List of most massive black holes

From Wikipedia, the free encyclopedia
Jump to: navigation, search
An artist's impression of a supermassive black hole devouring matter from an accretion disc

This is an ordered list of the most massive black holes so far discovered (and probable candidates), measured in units of solar masses (M), or the mass of the Sun (approx. 2×1030 kilograms).

Introduction[edit]

A supermassive black hole (SMBH) is the largest type of black hole, on the order of hundreds of thousands to billions of solar masses (M), and is found in the center of almost all massive galaxies. Unambiguous dynamical evidence for SMBHs exists only in a handful of galaxies;[1] these include the Milky Way, the Local Group galaxies M31 and M32, and a few galaxies beyond the Local Group, e.g. NGC 4395. In these galaxies, the mean square (or root mean square) velocities of the stars or gas rises as ~1/r near the center, indicating a central point mass. In all other galaxies observed to date, the rms velocities are flat, or even falling, toward the center, making it impossible to state with certainty that a supermassive black hole is present.[1] Nevertheless, it is commonly accepted that the center of nearly every galaxy contains a supermassive black hole.[2] The reason for this assumption is the M-sigma relation, a tight (low scatter) relation between the mass of the hole in the ~10 galaxies with secure detections, and the velocity dispersion of the stars in the bulges of those galaxies.[3] This correlation, although based on just a handful of galaxies, suggests to many astronomers a strong connection between the formation of the black hole and the galaxy itself.[2]

Although SMBHs are currently theorized to exist in almost all massive galaxies, more massive black holes are rare; with only fewer than several dozen having been discovered to date. There is extreme difficulty in determining a mass of a particular SMBH, and so they still remain in the field of open research. SMBHs with accurate masses are limited only to galaxies within the Laniakea Supercluster and to active galactic nuclei.

Another problem for this list is the method used in determining the mass. Such methods, such as broad emission-line reverberation mapping (BLRM), Doppler measurements, velocity dispersion, and the M-sigma relation have not yet been well established. Most of the time, the masses derived from the given methods contradict each other's values.

This list contains all black holes with known masses. Some objects in this list have two citations, like 3C 273; one from Bradley M. Peterson et al. using the BLRM method,[4] and the other from Charles Nelson using [OIII]λ5007 value and velocity dispersion.[5] Note that this list is very far from complete, as SDSS alone detected 200000 quasars, which may be likely the homes of billion-solar-mass black holes. In addition, there are several hundred citations for black hole measurements not yet included on this list. Despite this, the majority of well-known black holes above 1 billion M are shown. Messier galaxies with precisely known black holes are all included.

List[edit]

Listed black holes here have issues of measurement accuracies and more importantly the mass estimates are based on different kinds of evaluation methods which are all affected by their own individual systematics.

List of most massive black holes
Name Solar mass
(Sun = 1)
Notes
TON 618 6.6×1010[6] Estimated from quasar Hβ emission line correlation.
S5 0014+81 4×1010[7][8][9] A 2010 paper suggested that a funnel collimates the radiation around the jet axis, creating an optical illusion of very high brightness, and thus a possible overestimation of the black hole mass.[7]
SDSS J102325.31+514251.0 (3.31±0.61)×1010[10] Estimated from quasar MgII emission line correlation.
Black hole of central quasar of H1821+643 3×1010[11] Nearest galaxy cluster harboring a quasar in its core.[11]
APM 08279+5255 2.3×1010[12]
1.0+0.17
−0.13
×1010
[13]
Based on velocity width of CO line from orbiting molecular gas,[12] and reverberation mapping using SiIV and CIV emission lines.[13]
NGC 4889 (2.1±1.6)×1010[14][15] Best fit: the estimate ranges from 6 billion to 37 billion M.[14][15]
Black hole of central elliptical galaxy of Phoenix Cluster 2×1010[16] This black hole is continuously growing at the rate of ~60 M per year.
SDSS J074521.78+734336.1 (1.95±0.05)×1010[10] Estimated from quasar MgII emission line correlation.
OJ 287 primary 1.8×1010[17] A smaller 100 million M black hole orbits this one in a 12-year period (see OJ 287 secondary below). But this measurement is in question due to the limited number and precision of observed companion orbits.
NGC 1600 (1.7±0.15)×1010[18][19] Unprecedentedly massive in relation of its location: an elliptical galaxy host in a sparse environment.
SDSS J08019.69+373047.3 (1.51±0.31)×1010[10] Estimated from quasar MgII emission line correlation.
SDSS J115954.33+201921.1 (1.41±0.10)×1010[10] Estimated from quasar MgII emission line correlation.
SDSS J075303.34+423130.8 (1.38±0.03)×1010[10] Estimated from quasar Hβ emission line correlation.
SDSS J080430.56+542041.1 (1.35±0.22)×1010[10] Estimated from quasar MgII emission line correlation.
Abell 1201 BCG (1.3±0.6)×1010[20] Estimated from the strong gravitational lensing of a background galaxy behind the BCG.[20] Beware of ambiguity between the BH mass determination and the galaxy cluster's dark matter profile.[21]
SDSS J081855.77+095848.0 (1.20±0.06)×1010[10] Estimated from quasar MgII emission line correlation.
SDSS J0100+2802 (1.24±0.19)×1010[22][23] Estimated from quasar MgII emission line correlation. This object grew early in cosmic history (redshift 6.30).
