OctaDist
Developer(s) | OctaDist development team |
---|---|
Initial release | 8 January 2019 |
Stable release | 3.0.0
/ 9 March 2021 |
Repository | github |
Written in | Python (Tkinter) |
Operating system | Windows, macOS, Linux |
Platform | IA-32, x86-64 |
Available in | English |
Type | Crystallography, inorganic chemistry, cheminformatics |
License | GPL 3.0 |
Website | octadist |
OctaDist is computer software for crystallography and inorganic chemistry program. It is mainly used for computing distortion parameters of coordination complex such as spin crossover complex (SCO), magnetic metal complex and metal–organic framework (MOF).
The program is developed and maintained in an international collaboration between the members of the Computational Chemistry Research Unit at Thammasat University,[1] the Functional Materials & Nanotechnology CoE at Walailak University[2] and the Switchable Molecules and Materials group at University of Bordeaux.[3]
OctaDist is written entirely in Python binding to Tkinter graphical user interface toolkit. It is available for Windows, macOS, and Linux. It is free and open-source software distributed under a GNU General Public License (GPL) 3.0.
Standard abilities
The following are the main features[4] of the latest version of OctaDist:
- Structural distortion analysis
- Determination of regular and irregular distorted octahedral molecular geometry
- Octahedral distortion parameters[5][6][7]
- Tilting distortion parameter for perovskite complex[8]
- Molecular graphics
- 3D modelling of complex
- Display of the eight faces of octahedron
- Atomic orthogonal projection and projection plane
- Twisting triangular faces
- Molecular superposition (Overlay)
- Other utilities
- Scripting language
- Surface area of the faces of octahedron
- Jahn–Teller distortion parameters[9]
- Root-mean-square deviation of atomic positions
Capabilities
- Simple and flexible processes of use
- Cross-platform for both 32-bit and 64-bit systems
- Graphical user interface (GUI)
- Command-line interface (CLI)
- User-friendly interactive scripting code
- User-adjustable program setting
- On top of huge and complicated complexes
- Support for several outputs of computational chemistry software, including Gaussian, Q-Chem, ORCA, and NWChem
See also
References
- ^ "Computational Chemistry Research Unit Homepage". sites.google.com/site/compchem403.
- ^ "Functional Materials & Nanotechnology CoE Homepage". www.funtechwu.com.
- ^ "Switchable Molecules and Materials group Homepage". www.icmcb-bordeaux.cnrs.fr/spip.php?rubrique85.
- ^ "OctaDist features". octadist.github.io/features.html.
- ^ Buron-Le Cointe, M.; H´ebert, J.; Bald´e, C.; Moisan, N.; Toupet, L.; Guionneau, P.; L´etard, J. F.; Freysz, E.; Cailleau, H.; Collet, E. (1 February 2012). "Intermolecular control of thermoswitching and photoswitching phenomena in two spin-crossover polymorphs" (PDF). Physical Review B. 85 (6): 064114. Bibcode:2012PhRvB..85f4114B. doi:10.1103/PhysRevB.85.064114.
- ^ McCusker, J. K.; Rheingold, A. L.; Hendrickson, D. N. (27 March 1996). "Variable-Temperature Studies of Laser-Initiated 5T2 f 1A1 Intersystem Crossing in Spin-Crossover Complexes: Empirical Correlations between Activation Parameters and Ligand Structure in a Series of Polypyridyl Ferrous Complexes". Inorganic Chemistry. 35 (7): 2100–2112. doi:10.1021/ic9507880.
- ^ Marchivie, M.; Guionneau, P.; LeÂtard, J.-F.; Chasseau, D. (2005). "Photo-induced spin-transition: the role of the iron(II) environment distortion". Acta Crystallographica Section B. 61 (Pt 1): 25–8. doi:10.1107/S0108768104029751. PMID 15659854.
- ^ Alonso, J. A.; Martı´nez-Lope, M. J.; Casais, M. T.; Ferna´ndez-Dı´az, M. T. (11 February 2000). "Evolution of the Jahn–Teller Distortion of MnO6 Octahedra in RMnO3 Perovskites (R ) Pr, Nd, Dy, Tb, Ho, Er, Y): A Neutron Diffraction Study". Inorganic Chemistry. 39 (5): 917–923. doi:10.1021/ic990921e. PMID 12526369.
- ^ Holland, J. M.; McAllister, J. A.; Kilner, C. A.; Thornton-Pett, M.; Bridgeman, A. J.; Halcrow, M. A. (28 January 2002). "Stereochemical effects on the spin-state transition shown by salts of [FeL2 ]2ⴙ [L ⴝ 2,6-di(pyrazol-1-yl)pyridine]". Journal of the Chemical Society, Dalton Transactions: 548–554. doi:10.1039/B108468M.