Cluster II (spacecraft)

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Cluster II
The Cluster II constellation.
Artist's impression of the Cluster constellation.
Mission typeMagnetospheric research
OperatorESA with NASA collaboration
FM7 (SAMBA): 2000-041B
FM5 (RUMBA): 2000-045A
FM8 (TANGO): 2000-045B
SATCAT no.FM6 (SALSA): 26410
FM7 (SAMBA): 26411
FM5 (RUMBA): 26463
FM8 (TANGO): 26464
Mission durationplanned: 5 years
elapsed: 19 years and 2 days
Spacecraft properties
ManufacturerAirbus (ex. Dornier)[1]
Launch mass1,200 kg (2,600 lb)[1]
Dry mass550 kg (1,210 lb)[1]
Payload mass71 kg (157 lb)[1]
Dimensions2.9 m × 1.3 m (9.5 ft × 4.3 ft)[1]
Power224 watts[1]
Start of mission
Launch dateFM6: 16 July 2000, 12:39 UTC (2000-07-16UTC12:39Z)
FM7: 16 July 2000, 12:39 UTC (2000-07-16UTC12:39Z)
FM5: 09 August 2000, 11:13 UTC (2000-08-09UTC11:13Z)
FM8: 09 August 2000, 11:13 UTC (2000-08-09UTC11:13Z)
Launch siteBaikonur 31/6
Orbital parameters
Reference systemGeocentric
RegimeElliptical Orbit
Perigee altitudeFM6: 16,118 km (10,015 mi)
FM7: 16,157 km (10,039 mi)
FM5: 16,022 km (9,956 mi)
FM8: 12,902 km (8,017 mi)
Apogee altitudeFM6: 116,740 km (72,540 mi)
FM7: 116,654 km (72,485 mi)
FM5: 116,786 km (72,567 mi)
FM8: 119,952 km (74,535 mi)
InclinationFM6: 135 degrees
FM7: 135 degrees
FM5: 138 degrees
FM8: 134 degrees
PeriodFM6: 3259 minutes
FM7: 3257 minutes
FM5: 3257 minutes
FM8: 3258 minutes
Epoch13 March 2014, 11:15:07 UTC
Cluster II mission insignia
ESA solar system insignia for Cluster II  

Cluster II[2] is a space mission of the European Space Agency, with NASA participation, to study the Earth's magnetosphere over the course of nearly two solar cycles. The mission is composed of four identical spacecraft flying in a tetrahedral formation. As a replacement for the original Cluster spacecraft which were lost in a launch failure in 1996, the four Cluster II spacecraft were successfully launched in pairs in July and August 2000 onboard two Soyuz-Fregat rockets from Baikonur, Kazakhstan. In February 2011, Cluster II celebrated 10 years of successful scientific operations in space. As of November 2018 its mission has been extended until the end of 2020 with a likely extension lasting until 2022.[3] China National Space Administration/ESA Double Star mission operated alongside Cluster II from 2004 to 2007.

Mission overview[edit]

The four identical Cluster II satellites study the impact of the Sun's activity on the Earth's space environment by flying in formation around Earth. For the first time in space history, this mission is able to collect three-dimensional information on how the solar wind interacts with the magnetosphere and affects near-Earth space and its atmosphere, including aurorae.

The spacecraft are cylindrical (2.9 x 1.3 m, see online 3D model) and are spinning at 15 rotations per minute. After launch, their solar cells provided 224 watts power for instruments and communications. Solar array power has gradually declined as the mission progressed, due to damage by energetic charged particles, but this was planned for and the power level remains sufficient for science operations. The four spacecraft maneuver into various tetrahedral formations to study the magnetospheric structure and boundaries. The inter-spacecraft distances can be altered and has varied from around 4 to 10,000 km. The propellant for the transfer to the operational orbit, and the maneuvers to vary inter-spacecraft separation distances made up approximately half of the spacecraft's launch weight.

The highly elliptical orbits of the spacecraft initially reached a perigee of around 4 RE (Earth radii, where 1 RE = 6371 km) and an apogee of 19.6 RE. Each orbit took approximately 57 hours to complete. The orbit has evolved over time; the line of apsides has rotated southwards so that the distance at which the orbit crossed the magnetotail current sheet progressively reduced, and a wide range of dayside magnetopause crossing latitudes were sampled. Gravitational effects impose a long term cycle of change in the perigee (and apogee) distance, which saw the perigees reduce to a few 100 km in 2011 before beginning to rise again. The orbit plane has rotated away from 90 degrees inclination. Orbit modifications by ESOC have altered the orbital period to 54 hours. All these changes have allowed Cluster to visit a much wider set of important magnetospheric regions than was possible for the initial 2-year mission, improving the scientific breadth of the mission.