SDSS J082535.19+512706.3 (1.12±0.20)×1010[10] Estimated from quasar Hβ emission line
SDSS J013127.34-032100.1 (1.1±0.2)×1010[24] Estimated from accretion disk spectrum modelling.[24]
PSO J334.2028+01.4075 1×1010[25] There are actually two black holes, orbiting at each other in a close pair with a 542-day period. The largest one is quoted, while the smaller one's mass is not defined.[25]
Black hole of central elliptical galaxy of RX J1532.9+3021 1×1010[26]
QSO B2126-158 1×1010[7]
Holmberg 15A 1×1010[27] Mass estimates range from ~310 billion M down to 3 billion M. They all rely on empirical scaling relations and are thus obtained from extrapolation and not from kinematical measurements.
SDSS J015741.57-010629.6 (9.8±1.4)×109[10] Estimated from quasar MgII emission line correlation.
NGC 3842 9.7+3.0
−2.5
×109
[14][15]
Brightest galaxy in the Leo Cluster
SDSS J230301.45-093930.7 (9.12±0.88)×109[10] Estimated from quasar MgII emission line correlation.
SDSS J075819.70+202300.9 (7.8±3.9)×109[10] Estimated from quasar Hβ emission line correlation.
CID-947 6.9+0.8
−1.2
×109
[28]
Constitutes 10% of the total mass of its host galaxy. Estimated from quasar Hβ emission line correlation.
SDSS J080956.02+502000.9 (6.46±0.45)×109[10] Estimated from quasar Hβ emission line correlation.
SDSS J014214.75+002324.2 (6.31±1.16)×109[10] Estimated from quasar MgII emission line correlation.
Messier 87 7.22+0.34
−0.40
×109
[29]
6.3×109[30]
Central galaxy of the Virgo Cluster; notable for its 4,300 light-year long relativistic jet.
NGC 5419 7.2+2.7
−1.9
×109
[31]
Estimated from the stellar velocity distribution. A secondary satellite SMBH may orbit around 70 parsecs.[31]
SDSS J025905.63+001121.9 (5.25±0.73)×109[10] Estimated from quasar Hβ emission line correlation.
SDSS J094202.04+042244.5 (5.13±0.71)×109[10] Estimated from quasar Hβ emission line correlation.
QSO B0746+254 5×109[7]
QSO B2149-306 5×109[7]
NGC 1277 5×109[32] Once thought to harbor a black hole so large that it contradicted modern galaxy formation and evolutionary theories,[33] re-analysis of the data revised it downward to roughly a third of the original estimate.[32]
SDSS J090033.50+421547.0 (4.7±0.2)×109[10] Estimated from quasar MgII emission line correlation.
Messier 60 (4.5±1.0)×109[34]
SDSS J011521.20+152453.3 (4.1±2.4)×109[10] Estimated from quasar Hβ emission line correlation.
QSO B0222+185 4×109[7]
Hercules A (3C 348) 4×109 Notable for its million light-year long relativistic jet.
Abell 1836-BCG 3.61+0.41
−0.50
×109
[35]
SDSS J213023.61+122252.0 (3.5±0.2)×109[10] Estimated from quasar Hβ emission line correlation.
SDSS J173352.23+540030.4 (3.4±0.4)×109[10] Estimated from quasar MgII emission line correlation.
SDSS J025021.76-075749.9 (3.1±0.6)×109[10] Estimated from quasar MgII emission line correlation.
SDSS J030341.04-002321.9 (3.0±0.4)×109[10] Estimated from quasar MgII emission line correlation.
QSO B0836+710 3×109[7]
SDSS J224956.08+000218.0 (2.63±1.21)×109[10] Estimated from quasar Hβ emission line correlation.
SDSS J030449.85-000813.4 (2.4±0.50)×109[10] Estimated from quasar Hβ emission line correlation.
SDSS J234625.66-001600.4 (2.24±0.15)×109[10] Estimated from quasar Hβ emission line correlation.
ULAS J1120+0641 2×109[36][37] Also, currently on record as the second most distant quasar, at z=7.085[36]
QSO 0537-286 2×109[7]
NGC 3115 2×109[38]
Q0906+6930 2×109[39] Most distant blazar, at z = 5.47
QSO B0805+614 1.5×109[7]
Messier 84 1.5×109[40]
Abell 3565-BCG 1.34+0.21
−0.19
×109
[35]
NGC 7768 1.3+0.5
−0.4
×109
[15]
Black hole of central elliptical galaxy of MS 0735.6+7421 1×109[41][42][43] Produced a colossal AGN outburst after accreting 600 million M worth of material. BH mass not explicitly stated; just a lower limit. Requires assumptions about the efficiencies of gas accretion and jet power.[41][42][43]
QSO B225155+2217 1×109[7]
QSO B1210+330 1×109[7]
NGC 6166 1×109[44] Central galaxy of Abell 2199; notable for its hundred thousand light year long relativistic jet.
Cygnus A 1×109[45] Brightest extrasolar radio source in the sky as seen at frequencies above 1 GHz
Sombrero Galaxy 1×109[46] Bolometrically most luminous galaxy in the local universe and also the nearest billion-solar-mass black hole to Earth.
Markarian 501 9×1083.4×109[47] Brightest object in the sky in very high energy gamma rays.
