Galena: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Galena uses: Correction in name JAGADISH BOSE
→‎Lead ore deposits: Added a simplification summarizing material below to opening paragraph, since the general occurrence is not clearly stated.
Line 53: Line 53:
==Lead ore deposits==
==Lead ore deposits==
[[Image:Fluorite-Galena-flu35c.jpg|left|thumb|Galena on fluorite]]
[[Image:Fluorite-Galena-flu35c.jpg|left|thumb|Galena on fluorite]]
Galena is the main ore of [[lead]], used since ancient times. Because of its somewhat low [[melting point]], it was easy to liberate by [[smelting]].
Galena is the main ore of [[lead]], used since ancient times. Because of its somewhat low [[melting point]], it was easy to liberate by [[smelting]]. It typically forms in low-temperature sedimentary deposits.


In some deposits galena contains about 1–2% [[silver]], a byproduct that far outweighs the main lead ore in revenue. Galena deposits often also contain significant amounts of silver as included [[silver sulfide]] mineral phases or as limited solid solution within the galena structure. These '''argentiferous galenas''' have long been the most important ore of silver.{{citation needed|date=April 2014}}
In some deposits galena contains about 1–2% [[silver]], a byproduct that far outweighs the main lead ore in revenue. Galena deposits often also contain significant amounts of silver as included [[silver sulfide]] mineral phases or as limited solid solution within the galena structure. These '''argentiferous galenas''' have long been the most important ore of silver.{{citation needed|date=April 2014}}

Revision as of 16:51, 21 December 2017

Galena (lead glance)
Galena close-up
General
CategorySulfide mineral, octahedral subgroup
Formula
(repeating unit)
PbS
Strunz classification2.CD.10
Dana classification2.8.1.1
Crystal systemCubic
Crystal classHexoctahedral (m3m)
H–M symbol: (4/m 3 2/m)
Space groupFm3m
Unit cella = 5.936 Å; Z = 4
Identification
ColorLead gray and silvery
Crystal habitCubes and octahedra, blocky, tabular and sometimes skeletal crystals
TwinningContact, penetration and lamellar
CleavageCubic perfect on [001], parting on [111]
FractureSubconchoidal
TenacityBrittle
Mohs scale hardness2.5–2.75
LusterMetallic on cleavage planes
StreakLead gray
DiaphaneityOpaque
Specific gravity7.2–7.6
Optical propertiesIsotropic and opaque
Fusibility2
Other characteristicsNatural semiconductor
References[1][2][3]
Galena with baryte and pyrite
Galena with baryte and pyrite from Cerro de Pasco, Peru; 5.8 cm × 4.8 cm × 4.4 cm (2.3 in × 1.9 in × 1.7 in)
Galena's unit cell
The rock-salt crystal structure. Each atom has six nearest neighbors, with octahedral geometry.

Galena, also called lead glance, is the natural mineral form of lead(II) sulfide. It is the most important ore of lead and an important source of silver.[4]

Galena is one of the most abundant and widely distributed sulfide minerals. It crystallizes in the cubic crystal system often showing octahedral forms. It is often associated with the minerals sphalerite, calcite and fluorite.

Lead ore deposits

Galena on fluorite

Galena is the main ore of lead, used since ancient times. Because of its somewhat low melting point, it was easy to liberate by smelting. It typically forms in low-temperature sedimentary deposits.

In some deposits galena contains about 1–2% silver, a byproduct that far outweighs the main lead ore in revenue. Galena deposits often also contain significant amounts of silver as included silver sulfide mineral phases or as limited solid solution within the galena structure. These argentiferous galenas have long been the most important ore of silver.[citation needed]

Galena deposits are found worldwide in various environments.[3] Noted deposits include those at Freiberg in Saxony;[1] Cornwall, the Mendips in Somerset, Derbyshire, and Cumberland in England; the Madan, Rhodope Mountains in Bulgaria; the Sullivan Mine of British Columbia; Broken Hill and Mount Isa in Australia; and the ancient mines of Sardinia. Galena also occurs in North African countries and at Mount Hermon in Northern Israel. In the United States, it occurs most notably in the Mississippi Valley type deposits of the Lead Belt in southeastern Missouri,[1] and in the Driftless Area of Illinois, Iowa and Wisconsin. The economic importance of galena to the early history of the Driftless Area was so great that one of the towns in the region was named Galena, Illinois.