The European Space Operations Centre (ESOC) acquires telemetry and distributes to the online data centers the science data from the spacecraft. The Joint Science Operations Centre JSOC at Rutherford Appleton Laboratory in the UK coordinates scientific planning and in collaboration with the instrument teams provides merged instrument commanding requests to ESOC.

The Cluster Science Archive is the ESA long term archive of the Cluster and Double Star science missions. Since 1 November 2014, it is the sole public access point to the Cluster mission scientific data and supporting datasets. The Double Star data are publicly available via this archive. The Cluster Science Archive is located alongside all the other ESA science archives at the European Space Astronomy Center, located near Madrid, Spain. From February 2006 to October 2014, the Cluster data could be accessed via the Cluster Active Archive.


The Cluster mission was proposed to ESA in 1982 and approved in 1986, along with the Solar and Heliospheric Observatory (SOHO), and together these two missions constituted the Solar Terrestrial Physics "cornerstone" of ESA's Horizon 2000 missions programme. Though the original Cluster spacecraft were completed in 1995, the explosion of the Ariane 5 rocket carrying the satellites in 1996 delayed the mission by four years while new instruments and spacecraft were built.

On July 16, 2000, a Soyuz-Fregat rocket from the Baikonur Cosmodrome launched two of the replacement Cluster II spacecraft, (Salsa and Samba) into a parking orbit from where they maneuvered under their own power into a 19,000 by 119,000 kilometer orbit with a period of 57 hours. Three weeks later on August 9, 2000 another Soyuz-Fregat rocket lifted the remaining two spacecraft (Rumba and Tango) into similar orbits. Spacecraft 1, Rumba, is also known as the Phoenix spacecraft, since it is largely built from spare parts left over after the failure of the original mission. After commissioning of the payload, the first scientific measurements were made on February 1, 2001.

The European Space Agency ran a competition to name the satellites across all of the ESA member states.[4] Ray Cotton, from the United Kingdom, won the competition with the names Rumba, Tango, Salsa and Samba.[5] Ray's town of residence, Bristol, was awarded with scale models of the satellites in recognition of the winning entry,[6][7] as well as the city's connection with the satellites. However, after many years of being stored away, they were finally given a home at the Rutherford Appleton Laboratory.

Originally planned to last until the end of 2003, the mission has been extended several times. The first extension took the mission from 2004 until 2005, and the second from 2005 to June 2009. The mission has now been extended until the end of 2020.[3]

Scientific objectives[edit]

Previous single and two-spacecraft missions were not capable of providing the data required to accurately study the boundaries of the magnetosphere. Because the plasma comprising the magnetosphere cannot presently be accessed using remote sensing techniques, satellites must be used to measure it in-situ. Four spacecraft allow scientists make the 3D, time-resolved measurements needed to create a realistic picture of the complex plasma interactions occurring between regions of the magnetosphere and between the magnetosphere and the solar wind.

Each satellite carries a scientific payload of 11 instruments designed to study the small-scale plasma structures in space and time in the key plasma regions: solar wind, bow shock, magnetopause, polar cusps, magnetotail, plasmapause boundary layer and over the polar caps and the auroral zones.

  • The bow shock is the region in space between the Earth and the sun where the solar wind decelerates from super- to sub-sonic before being deflected around the Earth. In traversing this region, the spacecraft make measurements which help characterize processes occurring at the bow shock, such as the origin of hot flow anomalies and the transmission of electromagnetic waves through the bow shock and the magnetosheath from the solar wind.
  • Behind the bow shock is the thin plasma layer separating the Earth and solar wind magnetic fields known as the magnetopause. This boundary moves continuously due to the constant variation in solar wind pressure. Since the plasma and magnetic pressures within the solar wind and the magnetosphere, respectively, should be in equilibrium, the magnetosphere should be an impenetrable boundary. However, plasma has been observed crossing the magnetopause into the magnetosphere from the solar wind. Cluster's four-point measurements make it possible to track the motion of the magnetopause as well as elucidate the mechanism for plasma penetration from the solar wind.
  • In two regions, one in the northern hemisphere and the other in the south, the magnetic field of the Earth is perpendicular rather than tangential to the magnetopause. These polar cusps allow solar wind particles, consisting of ions and electrons, to flow into the magnetosphere. Cluster records the particle distributions, which allow the turbulent regions at the exterior cusps to be characterized.
  • The regions of the Earth's magnetic field that are stretched by the solar wind away from the Sun are known collectively as the magnetotail. Two lobes that reach past the Moon in length form the outer magnetotail while the central plasma sheet forms the inner magnetotail, which is highly active. Cluster monitors particles from the ionosphere and the solar wind as they pass through the magnetotail lobes. In the central plasma sheet, Cluster determines the origins of ion beams and disruptions to the magnetic field-aligned currents caused by substorms.
  • The precipitation of charged particles in the atmosphere creates a ring of light emission around the magnetic pole known as the auroral zone. Cluster measures the time variations of transient particle flows and electric and magnetic fields in the region.