PG 1426+015 (1.298±0.385)×109[4]
467740000[5]
3C 273 (8.86±1.87)×108[4]
550000000[5]
Brightest quasar in the sky
ULAS J1342+0928 8×108[48]
400000000000000[48]
Most distant quasar[48] − currently on record as the most distant quasar at z=7.54[48]
Messier 49 5.6×108[49]
NGC 1399 5×108[50] Central galaxy of the Fornax Cluster
PG 0804+761 (6.93±0.83)×108[4]
190550000[5]
PG 1617+175 (5.94±1.38)×108[4]
275420000[5]
PG 1700+518 7.81+1.82
−1.65
×108
[4]
60260000[5]
NGC 4261 4×108[51] Notable for its 88000 light-year long relativistic jet.[52]
PG 1307+085 (4.4±1.23)×108[4]
281 840 000[5]
SAGE0536AGN (3.5±0.8)×108[53][54] Constitutes 1.4% of the mass of its host galaxy
NGC 1275 3.4×108[55][56] Central galaxy of the Perseus Cluster
3C 390.3 (2.87±0.64)×108[4]
338840000[5]
II Zwicky 136 (4.57±0.55)×108[4]
144540000[5]
PG 0052+251 (3.69±0.76)×108[4]
218780000[5]
Messier 59 270000000[57] This black hole has a retrograde rotation.[58]
PG 1411+442 (4.43±1.46)×108[4]
79430000[5]
Markarian 876 (2.79±1.29)×108[4]
240000000[5]
Andromeda Galaxy 2.3×108 Nearest large galaxy to the Milky Way
PG 0953+414 (2.76±0.59)×108[4]
182000000[5]
PG 0026+129 (3.93±0.96)×108[4]
53700000[5]
Fairall 9 (2.55±0.56)×108[4]
79430000[5]
Markarian 1095 (1.5±0.19)×108[4]
182000000[5]
Messier 105 1.4×1082×108[59]
Markarian 509 (1.43±0.12)×108[4]
57550000[5]
OJ 287 secondary 1×108[17] The smaller black hole orbiting OJ 287 primary (see above).
RX J124236.9-111935 1×108[60] Observed by the Chandra X-ray Observatory to be tidally disrupting a star.[60][61]
Messier 85 1×108[62]
NGC 5548 (6.71±0.26)×107[4]
123000000[5]
PG 1221+143 (1.46±0.44)×108[4]
40740000[5]
Messier 88 8×107[63]
Messier 81 (Bode's Galaxy) 7×107[64]
Markarian 771 (7.32±3.52)×107[4]
7.586×107[5]
Messier 58 7×107[65]
PG 0844+349 (9.24±3.81)×107[4]
2.138×107[5]
Centaurus A 5.5×107[66] Also notable for its million light-year long relativistic jet.[67]
Markarian 79 (5.24±1.44)×107[4]
5.25×107[5]
Messier 96 48000000[68] Estimates can be as low as 1.5 million solar masses
Markarian 817 (4.94±0.77)×107[4]
4.365×107[5]
NGC 3227 (4.22±2.14)×107[4]
3.89×107[5]
NGC 4151 primary 4×107[69][70]
3C 120 5.55+3.14
−2.25
×107
[4]
2.29×107[5]
Markarian 279 (3.49±0.92)×107[4]
4.17×107[5]
NGC 3516 (4.27±1.46)×107[4]
2.3×107[5]
NGC 863 (4.75±0.74)×107[4]
1.77×107[5]
Messier 82 (Cigar Galaxy) 3×107[71] Prototype starburst galaxy.[72]
Messier 108 2.4×107[73]
M60-UCD1 2×107[74] Constitutes 15% of the mass of its host galaxy.
NGC 3783 (2.98±0.54)×107[4]
9300000[5]
Markarian 110 (2.51±0.61)×107[4]
5620000[5]
Markarian 335 (1.42±0.37)×107[4]
6310000[5]
NGC 4151 secondary 10000000[70]
NGC 7469 (12.2±1.4)×106[4]
6460000[5]
IC 4329 A 9.90+17.88
−11.88
×106
[4]
5010000[5]
NGC 4593 5.36+9.37
−6.95
×106
[4]
8130000[5]
Messier 61 5×106[75]
Messier 32 1.5×1065×106[76] A dwarf satellite galaxy of the Andromeda Galaxy.
Sagittarius A* 4.3×106[77] The black hole at the center of the Milky Way.

See also[edit]

References[edit]

  1. ^ a b Merritt, David (2013). Dynamics and Evolution of Galactic Nuclei. Princeton, NJ: Princeton University Press. p. 23. ISBN 978-0-691-15860-0. 
  2. ^ a b King, Andrew (2003-09-15). "Black Holes, Galaxy Formation, and the MBH-σ Relation". The Astrophysical Journal Letters. 596: L27–L29. arXiv:astro-ph/0308342Freely accessible. Bibcode:2003ApJ...596L..27K. doi:10.1086/379143. 
  3. ^ Ferrarese, Laura; Merritt, David (2000-08-10). "A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies". The Astrophysical Journal. The American Astronomical Society. 539 (1): L9–12. arXiv:astro-ph/0006053Freely accessible. Bibcode:2000ApJ...539L...9F. doi:10.1086/312838. 
  4. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah Peterson, Bradley M. (2013). "Measuring the Masses of Supermassive Black Holes" (PDF). Space Science Reviews. 183: 253. Bibcode:2014SSRv..183..253P. doi:10.1007/s11214-013-9987-4. 
  5. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah Nelson, Charles H. (2000). "Black Hole Mass, Velocity Dispersion, and the Radio Source in Active Galactic Nuclei". The Astrophysical Journal. 544 (2): L91. arXiv:astro-ph/0009188Freely accessible. Bibcode:2000ApJ...544L..91N. doi:10.1086/317314. 