Cubic galena with calcite from Jasper County, Missouri, USA; 5.1 cm × 3.2 cm × 2.8 cm (2.0 in × 1.3 in × 1.1 in)

Galena also was a major mineral of the zinc-lead mines of the tri-state district around Joplin in southwestern Missouri and the adjoining areas of Kansas and Oklahoma.[1] Galena is also an important ore mineral in the silver mining regions of Colorado, Idaho, Utah and Montana. Of the latter, the Coeur d'Alene district of northern Idaho was most prominent.[1]

Galena is the official state mineral of the U.S. states of Missouri and Wisconsin; the former mining communities of Galena, Kansas and Galena, Illinois take their names from deposits of this mineral.

Derbyshire in the UK was one of the main areas where galena was mined.

The largest documented crystal of galena is composite cubo-octahedra from the Great Laxey Mine, Isle of Man, measuring 25 cm × 25 cm × 25 cm (10 in × 10 in × 10 in).[5]

Crystal structure

Galena belongs to the octahedral sulfide group of minerals that have metal ions in octahedral positions, such as the iron sulfide pyrrhotite and the nickel arsenide niccolite. The galena group is named after its most common member, with other isometric members that include manganese bearing alabandite and niningerite.[3]

Divalent lead (Pb) cations and sulfur (S) anions form a close-packed cubic unit cell much like the mineral halite of the halide mineral group. Zinc, cadmium, iron, copper, antimony, arsenic, bismuth and selenium also occur in variable amounts in galena. Selenium substitutes for sulfur in the structure constituting a solid solution series. The lead telluride mineral altaite has the same crystal structure as galena.

Geochemistry

Within the weathering or oxidation zone galena alters to anglesite (lead sulfate) or cerussite (lead carbonate). Galena exposed to acid mine drainage can be oxidized to anglesite by naturally occurring bacteria and archaea, in a process similar to bioleaching.[6]

Galena uses

One of the oldest uses of galena was in the eye cosmetic kohl. In Ancient Egypt, this was applied around the eyes to reduce the glare of the desert sun and to repel flies, which were a potential source of disease.[7]

Galena is the primary ore of lead, which is mainly used in making lead–acid batteries; however, significant amounts are also used to make lead sheeting and lead shot. Galena is often mined for its silver content, such as at the Galena Mine in northern Idaho.

Also known as "potter's ore", galena is used in a green glaze applied to pottery.[citation needed]

Galena cat's whisker detector

Galena is a semiconductor with a small band gap of about 0.4 eV, which found use in early wireless communication systems. It was used as the crystal in crystal radio receivers, in which it was used as a point-contact diode capable of rectifying alternating current to detect the radio signals. The galena crystal was used with a sharp wire, known as a "cat's whisker" in contact with it. The operation of the radio required that the point of contact on the galena be shifted about to find a part of the crystal that acted as a rectifying diode. Making such wireless receivers was a popular home hobby in Britain and other European countries during the 1930s. Scientists associated with the investigation of the diode effect are Karl Ferdinand Braun and Jagadish Bose. In modern wireless communication systems, galena detectors have been replaced by more reliable semiconductor devices.[8]

Health issues

Galena contains lead, a toxic element. While bound to crystal structure, the lead content of galena is of minor concern and the mineral is safe to handle. However, prolonged exposure via inhalation or ingestion of the pulverized dust is hazardous to one's health.

See also

References

  1. ^ a b c d e Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C., eds. (1990). "Galena". Handbook of Mineralogy (PDF). Vol. 1. Chantilly, VA: Mineralogical Society of America. ISBN 0962209708.
  2. ^ Galena. Webmineral
  3. ^ a b c Galena. Mindat.org
  4. ^ Young, Courtney A.; Taylor, Patrick R.; Anderson, Corby G. (2008). Hydrometallurgy 2008: Proceedings of the Sixth International Symposium. SME. ISBN 9780873352666.
  5. ^ Rickwood, P. C. (1981). "The largest crystals" (PDF). American Mineralogist. 66: 885–907.
  6. ^ Da Silva, Gabriel (2004). "Kinetics and mechanism of the bacterial and ferric sulphate oxidation of galena". Hydrometallurgy. 75: 99. doi:10.1016/j.hydromet.2004.07.001.
  7. ^ Metropolitan Museum of Art (2005). The Art of Medicine in Ancient Egypt. New York. p. 10. ISBN 1-58839-170-1.{{cite book}}: CS1 maint: location missing publisher (link)
  8. ^ Lee, Thomas H. (2007). "The (Pre-)History of the Integrated Circuit: A Random Walk" (PDF). IEEE Solid-State Circuits Newsletter. 12 (2): 16–22. doi:10.1109/N-SSC.2007.4785573. ISSN 1098-4232.

Further reading

  • Klein, Cornelis; Hurlbut, Cornelius S., Jr. (1985). Manual of Mineralogy (2nd ed.). Wiley. p. 274–276. ISBN 0-471-80580-7.{{cite book}}: CS1 maint: multiple names: authors list (link)

External links