Instrumentation on each Cluster satellite[edit]

Number Acronym Instrument Measurement Purpose
1 ASPOC Active Spacecraft Potential Control experiment Regulation of spacecraft's electrostatic potential Enables the measure by PEACE of cold electrons (a few eV temperature), otherwise hidden by spacecraft photoelectrons
2 CIS Cluster Ion Spectroscopy experiment Ion times-of-flight (TOFs) and energies from 0 to 40 keV Composition and 3D distribution of ions in plasma
3 DWP Digital Wave Processing instrument Coordinates the operations of the EFW, STAFF, WBD and WHISPER instruments. At the lowest level, DWP provides electrical signals to synchronise instrument sampling. At the highest level, DWP enables more complex operational modes by means of macros.
4 EDI Electron Drift Instrument Electric field E magnitude and direction E vector, gradients in local magnetic field B
5 EFW Electric Field and Wave experiment Electric field E magnitude and direction E vector, spacecraft potential, electron density and temperature
6 FGM Fluxgate Magnetometer Magnetic field B magnitude and direction B vector and event trigger to all instruments except ASPOC
7 PEACE Plasma Electron and Current Experiment Electron energies from 0.0007 to 30 keV 3D distribution of electrons in plasma
8 RAPID Research with Adaptive Particle Imaging Detectors Electron energies from 39 to 406 keV, ion energies from 20 to 450 keV 3D distributions of high-energy electrons and ions in plasma
9 STAFF Spatio-Temporal Analysis of Field Fluctuation experiment Magnetic field B magnitude and direction of EM fluctuations, cross-correlation of E and B Properties of small-scale current structures, source of plasma waves and turbulence
10 WBD Wide Band Data receiver High time resolution measurements of both electric and magnetic fields in selected frequency bands from 25 Hz to 577 kHz. It provides a unique new capability to perform Very-long-baseline interferometry (VLBI) measurements. Properties of natural plasma waves (e.g. auroral kilometric radiation) in the Earth magnetosphere and its vicinity including: source location and size and propagation.
11 WHISPER Waves of High Frequency and Sounder for Probing of Density by Relaxation Electric field E spectrograms of terrestrial plasma waves and radio emissions in the 2–80 kHz range; triggering of plasma resonances by an active sounder. Source location of waves by triangulation; electron density within the range 0.2–80 cm−3

Double Star mission with China[edit]

In 2003 and 2004, the China National Space Administration launched the Double Star satellites, TC-1 and TC-2, that worked together with Cluster to make coordinated measurements mostly within the magnetosphere. TC-1 stopped operating on 14 October 2007. The last data from TC-2 was received in 2008. TC-2 made a contribution to magnetar science[8] as well as to magnetospheric physics.

Here are three scientific highlights where TC-1 played a crucial role

1. Space is Fizzy

Ion density holes were discovered near the Earth's bow shock that can play a role in bow shock formation. The bow shock is a critical region of space where the constant stream of solar material, the solar wind, is decelerated from supersonic speed to subsonic speed due to the internal magnetic field of the Earth. Full story: Echo of this story on CNN:

2. Inner magnetosphere and energetic particles

Chorus Emissions Found Further Away From Earth During High Geomagnetic Activity. Chorus are waves naturally generated in space close to the magnetic equator, within the Earth's magnetic bubble called magnetosphere. These waves play an important role in the creation of relativistic electrons and their precipitation from the Earth's radiation belts. These so-called killer electrons can damage solar panels and electronic equipment of satellites and represent a hazard to astronauts. Therefore, information on their location with respect to the geomagnetic activity is of crucial importance to be able to forecast their impact. Chorus sound file:

3. Magnetotail dynamics

Cluster and Double Star Reveal the Extent of Neutral Sheet Oscillations. For the first time, neutral sheet oscillations observed simultaneously at a distance of tens of thousands of kilometres are reported, thanks to observations by 5 satellites of the Cluster and the Double Star Program missions. This observational first provides further constraint to model this large-scale phenomenon in the magnetotail. Full story:

"The TC-1 satellite has demonstrated the mutual benefit of, and has fostered, scientific cooperation in space research between China and Europe. We expect even more results when the final archive of high resolution data will be made available to the worldwide scientific community", underlines Philippe Escoubet, Double Star and Cluster mission manager of the European Space Agency.