  6. ^ Shemmer, O.; Netzer, H.; Maiolino, R.; Oliva, E.; Croom, S.; Corbett, E.; di Fabrizio, L. (2004). "Near-infrared spectroscopy of high-redshift active galactic nuclei. I. A metallicity-accretion rate relationship". The Astrophysical Journal. 614 (2): 547–557. arXiv:astro-ph/0406559Freely accessible. Bibcode:2004ApJ...614..547S. doi:10.1086/423607. 
  7. ^ a b c d e f g h i j k Ghisellini, G.; Ceca, R. Della; Volonteri, M.; Ghirlanda, G.; Tavecchio, F.; Foschini, L.; Tagliaferri, G.; Haardt, F.; Pareschi, G.; Grindlay, J. (2010). "Chasing the heaviest black holes in active galactic nuclei, the largest black hole". Monthly Notices of the Royal Astronomical Society. 405: 387. arXiv:0912.0001Freely accessible. Bibcode:2010MNRAS.405..387G. doi:10.1111/j.1365-2966.2010.16449.x. 
  8. ^ Ghisellini, G.; Foschini, L.; Volonteri, M.; Ghirlanda, G.; Haardt, F.; Burlon, D.; Tavecchio, F.; et al. (14 July 2009). "The blazar S5 0014+813: a real or apparent monster?". Monthly Notices of the Royal Astronomical Society: Letters. v2. 399: L24. arXiv:0906.0575Freely accessible. Bibcode:2009MNRAS.399L..24G. doi:10.1111/j.1745-3933.2009.00716.x. 
  9. ^ Gaensler, Bryan (2012-07-03). Extreme Cosmos: A Guided Tour of the Fastest, Brightest, Hottest, Heaviest, Oldest, and Most Amazing Aspects of Our Universe. ISBN 978-1-101-58701-0. Retrieved 8 December 2014. 
  10. ^ a b c d e f g h i j k l m n o p q r s t u v w x Zuo, Wenwen; Wu, Xue-Bing; Fan, Xiaohui; Green, Richard; Wang, Ran; Bian, Fuyan (2014). "Black Hole Mass Estimates and Rapid Growth of Supermassive Black Holes in Luminous $z \sim$ 3.5 Quasars". The Astrophysical Journal. 799 (2): 189. arXiv:1412.2438Freely accessible. Bibcode:2015ApJ...799..189Z. doi:10.1088/0004-637X/799/2/189. 
  11. ^ a b Walker, S. A.; Fabian, A. C.; Russell, H. R.; Sanders, J. S. (2014). "The effect of the quasar H1821+643 on the surrounding intracluster medium: Revealing the underlying cooling flow". Monthly Notices of the Royal Astronomical Society. 442 (3): 2809. arXiv:1405.7522v1Freely accessible [astro-ph.HE]. Bibcode:2014MNRAS.442.2809W. doi:10.1093/mnras/stu1067. 
  12. ^ a b Riechers, D. A.; Walter, F.; Carilli, C. L.; Lewis, G. F. (2009). "Imaging The Molecular Gas in a z = 3.9 Quasar Host Galaxy at 0farcs3 Resolution: A Central Sub-Kiloparsec Scale Star Formation Reservoir in APM 08279+5255". The Astrophysical Journal. 690: 463–485. arXiv:0809.0754Freely accessible. Bibcode:2009ApJ...690..463R. doi:10.1088/0004-637X/690/1/463. 
  13. ^ a b Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M. (2016). "A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255. II. Emission- and absorption-line variability time lags". Astronomy and Astrophysics. 587: A43. arXiv:1512.03195Freely accessible. Bibcode:2016A&A...587A..43S. doi:10.1051/0004-6361/201527152. 
  14. ^ a b c McConnell, Nicholas J.; Ma, Chung-Pei; Gebhardt, Karl; Wright, Shelley A.; Murphy, Jeremy D.; Lauer, Tod R.; Graham, James R.; Richstone, Douglas O. (2011). "Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies". Nature. 480 (7376): 215–8. arXiv:1112.1078Freely accessible. Bibcode:2011Natur.480..215M. doi:10.1038/nature10636. PMID 22158244. 
  15. ^ a b c d McConnell, N. J.; Ma, C.-P.; Murphy, J. D.; Gebhardt, K.; Lauer, T. R.; Graham, J. R.; Wright, S. A.; Richstone, D. O. (2012). "Dynamical Measurements of Black Hole Masses in Four Brightest Cluster Galaxies at 100 Mpc". The Astrophysical Journal. 756 (2): 179. arXiv:1203.1620Freely accessible. Bibcode:2012ApJ...756..179M. doi:10.1088/0004-637X/756/2/179. 
  16. ^ McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bazin, G.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; De Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Egami, E.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; et al. (2012). "A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies". Nature. 488 (7411): 349–52. arXiv:1208.2962Freely accessible. Bibcode:2012Natur.488..349M. doi:10.1038/nature11379. PMID 22895340. 
  17. ^ a b Valtonen, M. J.; Ciprini, S.; Lehto, H. J. (2012). "On the masses of OJ287 black holes". Monthly Notices of the Royal Astronomical Society. 427: 77. arXiv:1208.0906Freely accessible. Bibcode:2012MNRAS.427...77V. doi:10.1111/j.1365-2966.2012.21861.x. 
