Jump to content

OctaDist

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by JL-Bot (talk | contribs) at 06:44, 26 May 2024 (removing orphan template as not a valid orphan). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

OctaDist
Developer(s)OctaDist development team
Initial release8 January 2019; 5 years ago (2019-01-08)
Stable release
3.0.0 / 9 March 2021; 3 years ago (2021-03-09)
Repositorygithub.com/OctaDist
Written inPython (Tkinter)
Operating systemWindows, macOS, Linux
PlatformIA-32, x86-64
Available inEnglish
TypeCrystallography, inorganic chemistry, cheminformatics
LicenseGPL 3.0
Websiteoctadist.github.io

OctaDist is computer software for crystallography and inorganic chemistry program. It is mainly used for computing distortion parameters of coordination complex such as spin crossover complex (SCO), magnetic metal complex and metal–organic framework (MOF).

The program is developed and maintained in an international collaboration between the members of the Computational Chemistry Research Unit at Thammasat University,[1] the Functional Materials & Nanotechnology CoE at Walailak University[2] and the Switchable Molecules and Materials group at University of Bordeaux.[3]

OctaDist is written entirely in Python binding to Tkinter graphical user interface toolkit. It is available for Windows, macOS, and Linux. It is free and open-source software distributed under a GNU General Public License (GPL) 3.0.

Standard abilities

The following are the main features[4] of the latest version of OctaDist:

Capabilities

See also

References

  1. ^ "Computational Chemistry Research Unit Homepage". sites.google.com/site/compchem403.
  2. ^ "Functional Materials & Nanotechnology CoE Homepage". www.funtechwu.com.
  3. ^ "Switchable Molecules and Materials group Homepage". www.icmcb-bordeaux.cnrs.fr/spip.php?rubrique85.
  4. ^ "OctaDist features". octadist.github.io/features.html.
  5. ^ Buron-Le Cointe, M.; H´ebert, J.; Bald´e, C.; Moisan, N.; Toupet, L.; Guionneau, P.; L´etard, J. F.; Freysz, E.; Cailleau, H.; Collet, E. (1 February 2012). "Intermolecular control of thermoswitching and photoswitching phenomena in two spin-crossover polymorphs" (PDF). Physical Review B. 85 (6): 064114. Bibcode:2012PhRvB..85f4114B. doi:10.1103/PhysRevB.85.064114.
  6. ^ McCusker, J. K.; Rheingold, A. L.; Hendrickson, D. N. (27 March 1996). "Variable-Temperature Studies of Laser-Initiated 5T2 f 1A1 Intersystem Crossing in Spin-Crossover Complexes: Empirical Correlations between Activation Parameters and Ligand Structure in a Series of Polypyridyl Ferrous Complexes". Inorganic Chemistry. 35 (7): 2100–2112. doi:10.1021/ic9507880.
  7. ^ Marchivie, M.; Guionneau, P.; LeÂtard, J.-F.; Chasseau, D. (2005). "Photo-induced spin-transition: the role of the iron(II) environment distortion". Acta Crystallographica Section B. 61 (Pt 1): 25–8. doi:10.1107/S0108768104029751. PMID 15659854.
  8. ^ Alonso, J. A.; Martı´nez-Lope, M. J.; Casais, M. T.; Ferna´ndez-Dı´az, M. T. (11 February 2000). "Evolution of the Jahn–Teller Distortion of MnO6 Octahedra in RMnO3 Perovskites (R ) Pr, Nd, Dy, Tb, Ho, Er, Y): A Neutron Diffraction Study". Inorganic Chemistry. 39 (5): 917–923. doi:10.1021/ic990921e. PMID 12526369.
  9. ^ Holland, J. M.; McAllister, J. A.; Kilner, C. A.; Thornton-Pett, M.; Bridgeman, A. J.; Halcrow, M. A. (28 January 2002). "Stereochemical effects on the spin-state transition shown by salts of [FeL2 ]2ⴙ [L ⴝ 2,6-di(pyrazol-1-yl)pyridine]". Journal of the Chemical Society, Dalton Transactions: 548–554. doi:10.1039/B108468M.