Cluster team awards

Individual awards

Discoveries and mission milestones[edit]



















  • Escoubet, C.P.; A. Masson; H. Laakso; M.L. Goldstein (2015). "Recent highlights from Cluster, the first 3-D magnetospheric mission". Ann. Geophys. 33 (10): 1221–1235. Bibcode:2015AnGeo..33.1221E. doi:10.5194/angeo-33-1221-2015.
  • Escoubet, C.P.; M. Taylor; A. Masson; H. Laakso; J. Volpp; M. Hapgood; M.L. Goldstein (2013). "Dynamical processes in space: Cluster results". Ann. Geophys. 31 (6): 1045–1059. Bibcode:2013AnGeo..31.1045E. doi:10.5194/angeo-31-1045-2013.
  • Taylor, M.; C.P. Escoubet; H. Laakso; A. Masson; M. Goldstein (2010). "The Cluster Mission: Space Plasma in Three Dimensions". In H. Laakso; et al. (eds.). The Cluster Active Archive. Astrophysics and Space Science Proceedings. Astrophys. & Space Sci. Proc., Springer. pp. 309–330. doi:10.1007/978-90-481-3499-1_21. ISBN 978-90-481-3498-4.
  • Escoubet, C.P.; M. Fehringer; M. Goldstein (2001). "The Cluster mission". Ann. Geophys. 19 (10/12): 1197–1200. Bibcode:2001AnGeo..19.1197E. doi:10.5194/angeo-19-1197-2001.
  • Escoubet, C.P.; R. Schmidt; M.L. Goldstein (1997). "Cluster - Science and Mission Overview". Space Sci. Rev. 79: 11–32. Bibcode:1997SSRv...79...11E. doi:10.1023/A:1004923124586.

Selected publications[edit]

All 3245 publications related to the Cluster and the Double Star missions (count as of 30 June 2019) can be found on the publication section of the ESA Cluster mission website. Among these publications, 2761 are refereed publications, 342 proceedings, 112 PhDs and 30 other types of theses.