  18. ^ Thomas, J.; Ma, C.-P.; McConnell, N. J.; Greene, J. E.; Blakeslee, J. P.; Janish, R. (2016). "A 17-billion-solar-mass black hole in a group galaxy with a diffuse core". Nature. 532 (7599): 340–342. arXiv:1604.01400Freely accessible. Bibcode:2016Natur.532..340T. doi:10.1038/nature17197. 
  19. ^ Morrow, Ashley (5 April 2016). "Behemoth Black Hole Found in an Unlikely Place". 
  20. ^ a b Smith, R. J.; Lucey, J. R.; Edge, A. C. (2017). "A counterimage to the gravitational arc in Abell 1201: Evidence for IMF variations or a 1010 Msun black hole?". Monthly Notices of the Royal Astronomical Society. 467: 836–848. arXiv:1701.02745Freely accessible. Bibcode:2017MNRAS.467..836S. doi:10.1093/mnras/stx059. 
  21. ^ Smith, R. J.; Lucey, J. R.; Edge, A. C. (2017). "Stellar dynamics in the strong-lensing central galaxy of Abell 1201: A low stellar mass-to-light ratio a large central compact mass and a standard dark matter halo". Monthly Notices of the Royal Astronomical Society. 1706: arXiv:1706.07055. arXiv:1706.07055Freely accessible. Bibcode:2017arXiv170607055S. 
  22. ^ Wu, X.; Wang, F.; Fan, X.; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian D.; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri (25 February 2015). "An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30". Nature. 518 (7540): 512–515. arXiv:1502.07418Freely accessible. Bibcode:2015Natur.518..512W. doi:10.1038/nature14241. PMID 25719667. 
  23. ^ "Astronomers Discover Record-Breaking Quasar". Sci-News.com. 2015-02-25. Retrieved 2015-02-27. 
  24. ^ a b Ghisellini, G.; Tagliaferri, G.; Sbarrato, T.; Gehrels, N. (2015). "SDSS J013127.34-032100.1: A candidate blazar with a 11 billion solar mass black hole at $z$=5.18". Monthly Notices of the Royal Astronomical Society: Letters. 450: L34. arXiv:1501.07269Freely accessible. Bibcode:2015MNRAS.450L..34G. doi:10.1093/mnrasl/slv042. 
  25. ^ a b Liu, Tingting; Gezari, Suvi; Heinis, Sebastien; Magnier, Eugene A.; Burgett, William S.; Chambers, Kenneth; Flewelling, Heather; Huber, Mark; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Tonry, John L.; Wainscoat, Richard J.; Waters, Christopher (2015). "A Periodically Varying Luminous Quasar at z=2 from the Pan-STARRS1 Medium Deep Survey: A Candidate Supermassive Black Hole Binary in the Gravitational Wave-Driven Regime". The Astrophysical Journal. 803 (2): L16. arXiv:1503.02083Freely accessible. Bibcode:2015ApJ...803L..16L. doi:10.1088/2041-8205/803/2/L16. 
  26. ^ Hlavacek-Larrondo, J.; Allen, S. W.; Taylor, G. B.; Fabian, A. C.; Canning, R. E. Ato.; Werner, N.; Sanders, J. S.; Grimes, C. K.; Ehlert, S.; von Der Linden, A. (2013). "Probing the extreme realm of AGN feedback in the massive galaxy cluster, RX J1532.9+3021". The Astrophysical Journal. 777 (2): 163. arXiv:1306.0907Freely accessible. Bibcode:2013ApJ...777..163H. doi:10.1088/0004-637X/777/2/163. Lay summary. 
  27. ^ López-Cruz, O.; Añorve, C.; Birkinshaw, M.; Worrall, D. M.; Ibarra-Medel, H. J.; Barkhouse, W. A.; Torres-Papaqui, J. P.; Motta, V. (2014). "The Brightest Cluster Galaxy in Abell 85: The Largest Core Known So Far". The Astrophysical Journal. 795 (2): L31. arXiv:1405.7758Freely accessible. Bibcode:2014ApJ...795L..31L. doi:10.1088/2041-8205/795/2/L31. 
  28. ^ Trakhtenbrot, Benny; Megan Urry, C.; Civano, Francesca; Rosario, David J.; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke D. (2015). "An Over-Massive Black Hole in a Typical Star-Forming Galaxy, 2 Billion Years After the Big Bang". Science. 349 (168): 168–171. arXiv:1507.02290Freely accessible. Bibcode:2015Sci...349..168T. doi:10.1126/science.aaa4506. 
  29. ^ Oldham, L. J.; Auger, M. W. (2016). "Galaxy structure from multiple tracers - II. M87 from parsec to megaparsec scales". Monthly Notices of the Royal Astronomical Society. 457: 421–439. arXiv:1601.01323Freely accessible. Bibcode:2016MNRAS.457..421O. doi:10.1093/mnras/stv2982. 
  30. ^ Walsh, Jonelle L.; Barth, Aaron J.; Ho, Luis C.; Sarzi, Marc (June 2013). "The M87 Black Hole Mass from Gas-dynamical Models of Space Telescope Imaging Spectrograph Observations". The Astrophysical Journal. 770 (2): 86. arXiv:1304.7273Freely accessible. Bibcode:2013ApJ...770...86W. doi:10.1088/0004-637X/770/2/86. 
