Jump to content

Acrylonitrile

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Yobot (talk | contribs) at 08:20, 4 April 2016 (Removed invisible unicode characters + other fixes, replaced: → using AWB (11993)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Acrylonitrile
Names
IUPAC names
2-propenenitrile,
prop-2-enenitrile
Other names
cyanoethene,
vinylcyanide (VCN)
cyanoethylene[1]
propenenitrile[1]
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.152 Edit this at Wikidata
EC Number
  • 608-003-00-4
KEGG
RTECS number
  • AT5250000
UNII
UN number 1093
  • InChI=1S/C3H3N/c1-2-3-4/h2H,1H2 checkY
    Key: NLHHRLWOUZZQLW-UHFFFAOYSA-N checkY
  • InChI=1/C3H3N/c1-2-3-4/h2H,1H2
    Key: NLHHRLWOUZZQLW-UHFFFAOYAG
  • N#CC=C
  • C=CC#N
Properties
C3H3N
Molar mass 53.064 g·mol−1
Appearance Colourless liquid
Density 0.81 g/cm3
Melting point −84 °C (−119 °F; 189 K)
Boiling point 77 °C (171 °F; 350 K)
70 g/L
Vapor pressure 83 mmHg[1]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
flammable,
reactive,
toxic,
potential occupational carcinogen[1]
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazards (white): no code
4
3
2
Flash point −1 °C; 30 °F; 272 K
471 °C (880 °F; 744 K)
Explosive limits 3–17%
Lethal dose or concentration (LD, LC):
500 ppm (rat, 4 hr)
313 ppm (mouse, 4 hr)
425 ppm (rat, 4 hr)[2]
260 ppm (rabbit, 4 hr)
575 ppm (guinea pig, 4 hr)
636 ppm (rat, 4 hr)
452 ppm (human, 1 hr)[2]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 2 ppm C 10 ppm [15-minute] [skin][1]
REL (Recommended)
Ca TWA 1 ppm C 10 ppm [15-minute] [skin][1]
IDLH (Immediate danger)
85 ppm[1]
Safety data sheet (SDS) ICSC 0092
Related compounds
Related compounds
acrylic acid,
acrolein
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Acrylonitrile is an organic compound with the formula CH2CHCN. It is a colorless volatile liquid, although commercial samples can be yellow due to impurities. In terms of its molecular structure, it consists of a vinyl group linked to a nitrile. It is an important monomer for the manufacture of useful plastics such as polyacrylonitrile. It is reactive and toxic at low doses.[3]

Production

Acrylonitrile is produced by catalytic ammoxidation of propylene, also known as the SOHIO process. In 2002, world production capacity was estimated at 5 million tonnes per year.[3][4] Acetonitrile and hydrogen cyanide are significant byproducts that are recovered for sale.[3] In fact, the 2008–2009 acetonitrile shortage was caused by a decrease in demand for acrylonitrile.[5]

2CH3-CH=CH2 + 2NH3 + 3O2 → 2CH2=CH-C≡N + 6H2O

In the SOHIO process, propylene, ammonia, and air (oxidizer) are passed through a fluidized bed reactor containing the catalyst at 400–510 °C and 50–200 kPag. The reactants pass through the reactor only once, before being quenched in aqueous sulfuric acid. Excess propylene, carbon monoxide, carbon dioxide, and dinitrogen that do not dissolve are vented directly to the atmosphere, or are incinerated. The aqueous solution consists of acrylonitrile, acetonitrile, hydrocyanic acid, and ammonium sulfate (from excess ammonia). A recovery column removes bulk water, and acrylonitrile and acetonitrile are separated by distillation. Historically, one of the first successful catalysts was bismuth phosphomolybdate supported on silica as a heterogeneous catalyst. Further improvements have since been made.[3]

Historical

Acrylonitrile was first synthesized by the French chemist Charles Moureu (1863–1929) in 1893.[6]

Uses

Acrylonitrile is used principally as a monomer to prepare polyacrylonitrile, a homopolymer, or several important copolymers, such as styrene-acrylonitrile (SAN), acrylonitrile butadiene styrene (ABS), acrylonitrile styrene acrylate (ASA), and other synthetic rubbers such as acrylonitrile butadiene (NBR). Dimerization of acrylonitrile affords adiponitrile, used in the synthesis of certain polyamides. Small amounts are also used as a fumigant. Acrylonitrile and derivatives, such as 2-chloro-acrylonitrile, are dienophiles in Diels-Alder reactions. Acrylonitrile is also a precursor in the industrial manufacture of acrylamide and acrylic acid.[3]

Health effects

Acrylonitrile is highly flammable and toxic at low doses. It undergoes explosive polymerization. The burning material releases fumes of hydrogen cyanide and oxides of nitrogen. It is classified as a Class 2B carcinogen (possibly carcinogenic) by the International Agency for Research on Cancer (IARC),[7] and workers exposed to high levels of airborne acrylonitrile are diagnosed more frequently with lung cancer than the rest of the population.[8] It evaporates quickly at room temperature (20 °C) to reach dangerous concentrations; skin irritation, respiratory irritation, and eye irritation are the immediate effects of this exposure.[9]

Acrylonitrile increases cancer in high dose tests in male and female rats and mice.[10]

Pathways of exposure for humans include emissions, auto exhaust, and cigarette smoke that can expose the human subject directly if they inhale or smoke. Routes of exposure include inhalation, oral, and to a certain extent dermal uptake (tested with volunteer humans and in rat studies).[11] Repeated exposure causes skin sensitization and may cause central nervous system and liver damage.[9]

There are two main excretion processes of acrylonitrile. The primary method is excretion in urine when acrylonitrile is metabolized by being directly conjugated to glutathione. The other method is when acrylonitrile is metabolized with 2-cyanoethylene oxide to produce cyanide end products that ultimately forms thiocyanate, which is excreted via urine, or carbon dioxide and eliminated through the lungs.[11] Metabolites can be detected in the blood and urine.[7]

Acrylonitrile induces apoptosis in human umbilical cord mesenchymal stem cells [12]

Environmental effects

Acrylonitrile is harmful to aquatic life.[9]

References

  1. ^ a b c d e f g h NIOSH Pocket Guide to Chemical Hazards. "#0014". National Institute for Occupational Safety and Health (NIOSH).
  2. ^ a b "Acrylonitrile". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  3. ^ a b c d e James F. Brazdil. "Acrylonitrile". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_177.pub3. ISBN 978-3527306732.
  4. ^ "The Sohio Acrylonitrile Process". American Chemical Society National Historic Chemical Landmarks. Retrieved 2013-05-13.
  5. ^ A. Tullo. "A Solvent Dries Up". Chemical & Engineering News. 86: 27. doi:10.1021/cen-v086n047.p027.
  6. ^ See:
  7. ^ a b "Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide". IARC Monographs, Volume 71 (1999)
  8. ^ Acrylonitrile Fact Sheet (CAS No. 107-13-1). epa.gov
  9. ^ a b c "CDC - ACRYLONITRILE - International Chemical Safety Cards - NIOSH". www.cdc.gov. Retrieved 2015-07-31.
  10. ^ "Acrylonitrile: Carcinogenic Potency Database". berkeley.edu.
  11. ^ a b Acrylonitrile Fact Sheet: Support Document (CAS No. 107-13-1). epa.gov
  12. ^ Sun X (Jan 2014). "Cytotoxic effects of acrylonitrile on human umbilical cord mesenchymal stem cells in vitro". J Mol Med Rep. 9 (1): 97–102. doi:10.3892/mmr.2013.1802. PMID 24248151.