Jump to content

Innermost stable circular orbit

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Monkbot (talk | contribs) at 01:14, 23 January 2021 (Task 18 (cosmetic): eval 5 templates: hyphenate params (1×);). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The innermost stable circular orbit (often called the ISCO) is the smallest circular orbit in which a test particle can stably orbit a massive object in general relativity.[1] The location of the ISCO, the ISCO-radius (), depends on the angular momentum (spin) of the central object.

The ISCO plays an important role in black hole accretion disks since it marks the inner edge of the disk.

For a non-spinning massive object, where the gravitational field can be expressed with the Schwarzschild metric, the ISCO is located at,

where is the Schwarzschild radius of the massive object with mass . Thus, even for a non-spinning object, the ISCO radius is only three times the Schwarzschild radius, , suggesting that only black holes and neutron stars have innermost stable circular orbits outside of their surfaces. As the angular momentum of the central object increases, decreases.

Circular orbits are still possible between the ISCO and the photon sphere, but they are unstable. The photon sphere has a radius of

For a massless test particle like a photon, the only possible circular orbit is exactly at the photon sphere, and is unstable.[2] Inside the photon sphere, no circular orbits exist.

Rotating black holes

The case for rotating black holes is somewhat more complicated. The equatorial ISCO in the Kerr metric depends on whether the orbit is prograde (negative sign below) or retrograde (positive sign):

where

with as the rotation parameter.[3] As the rotation rate of the black hole increases the retrograde ISCO increases towards (4.5 times the a=0 horizon radius) while the prograde ISCO decreases towards the horizon radius and appears to merge with it for an extremal black hole (however, this later merger is illusory and an artefact of using Boyer-Lindquist coordinates [4]).

If the particle is also spinning there is a further split in ISCO radius depending on whether the spin is aligned with or against the black hole rotation.[5]

References

  1. ^ Misner, Charles; Thorne, Kip S.; Wheeler, John (1973). Gravitation. W. H. Freeman and Company. ISBN 0-7167-0344-0.
  2. ^ Carroll, Sean M. (December 1997). "Lecture Notes on General Relativity: The Schwarzschild Solution and Black Holes". arXiv:gr-qc/9712019. Bibcode:1997gr.qc....12019C. Retrieved 2017-04-11.
  3. ^ Bardeen, James M.; Press, William H.; Teukolsky, Saul A. (1972). "Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation". The Astrophysical Journal. 178: 347–370. Bibcode:1972ApJ...178..347B. doi:10.1086/151796.
  4. ^ Hirata, Christopher M. (December 2011). "Lecture XXVII: Kerr black holes: II. Precession, circular orbits, and stability" (PDF). Caltech. Retrieved 5 March 2018.
  5. ^ Jefremov, Paul I; Tsupko, Oleg Yu; Bisnovatyi-Kogan, Gennady S (15 June 2015). "Innermost stable circular orbits of spinning test particles in Schwarzschild and Kerr space-times". Physical Review D. 91 (12): 124030. arXiv:1503.07060. Bibcode:2015PhRvD..91l4030J. doi:10.1103/PhysRevD.91.124030. S2CID 119233768.
  • Leo C. Stein, Kerr calculator V2 [1]