  31. ^ a b Mazzalay, X.; Thomas, J.; Saglia, R. P.; Wegner, G. A.; Bender, R.; Erwin, P.; Fabricius, M. H.; Rusli, S. P. (2016). "The supermassive black hole and double nucleus of the core elliptical NGC 5419". Monthly Notices of the Royal Astronomical Society. 462 (3): 2847–2860. arXiv:1607.06466Freely accessible. Bibcode:2016MNRAS.462.2847M. doi:10.1093/mnras/stw1802. 
  32. ^ a b Emsellem, Eric (Aug 2013). "Is the black hole in NGC 1277 really overmassive?". Monthly Notices of the Royal Astronomical Society. 433 (3): 1862–1870. arXiv:1305.3630Freely accessible. Bibcode:2013MNRAS.433.1862E. doi:10.1093/mnras/stt840. 
  33. ^ van den Bosch, Remco C. E.; et al. (29 Nov 2012). "An over-massive black hole in the compact lenticular galaxy NGC 1277". Nature. 491 (7426): 729–731. arXiv:1211.6429Freely accessible. Bibcode:2012Natur.491..729V. doi:10.1038/nature11592. PMID 23192149. Retrieved 29 Nov 2012. 
  34. ^ Juntai Shen; Karl Gebhardt (2010). "The Supermassive Black Hole and Dark Matter Halo of NGC 4649 (M60)". The Astrophysical Journal. 711: 484–494. arXiv:0910.4168Freely accessible. Bibcode:2010ApJ...711..484S. doi:10.1088/0004-637X/711/1/484. 
  35. ^ a b Dalla Bontà, E.; Ferrarese, L.; Corsini, E. M.; Miralda-Escudé, J.; Coccato, L.; Sarzi, M.; Pizzella, A.; Beifiori, A. (2009). "The High-Mass End of the Black Hole Mass Function: Mass Estimates in Brightest Cluster Galaxies". The Astrophysical Journal. 690: 537–559. arXiv:0809.0766Freely accessible. Bibcode:2009ApJ...690..537D. doi:10.1088/0004-637X/690/1/537. 
  36. ^ a b Daniel J. Mortlock; Stephen J. Warren; Bram P. Venemans; Patel; Hewett; McMahon; Simpson; Theuns; Gonzáles-Solares; Adamson; Dye; Hambly; Hirst; Irwin; Kuiper; Lawrence; Röttgering; et al. (2011). "A luminous quasar at a redshift of z = 7.085". Nature. 474 (7353): 616–619. arXiv:1106.6088Freely accessible. Bibcode:2011Natur.474..616M. doi:10.1038/nature10159. PMID 21720366. 
  37. ^ John Matson (2011-06-29). "Brilliant, but Distant: Most Far-Flung Known Quasar Offers Glimpse into Early Universe". Scientific American. Retrieved 2011-06-30. 
  38. ^ Kormendy, John; Richstone, Douglas (1992). "Evidence for a supermassive black hole in NGC 3115". The Astrophysical Journal. 393: 559–578. Bibcode:1992ApJ...393..559K. doi:10.1086/171528. 
  39. ^ Romani, Roger W. (2006). "The Spectral Energy Distribution of the High-z Blazar Q0906+6930". The Astronomical Journal. 132 (5): 1959–1963. arXiv:astro-ph/0607581Freely accessible. Bibcode:2006AJ....132.1959R. doi:10.1086/508216. 
  40. ^ Bower, G.A.; et al. (1998). "Kinematics of the Nuclear Ionized Gas in the Radio Galaxy M84 (NGC 4374)". Astrophysical Journal. 492 (1): 111–114. arXiv:astro-ph/9710264Freely accessible. Bibcode:1998ApJ...492L.111B. doi:10.1086/311109. 
  41. ^ a b Most Powerful Eruption In The Universe Discovered NASA/Marshall Space Flight Center (ScienceDaily) January 6, 2005
  42. ^ a b McNamara, B. R.; Nulsen, P. E. J.; Wise, M. W.; Rafferty, D. A.; Carilli, C.; Sarazin, C. L.; Blanton, E. L. (2005). "The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts". Nature. 433 (7021): 45–47. Bibcode:2005Natur.433...45M. doi:10.1038/nature03202. 
  43. ^ a b Rafferty, D. A.; McNamara, B. R.; Nulsen, P. E. J.; Wise, M. W. (2006). "The Feedback-regulated Growth of Black Holes and Bulges through Gas Accretion and Starbursts in Cluster Central Dominant Galaxies". The Astrophysical Journal. 652: 216–231. arXiv:astro-ph/0605323Freely accessible. Bibcode:2006ApJ...652..216R. doi:10.1086/507672. 
  44. ^ Di Matteo, Tiziana; Johnstone, Roderick M; Allen, Steven W.; Fabian, Andrew C. (March 8, 2001). "Accretion onto Nearby Supermassive Black Holes: Chandra Constraints on the Dominant Cluster Galaxy NGC 6166". The Astrophysical Journal. 550: L19. arXiv:astro-ph/0012194Freely accessible. Bibcode:2001ApJ...550L..19D. doi:10.1086/319489. 
  45. ^ "Black Holes: Gravity's Relentless Pull interactive: Encyclopedia". HubbleSite. Retrieved 2015-05-20. 
  46. ^ J. Kormendy; R. Bender; E. A. Ajhar; A. Dressler; S. M. Faber; K. Gebhardt; C. Grillmair; T. R. Lauer; D. Richstone; S. Tremaine (1996). "Hubble Space Telescope Spectroscopic Evidence for a 1 X 10 9 Msun Black Hole in NGC 4594". Astrophysical Journal Letters. 473 (2): L91–L94. Bibcode:1996ApJ...473L..91K. doi:10.1086/310399. 
