauge is 1524. When the Finnish railroad network was founded in 1862, Finland was the Grand Duchy of Finland; a region of Imperial Russia. This is why railways were built to the broad Russian track gauge of 1524. In Russia, this gauge was re-standardized to 1520 during the 1960s, however, Finland retained the original gauge with no re-standardisation.

Iberian gauge

As finally established, the Iberian gauge of 1668 is a compromise between the similar, but slightly different, gauges first adopted as respective national standards in Spain and Portugal in the mid-19th century. The main railway networks of Spain were initially constructed to a 1672 gauge of six Castilian feet. Those of Portugal were initially built in standard gauge, but by 1864 were all converted to a 1664 gauge of five Portuguese feet – close enough to allow interoperability in practice.[4] The new high-speed network in Spain and Portugal uses standard gauge. The dual-gauge high-speed train RENFE Class 130 can change gauge at low speed without stopping.

Irish gauge

As part of the railway gauge standardisation considered by the United Kingdom Parliamentary Gauge Commission, Ireland was allocated its own gauge, Irish gauge. Ireland then had three gauges, and the new standard would be a fourth.

The Irish gauge of 1600 is used in Ireland and parts of Australia and Brazil. A problem with the Irish Gauge in Australia is that it is only 6.5 in (170 mm) wider than the standard gauge used in other parts of Australia, principally New South Wales. Therefore it is not considered advisable to use a third rail to allow dual-gauge operation on mainline sections of track, because of the danger of material lodging between the two rails.[5] There has been argument for well over a century about the practicability of third rail operation, and numerous devices have been promoted to overcome the problem, especially at turnouts, including "Brennan Switch".[6]

Russian gauge

Russian gauge or CIS gauge 1520 is the second most widely used gauge in the world, and spans the whole of the former Soviet Union/CIS bloc including the Baltic states and Mongolia. Finland uses 1524 mm. The difference is clearly lower than the tolerance margin, so through running is feasible. Care must however be taken when servicing international trains because the wear profile of the wheels differs from that of trains that run on domestic tracks only.

The original standard of 1524 was approved on September 12, 1842[citation needed] with re-standardisation to 1520 mm taking place during the 1960s.

United States

Ohio gauge redirects here

Originally, various gauges were used in the United States and Canada. Some railways, primarily in the northeast, used standard gauge; others used gauges ranging from 48 to 72. Problems began as soon as lines began to meet and, in much of the north-eastern United States, standard gauge was adopted. Most Southern states used 60 gauge. Following the American Civil War, trade between the South and North grew and the break of gauge became a major economic nuisance. Competitive pressures had forced all the Canadian railways to convert to standard gauge by 1880, and Illinois Central converted its south line to New Orleans to standard gauge in 1881, putting pressure on the southern railways.

In the early days of rail transport in the US, railroads tended to be built out of coastal cities into the hinterland, and systems did not connect. Each builder was free to choose its own gauge, although the availability of British-built locomotives encouraged some railroads to be built to standard gauge. As a general rule, southern railroads were built to one or another broad gauge, mostly 60, while northern railroads that were not standard-gauge tended to be narrow-gauge. Most of the original track in Ohio was built in 4 ft 10 in (1,473 mm) Ohio gauge, and special compromise cars were able to run on both this track and standard-gauge track.[7] When American railroads' track extended to the point that they began to interconnect, it became clear that a single nationwide gauge was desirable.

In 1886, the southern railroads agreed to coordinate changing gauge on all their tracks. After considerable debate and planning, most of the southern rail network was converted from 60 gauge to 57 gauge, nearly the standard of the Pennsylvania Railroad, over two remarkable days beginning on Monday, May 31, 1886. Over a period of 36 hours, tens of thousands of workers pulled the spikes from the west rail of all the broad gauge lines in the South, moved them 3 in (76 mm) east and spiked them back in place. The new gauge was close enough that standard-gauge equipment could run on it without difficulty. By June 1886, all major railroads in North America were using approximately the same gauge. The final conversion to true standard gauge took place gradually as track was maintained.[8]

In modern uses, certain isolated occurrences of non-standard gauges can still be found, such as the Pennsylvania trolley gauge. The Bay Area Rapid Transit (BART) system in the San Francisco Bay Area chose 66 gauge. The San Francisco cable cars use a narrow gauge of 42.

Pennsylvania broad (trolley) gauge

A number of North American streetcar lines intentionally varied from standard gauge. This may have been to make the streetcar companies less-tempting targets for takeovers by the steam railroads (or competing streetcar companies), which would be unable to run their trains over the streetcar tracks.[9] Pennsylvania broad gauge was used on the former (defunct) Pittsburgh Railways and the defunct West Penn Railways (62.5) and is still used on the current Pittsburgh Light Rail, on some SEPTA lines such as the Philadelphia streetcar lines and the Philadelphia Market-Frankford subway line (62.25 & 62.5) as well as in New Orleans (62.5).

Broader gauges

Dockside crane on wide gauge tracks at the former South Boston Naval Annex's Dry Dock Number 3

Some applications require broader gauges, including:

These applications might use double track of the country's usual gauge to provide the necessary stability and axle load. These applications may also use much heavier than normal rails, the heaviest rails for trains being about 70 kg/m (141 lb/yd).

Vehicles on these gauges generally operate at very low speeds.

See also

Template:Multicol

Template:Multicol-break

Template:Multicol-break

Template:Multicol-end

References

  1. ^ Connection
  2. ^ Verkehrsrundschau, April 30, 2007
  3. ^ http://www.travelinside.ch/primus/notdArchiv.php?we_objectID=5380
  4. ^ PEQUENA HISTÓRIA DOS CAMINHOS DE FERRO EM PORTUGAL
  5. ^ "Third Rail System: Increased Danger Alleged". The Argus. 1926-03-12. Retrieved 2012-09-03.
  6. ^ "BREAK OF GAUGE". The Sydney Morning Herald (NSW : 1842 - 1954). NSW: National Library of Australia. 13 April 1915. p. 10. Retrieved 26 August 2011.
  7. ^ John F. Stover (1995). History of the Baltimore and Ohio Railroad. Purdue University Press.
  8. ^ "The Days They Changed the Gauge". southern.railfan.net. Retrieved 2012-09-03.
  9. ^ E.g., Columbus' Streetcar Track Gauge: 5'2" vs 4'8 1/2", Columbus Railroads, accessed 2011.03.22.
  10. ^ The New York Times Magazine, May 11, 2008, p. 65