  1. ^ a b c d e f "Cluster (Four Spacecraft Constellation in Concert with SOHO)". ESA. Retrieved 2014-03-13.
  2. ^ "Cluster II operations". European Space Agency. Retrieved 29 November 2011.
  3. ^ a b "Extended life for ESA's science missions". ESA. Retrieved 14 November 2018.
  4. ^ "European Space Agency Announces Contest to Name the Cluster Quartet" (PDF). XMM-Newton Press Release. European Space Agency: 4. 2000. Bibcode:2000xmm..pres....4.
  5. ^ "Bristol and Cluster – the link". European Space Agency. Retrieved 2 September 2013.
  6. ^ "Cluster II – Scientific Update and Presentation of Model to the City of Bristol". SpaceRef Interactive Inc.
  7. ^ "Cluster – Presentation of model to the city of Bristol and science results overview". European Space Agency.
  8. ^ Schwartz, S.; et al. (2005). "A γ-ray giant flare from SGR1806-20: evidence for crustal cracking via initial timescales" (PDF). Astrophysical Journal. 627 (2): L129–L132. arXiv:astro-ph/0504056. Bibcode:2005ApJ...627L.129S. doi:10.1086/432374.
  9. ^ Kieokaew, R.; Foullon, C. (2019). "Kelvin‐Helmholtz waves magnetic curvature and vorticity: Four‐spacecraft Cluster observations". J. Geophys. Research Space Phys. 124: 3347–3359. Bibcode:2019JGRA..124.3347K. doi:10.1029/2019JA026484.
  10. ^ Damiano, P.A.; Chaston, C.C.; Hull, A.J.; Johnson, J.R. (2018). "Electron distributions in kinetic scale field line resonances: A comparison of simulations and observations". Geophysical Research Letters. 45 (12): 5826–5835. Bibcode:2018GeoRL..45.5826D. doi:10.1029/2018GL077748.
  11. ^ Dimmock, A.P.; et al. (2019). "Direct evidence of nonstationary collisionless shocks in space plasmas". Science Advances. 5 (2): eaau9926. doi:10.1126/sciadv.aau9926. PMC 6392793. PMID 30820454.
  12. ^ Schillings, A.; Nilsson, H.; Slapak, R.; Wintoft, P.; Yamauchi, M.; Wik, M.; I. Dandouras; C.M. Carr (2018). "O+ escape during the extreme space weather event of 4–10 September 2017". Space Weather. 16 (4): 1363–1376. doi:10.5194/angeo-36-1073-2018.
  13. ^ Liebert, E.; Nabert, C.; Glassmeier, K.-H. (2018). "Statistical survey of day-side magnetospheric current flow using Cluster observations: bow shock". Ann. Geophys. 36 (4): 1073–1080. Bibcode:2018AnGeo..36.1073L. doi:10.5194/angeo-36-1073-2018.
  14. ^ Liu, C.M.; H. S. Fu; D. Cao; Y. Xu; A. Divin (2018). "Detection of magnetic nulls around reconnection fronts". Astrophys. J. 860 (2): 128. Bibcode:2018ApJ...860..128L. doi:10.3847/1538-4357/aac496.
  15. ^ Coxon, J.C.; Freeman, M.P.; Jackman, C.M.; Forsyth, C.; Rae, I.J.; Fear, R.C. (2018). "Tailward propagation of magnetic energy density variations with respect to substorm onset times". J. Geophys. Res. Space Phys. 123 (6): 4741–4754. Bibcode:2018JGRA..123.4741C. doi:10.1029/2017JA025147.
  16. ^ Masson, A.; Nykyri, K. (2018). "Kelvin–Helmholtz Instability: lessons learned and ways forward" (PDF). Space Sci. Rev. 214 (4): 71. Bibcode:2018SSRv..214...71M. doi:10.1007/s11214-018-0505-6.
  17. ^ Roberts, O. W.; Narita, Y.; Escoubet, C.-P (2018). "Three-dimensional density and compressible magnetic structure in solar wind turbulence". Ann. Geophys. 36 (2): 527–539. Bibcode:2018AnGeo..36..527R. doi:10.5194/angeo-36-527-2018.
  18. ^ Hadid, L. Z.; Sahraoui, F.; Galtier, S.; Huang, S. Y. (January 2018). "Compressible Magnetohydrodynamic Turbulence in the Earth's Magnetosheath: Estimation of the Energy Cascade Rate Using in situ Spacecraft Data". Phys. Rev. Lett. 120 (5): 055102. arXiv:1710.04691. Bibcode:2018PhRvL.120e5102H. doi:10.1103/PhysRevLett.120.055102.
  19. ^ Grigorenko E.E.; Dubyagin S.; Malykhin A.; Khotyaintsev Y.V.; Kronberg E.A.; Lavraud B.; Ganushkina N.Yu (2018). "Intense current structures observed at electron kinetic Scales in the near‐Earth magnetotail during dipolarization and substorm current wedge formation". Geophys. Res. Lett. 45 (2): 602–611. Bibcode:2018GeoRL..45..602G. doi:10.1002/2017GL076303.
  20. ^ Andreeva V. A.; Tsyganenko N. A. (2017). "Empirical Modeling of the Quiet and Storm Time Geosynchronous Magnetic Field". Space Weather. 16 (1): 16–36. Bibcode:2018SpWea..16...16A. doi:10.1002/2017SW001684.