  47. ^ Rieger, F. M.; Mannheim, K. (2003). "On the central black hole mass in Mkn 501". Astronomy and Astrophysics. 397: 121. arXiv:astro-ph/0210326v1Freely accessible. Bibcode:2003A&A...397..121R. doi:10.1051/0004-6361:20021482. 
  48. ^ a b c d Bañados, Eduardo; et al. (6 December 2017). "An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature. 553 (7689): 473. arXiv:1712.01860Freely accessible. Bibcode:2018Natur.553..473B. doi:10.1038/nature25180. Retrieved 6 December 2017. 
  49. ^ Loewenstein, Michael; et al. (July 2001). "Chandra Limits on X-Ray Emission Associated with the Supermassive Black Holes in Three Giant Elliptical Galaxies". The Astrophysical Journal. 555 (1): L21–L24. arXiv:astro-ph/0106326Freely accessible. Bibcode:2001ApJ...555L..21L. doi:10.1086/323157. 
  50. ^ GEBHARDT, K.; LAUER, T. R.; PINKNEY, J.; BENDER, R.; RICHSTONE, D.; ALLER, M.; BOWER, G.; DRESSLER, A. (December 2007). "The Black Hole Mass and Extreme Orbital Structure in NGC 1399". The Astrophysical Journal. 671 (2): 1321–1328. arXiv:0709.0585Freely accessible. Bibcode:2007ApJ...671.1321G. doi:10.1086/522938. 
  51. ^ "Massive Black Holes Dwell in Most Galaxies, According to Hubble Census". Hubblesite STScI-1997-01. 1997-01-13. Retrieved 2010-05-02. 
  52. ^ "The Giant Elliptical Galaxy NGC 4261". Astronomy 162 (Dept. Physics & Astronomy University of Tennessee). Retrieved 2010-05-02. 
  53. ^ van, Loon J. T.; Sansom, A. E. (2015). "An evolutionary missing link? A modest-mass early-type galaxy hosting an oversized nuclear black hole". Monthly Notices of the Royal Astronomical Society. 453 (3): 2341–2348. arXiv:1508.00698Freely accessible. Bibcode:2015MNRAS.453.2341V. doi:10.1093/mnras/stv1787. 
  54. ^ "Black hole is 30 times expected size". 
  55. ^ Wilman, R. J.; Edge, A. C.; Johnstone, R. M. (2005). "The nature of the molecular gas system in the core of NGC 1275". Monthly Notices of the Royal Astronomical Society. 359 (2): 755–764. arXiv:astro-ph/0502537Freely accessible. Bibcode:2005MNRAS.359..755W. doi:10.1111/j.1365-2966.2005.08956.x. 
  56. ^ Wilman, R. J.; Edge, A. C.; Johnstone, R. M. (2005). "The nature of the molecular gas system in the core of NGC 1275". Monthly Notices of the Royal Astronomical Society. 359 (2): 755–764. arXiv:astro-ph/0502537Freely accessible. Bibcode:2005MNRAS.359..755W. doi:10.1111/j.1365-2966.2005.08956.x. 
  57. ^ Wrobel, J. M.; Terashima, Y.; Ho, L. C. (2008). "Outflow-dominated Emission from the Quiescent Massive Black Holes in NGC 4621 and NGC 4697". The Astrophysical Journal. 675 (2): 1041–1047. arXiv:0712.1308Freely accessible. Bibcode:2008ApJ...675.1041W. doi:10.1086/527542. 
  58. ^ Wernli, F.; Emsellem, E.; Copin, Y. (2001). "A 60 pc counter-rotating core in NGC 4621". Astronomy & Astrophysics. 396: 73–81. arXiv:astro-ph/0209361Freely accessible. Bibcode:2002A&A...396...73W. doi:10.1051/0004-6361:20021333. 
  59. ^ Thilker, David A.; Donovan, Jennifer; Schiminovich, David; Bianchi, Luciana; Boissier, Samuel; Gil de Paz; Armando; Madore, Barry F.; Martin, D. Christopher; Seibert, Mark (2009). "Massive star formation within the Leo 'primordial' ring". Nature. 457 (7232): 990–993. Bibcode:2009Natur.457..990T. doi:10.1038/nature07780. PMID 19225520. 
  60. ^ a b Komossa, S.; Halpern, J.; Schartel, N.; Hasinger, G.; Santos-Lleo, M.; Predehl, P. (May 2004). "A Huge Drop in the X-Ray Luminosity of the Nonactive Galaxy RX J1242.6-1119A, and the First Postflare Spectrum: Testing the Tidal Disruption Scenario". The Astrophysical Journal Letters. 603: L17–L20. arXiv:astro-ph/0402468Freely accessible. Bibcode:2004ApJ...603L..17K. doi:10.1086/382046. 
  61. ^ NASA: "Giant Black Hole Rips Apart Unlucky Star"
  62. ^ Kormendy, John; Bender, Ralf (2009). "Correlations between Supermassive Black Holes, Velocity Dispersions, and Mass Deficits in Elliptical Galaxies with Cores". Astrophysical Journal Letters. 691 (2): L142–L146. arXiv:0901.3778Freely accessible. Bibcode:2009ApJ...691L.142K. doi:10.1088/0004-637X/691/2/L142. 