  21. ^ Roberts, O.W.; Y. Narita; C.P. Escoubet (2017). "Direct measurement of anisotropic and asymmetric wave vector Spectrum in ion-scale solar wind turbulence". Astrophys. J. Lett. 851 (1): L11. Bibcode:2017ApJ...851L..11R. doi:10.3847/2041-8213/aa9bf3.
  22. ^ Perrone, D.; O. Alexandrova; O.W. Roberts; S. Lion; C. Lacombe; A. Walsh; M. Maksimovic; I. Zouganelis (2017). "Coherent structures at ion scales in the fast solar wind: Cluster observations". Astrophys. J. Lett. 849 (1): 49. arXiv:1709.09644. Bibcode:2017ApJ...849...49P. doi:10.3847/1538-4357/aa9022.
  23. ^ Perrone, D.; O. Alexandrova; O.W. Roberts; S. Lion; C. Lacombe; A. Walsh; M. Maksimovic; I. Zouganelis (2017). "Near-Earth plasma sheet boundary dynamics during substorm dipolarization". Earth, Planets and Space. 69 (1): 129. Bibcode:2017EP&S...69..129N. doi:10.1186/s40623-017-0707-2.
  24. ^ Yushkov, E.; A. Petrukovich; A. Artemyev; R. Nakamura (2017). "Relationship between electron field-aligned anisotropy and dawn-dusk magnetic field: nine years of Cluster observations in the Earth magnetotail". J. Geophys. Res. Space Phys. 122 (9): 9294–9305. Bibcode:2017JGRA..122.9294Y. doi:10.1002/2016JA023739.
  25. ^ Giagkiozis, S.; S. N. Walker; S. A. Pope; G. Collinson (2017). "Validation of single spacecraft methods for collisionless shock velocity estimation". J. Geophys. Res. Space Phys. 122 (8): 8632–8641. Bibcode:2017JGRA..122.9294Y. doi:10.1002/2017JA024502.
  26. ^ Zhao, L.L.; Zhang, H.; Zong, Q.G. (2017). "Global ULF waves generated by a hot flow anomaly". Geophys. Res. Lett. 44 (11): 5283–5291. Bibcode:2017GeoRL..44.5283Z. doi:10.1002/2017GL073249.
  27. ^ Fu, H.S.; A. Vaivads; Y.V. Khotyaintsev; M. André; J. B. Cao; V. Olshevsky; J. P. Eastwood; A. Retinò (2017). "Intermittent energy dissipation by turbulent reconnection". Geophys. Res. Lett. 44 (1): 37–43. Bibcode:2017GeoRL..44...37F. doi:10.1002/2016GL071787. hdl:10044/1/44378.
  28. ^ Turc, L.; D. Fontaine; C.P. Escoubet; E.K.J. Kilpua; A.P. Dimmock (2017). "Statistical study of the alteration of the magnetic structure of magnetic clouds in the Earth's magnetosheath". J. Geophys. Res. Space Phys. 122 (3): 2956. Bibcode:2017JGRA..122.2956T. doi:10.1002/2016JA023654.
  29. ^ Vines, S.K.; S.A. Fuselier; S.M. Petrinec; K.J. Trattner; R.C. Allen (2017). "Occurrence frequency and location of magnetic islands at the dayside magnetopause". J. Geophys. Res. Space Phys. 122 (4): 4138–4155. Bibcode:2017JGRA..122.4138V. doi:10.1002/2017JA024502.
  30. ^ Case, N. A.; A. Grocott; S. E. Milan; T. Nagai; J. P. Reistad (2017). "An analysis of magnetic reconnection events and their associated auroral enhancements". J. Geophys. Res. Space Phys. 122 (2): 2922–2935. Bibcode:2017JGRA..122.2922C. doi:10.1002/2017JA024502.
  31. ^ Lugaz, N.; C.J. Farrugia; C.-L. Huang; R.M. Winslow; H.E. Spence; N.A. Schwadron (2016). "Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind". Nature Communications. 7: 13001. Bibcode:2016NatCo...713001L. doi:10.1038/ncomms13001. PMC 5063966. PMID 27694887.
  32. ^ Moore, T.W.; Nykyri, K.; Dimmock, A.P. (2016). "Cross-scale energy transport in space plasmas". Nature Physics. 12 (12): 1164–1169. Bibcode:2016NatPh..12.1164M. doi:10.1038/nphys3869.
  33. ^ Schmid, D.; R. Nakamura; M. Volwerk; F. Plaschke; Y. Narita; W. Baumjohann; et al. (2016). "A comparative study of dipolarization fronts at MMS and Cluster". Geophys. Res. Lett. 43 (12): 6012–6019. Bibcode:2016GeoRL..43.6012S. doi:10.1002/2016GL069520. PMC 4949994.
  34. ^ Parks, G.K.; E. Lee; S.Y. Fu; H.E. Kim; Y.Q. Ma; Z.W. Yang; Y. Liu; N. Lin; J. Hong; P. Canu (2016). "Transport of solar wind H+ and He++ ions across Earth's bow shock". Astrophys. J. Lett. 825 (2): L27. Bibcode:2016ApJ...825L..27P. doi:10.3847/2041-8205/825/2/L27.
  35. ^ a b Lee, S.H.; H. Zhang; Q.-G. Zong; A. Otto; H. Rème; E. Liebert (2016). "A statistical study of plasmaspheric plumes and ionospheric outflows observed at the dayside magnetopause". J. Geophys. Res. Space Phys. 121 (1): 492–506. Bibcode:2016JGRA..121..492L. doi:10.1002/2015JA021540.
  36. ^ a b Zhang, B.; O.J. Brambles; W. Lotko; J.E. Ouellette; J.G. Lyon (2016). "The role of ionospheric O+ outflow in the generation of earthward propagating plasmoids". J. Geophys. Res. Space Phys. 121 (2): 1425–1435. Bibcode:2016JGRA..121.1425Z. doi:10.1002/2015JA021667.
  37. ^ Yao, Z.; A.N. Fazakerley; A. Varsani; I.J. Rae; C.J. Owen; et al. (2016). "Substructures within a dipolarization front revealed by high-temporal resolution Cluster observations". J. Geophys. Res. Space Phys. 121 (6): 5185–5202. Bibcode:2016JGRA..121.5185Y. doi:10.1002/2015JA022238.
  38. ^ L. Turc; C.P. Escoubet; D. Fontaine; E.K.J. Kilpua; S. Enestam (2016). "Cone angle control of the interaction of magnetic clouds with the Earth's bow shock". Geophys. Res. Lett. 43 (10): 4781–4789. Bibcode:2016GeoRL..43.4781T. doi:10.1002/2016GL068818.
  39. ^ Cheng, Z.W.; J.C. Zhang; J.K. Shi; L.M. Kistler; M. Dunlop; I. Dandouras; A. Fazakerley (2016). "The particle carriers of field‐aligned currents in the Earth's magnetotail during a substorm". J. Geophys. Res. Space Phys. 121 (4): 3058–3068. Bibcode:2016JGRA..121.3058C. doi:10.1002/2015JA022071.
  40. ^ Wang, R.; Q. Lu; R. Nakamura; C. Huang; A. Du; F. Guo; W. Teh; M. Wu; S. Lu; S. Wang (2015). "Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection". Nat. Phys. 12 (3): 263–267. Bibcode:2016NatPh..12..263W. doi:10.1038/nphys3578.
  41. ^ Décréau, P.M.E.; Aoutou, S.; Denazelle, A.; Galkina, I.; Rauch, J.-L.; Vallières, X.; Canu, P.; Rochel Grimald, S.; El-Lemdani Mazouz, F.; Darrouzet, F. (2015). "Wide-banded NTC radiation: local to remote observations by the four Cluster satellites". Ann. Geophys. 33 (10): 1285–1300. Bibcode:2015AnGeo..33.1285D. doi:10.5194/angeo-33-1285-2015.
  42. ^ Eriksson, E.; A. Vaivads; Y. V. Khotyaintsev; V. M. Khotyayintsev; M. André (2015). "Statistics and accuracy of magnetic null identification in multispacecraft data". Geophys. Res. Lett. 42 (17): 6883–6889. Bibcode:2015GeoRL..42.6883E. doi:10.1002/2015GL064959.
  43. ^ Cai, D.; A. Esmaeili; B. Lembège; K.‐I. Nishikawa (2015). "Cusp dynamics under northward IMF using three‐dimensional global particle‐in‐cell simulations". J. Geophys. Res. Space Phys. 120 (10): 8368–8386. Bibcode:2015JGRA..120.8368C. doi:10.1002/2015JA021230.
  44. ^ Balikhin, M.A.; Y.Y. Shprits; S.N. Walker; L. Chen; N. Cornilleau-Wehrlin; I. Dandouras; O. Santolik; C. Carr; K.H. Yearby; B. Weiss (2015). "Observations of Discrete Harmonics Emerging From Equatorial Noise". Nat. Commun. 6: 7703. Bibcode:2015NatCo...6E7703B. doi:10.1038/ncomms8703.
  45. ^ Dunlop, M.W.; J.-Y. Yang; Y.-Y. Yang; C. Xiong; H. Lühr; Y. V. Bogdanova; C. Shen; N. Olsen; Q.-H. Zhang; J.-B. Cao; H.-S. Fu; W.-L. Liu; C. M. Carr; P. Ritter; A. Masson; R. Haagmans (2015). "Simultaneous field-aligned currents at Swarm and Cluster satellites". Geophys. Res. Lett. 42 (10): 3683–3691. Bibcode:2015GeoRL..42.3683D. doi:10.1002/2015GL063738.
  46. ^ Russell, A. J. B.; Karlsson, T.; Wright, A. N. (2015). "Magnetospheric signatures of ionospheric density cavities observed by Cluster". J. Geophys. Res. Space Phys. 120 (3): 1876–1887. Bibcode:2015JGRA..120.1876R. doi:10.1002/2014JA020937.
  47. ^ Russell, A.J.B.; T. Karlsson; A.N. Wright (2015). "Magnetospheric signatures of ionospheric density cavities observed by Cluster". J. Geophys. Res. Space Phys. 120 (3): 1876–1887. Bibcode:2015JGRA..120.1876R. doi:10.1002/2014JA020937.
  48. ^ Maes, L.; Maggiolo, R.; De Keyser, J.; Dandouras, I.; Fear, R.C.; Fontaine, D.; Haaland, S. (2015). "Solar illumination control of ionospheric outflow above polar cap arcs". Geophys. Res. Lett. 42 (5): 1304–1311. Bibcode:2015GeoRL..42.1304M. doi:10.1002/2014GL062972.
  49. ^ Fear, R.C.; S.E. Milan; R. Maggiolo; A.N. Fazakerley; I. Dandouras; S.B. Mende (2014). "Direct observation of closed magnetic flux trapped in the high latitude magnetosphere". Science. 346 (6216): 1506–1510. Bibcode:2014Sci...346.1506F. doi:10.1126/science.1257377. PMID 25525244.