  63. ^ Merloni, Andrea; Heinz, Sebastian; di Matteo, Tiziana (2003). "A Fundamental Plane of black hole activity". Monthly Notices of the Royal Astronomical Society. 345 (4): 1057–1076. arXiv:astro-ph/0305261Freely accessible. Bibcode:2003MNRAS.345.1057M. doi:10.1046/j.1365-2966.2003.07017.x. 
  64. ^ N. Devereux; H. Ford; Z. Tsvetanov & J. Jocoby (2003). "STIS Spectroscopy of the Central 10 Parsecs of M81: Evidence for a Massive Black Hole". Astronomical Journal. 125 (3): 1226–1235. Bibcode:2003AJ....125.1226D. doi:10.1086/367595. 
  65. ^ Merloni, Andrea; Heinz, Sebastian; di Matteo, Tiziana (2003). "A Fundamental Plane of black hole activity". Monthly Notices of the Royal Astronomical Society. 345 (4): 1057–1076. arXiv:astro-ph/0305261Freely accessible. Bibcode:2003MNRAS.345.1057M. doi:10.1046/j.1365-2966.2003.07017.x. 
  66. ^ "Radio Telescopes Capture Best-Ever Snapshot of Black Hole Jets". NASA. Retrieved 2012-10-02. 
  67. ^ Nemiroff, R.; Bonnell, J., eds. (2011-04-13). "Centaurus Radio Jets Rising". Astronomy Picture of the Day. NASA. Retrieved 2011-04-16. 
  68. ^ Nowak, N.; et al. (April 2010). "Do black hole masses scale with classical bulge luminosities only? The case of the two composite pseudo-bulge galaxies NGC 3368 and NGC 3489". Monthly Notices of the Royal Astronomical Society. 403 (2): 646–672. arXiv:0912.2511Freely accessible. Bibcode:2010MNRAS.403..646N. doi:10.1111/j.1365-2966.2009.16167.x. 
  69. ^ "NGC 4151: An active black hole in the "Eye of Sauron"". Astronomy magazine. 2011-03-11. Retrieved 2011-03-14. 
  70. ^ a b Bon; Jovanović; Marziani; Shapovalova; Bon; Borka Jovanović; Borka; Sulentic; Popović (2012). "The First Spectroscopically Resolved Sub-parsec Orbit of a Supermassive Binary Black Hole". The Astrophysical Journal. 759 (2): 118–125. arXiv:1209.4524Freely accessible. Bibcode:2012ApJ...759..118B. doi:10.1088/0004-637X/759/2/118. 
  71. ^ Gaffney, N. I.; Lester, D. F. & Telesco, C. M. (1993). "The stellar velocity dispersion in the nucleus of M82". Astrophysical Journal Letters. 407: L57–L60. Bibcode:1993ApJ...407L..57G. doi:10.1086/186805. 
  72. ^ Barker, S.; de Grijs, R.; Cerviño, M. (2008). "Star cluster versus field star formation in the nucleus of the prototype starburst galaxy M 82". Astronomy and Astrophysics. 484 (3): 711–720. arXiv:0804.1913Freely accessible. Bibcode:2008A&A...484..711B. doi:10.1051/0004-6361:200809653. 
  73. ^ Satyapal, S.; Vega, D.; Dudik, R. P.; Abel, N. P.; Heckman, T.; et al. (2008). "Spitzer Uncovers Active Galactic Nuclei Missed by Optical Surveys in Seven Late-Type Galaxies". Astrophysical Journal. 677 (2): 926–942. arXiv:0801.2759Freely accessible. Bibcode:2008ApJ...677..926S. doi:10.1086/529014. 
  74. ^ Strader, J.; et al. (2013). "The Densest Galaxy". The Astrophysical Journal. 775: L6. arXiv:1307.7707Freely accessible. Bibcode:2013ApJ...775L...6S. doi:10.1088/2041-8205/775/1/L6. 
  75. ^ Pastorini, G.; Marconi, A.; Capetti, A.; Axon, D. J.; Alonso-Herrero, A.; Atkinson, J.; Batcheldor, D.; Carollo, C. M.; Collett, J.; Dressel, L.; Hughes, M. A.; Macchetto, D.; Maciejewski, W.; Sparks, W.; van der Marel, R. (2007). "Supermassive black holes in the Sbc spiral galaxies NGC 3310, NGC 4303 and NGC 4258". Astronomy and Astrophysics. 469 (2): 405–423. arXiv:astro-ph/0703149Freely accessible. Bibcode:2007A&A...469..405P. doi:10.1051/0004-6361:20066784. 
  76. ^ Valluri, M.; Merritt, D.; Emsellem, E. (2004). "Difficulties with Recovering the Masses of Supermassive Black Holes from Stellar Kinematical Data". Astrophysical Journal. 602 (1): 66–92. arXiv:astro-ph/0210379Freely accessible. Bibcode:2004ApJ...602...66V. doi:10.1086/380896. 
  77. ^ Ghez, A. M.; Salim; Weinberg; Lu; Do; Dunn; Matthews; Morris; Yelda; Becklin; Kremenek; Milosavljevic; Naiman; et al. (2008). "Measuring Distance and Properties of the Milky Way's Central Supermassive Black Hole with Stellar Orbits". Astrophysical Journal. 689 (2): 1044–1062. arXiv:0808.2870Freely accessible. Bibcode:2008ApJ...689.1044G. doi:10.1086/592738.