  50. ^ Zhongwei, Y.; Y.D. Liu; G.K. Parks; P. Wu; C. Huang; R. Shi; R. Wang; H. Hu (2014). "Full particle electromagnetic simulations of entropy generation across a collisionless shock". Astrophys. J. Lett. 793 (1): L11. Bibcode:2014ApJ...793L..11Y. doi:10.1088/2041-8205/793/1/L11.
  51. ^ Kozyra; et al. (2014). "Solar filament impact on 21 January 2005: Geospace consequences". J. Geophys. Res. Space Phys. 119 (7): 2169–9402. Bibcode:2014JGRA..119.5401K. doi:10.1002/2013JA019748.
  52. ^ Walsh, A. P.; Haaland, S.; Forsyth, C.; Keesee, A. M.; Kissinger, J.; Li, K.; Runov, A.; Soucek, J.; Walsh, B. M.; Wing, S.; Taylor, M.G.G.T. (2014). "Dawn–dusk asymmetries in the coupled solar wind–magnetosphere–ionosphere system: a review". Ann. Geophys. 32 (7): 705–737. arXiv:1701.04701. Bibcode:2014AnGeo..32..705W. doi:10.5194/angeo-32-705-2014.
  53. ^ Graham, D.B.; Yu. V. Khotyaintsev; A. Vaivads; M. Andre; A. N. Fazakerley (2014). "Electron Dynamics in the Diffusion Region of Asymmetric Magnetic Reconnection". Phys. Rev. Lett. 112 (21): 215004. Bibcode:2014PhRvL.112u5004G. doi:10.1103/PhysRevLett.112.215004.
  54. ^ Luo, H.; E. A. Kronberg; E. E. Grigorenko; M. Fränz; P. W. Daly; G. X. Chen; A. M. Du; L. M. Kistler; Y. Wei (2014). "Evidence of strong energetic ion acceleration in the near‐Earth magnetotail". Geophys. Res. Lett. 41 (11): 3724–3730. Bibcode:2014GeoRL..41.3724L. doi:10.1002/2014GL060252.
  55. ^ Tsyganenko, N. (2014). "Data-based modeling of the geomagnetosphere with an IMF-dependent magnetopause". J. Geophys. Res. Space Phys. 119 (1): 335–354. Bibcode:2014JGRA..119..335T. doi:10.1002/2013JA019346.
  56. ^ Shen, C.; Y.Y. Yang; Z.J. Rong; X. Li; M. Dunlop; C.M. Carr; Z.X. Liu; D.N. Baker; Z.Q. Chen; Y. Ji; G. Zeng (2014). "Direct calculation of the ring current distribution and magnetic structure seen by Cluster during geomagnetic storms". J. Geophys. Res. Space Phys. 119 (4): 2458–2465. Bibcode:2014JGRA..119.2458S. doi:10.1002/2013JA019460.
  57. ^ Nakamura, R.; T. Karlsson; M. Hamrin; H. Nilsson; O. Marghitu; O. Amm; C. Bunescu; V. Constantinescu; H.U. Frey; A. Keiling; J. Semeter; E. Sorbalo; J. Vogt; C. Forsyth; M.V. Kubyshkina (2014). "Low-altitude electron acceleration due to multiple flow bursts in the magnetotail". Geophys. Res. Lett. 41 (3): 777–784. Bibcode:2014GeoRL..41..777N. doi:10.1002/2013GL058982.
  58. ^ Décréau, P.M.E.; et al. (2013). "Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair". Ann. Geophys. 31 (11): 2097–2121. Bibcode:2013AnGeo..31.2097D. doi:10.5194/angeo-31-2097-2013.
  59. ^ Haaland, S.; J. Gjerloev (2013). "On the relation between asymmetries in the ring current and magnetopause current". J. Geophys. Res. 118 (7): 7593–7604. Bibcode:2013JGRA..118.7593H. doi:10.1002/jgra.50239.
  60. ^ Darrouzet, F.; et al. (2013). "Links between the plasmapause and the radiation belt boundaries as observed by the instruments CIS, RAPID, and WHISPER onboard Cluster". J. Geophys. Res. 118 (7): 4176–4188. Bibcode:2013JGRA..118.4176D. doi:10.1002/jgra.50239.
  61. ^ Fu, H.S.; et al. (2013). "Energetic electron acceleration by unsteady magnetic reconnection". Nature Physics. 9 (7): 426–430. Bibcode:2013NatPh...9..426F. doi:10.1038/nphys2664.
  62. ^ Dandouras, I. (2013). "Detection of a plasmaspheric wind in the Earth's magnetosphere by the Cluster spacecraft". Ann. Geophys. 31 (7): 1143–1153. Bibcode:2013AnGeo..31.1143D. doi:10.5194/angeo-31-1143-2013.
  63. ^ Viberg, H.; et al. (2013). "Mapping High-Frequency Waves in the Reconnection Diffusion Region". Geophys. Res. Lett. 40 (6): 1032–1037. Bibcode:2013GeoRL..40.1032V. doi:10.1002/grl.50227.
  64. ^ Cao, J.; et al. (2013). "Kinetic analysis of the energy transport of bursty bulk flows in the plasma sheet". J. Geophys. Res. Space Phys. 118 (1): 313–320. Bibcode:2013JGRA..118..313C. doi:10.1029/2012JA018351.
  65. ^ Perri, S.; et al. (2012). "Detection of small scale structures in the dissipation regime of solar wind turbulence". Phys. Rev. Lett. 109 (19): 191101. Bibcode:2012PhRvL.109s1101P. doi:10.1103/PhysRevLett.109.191101. PMID 23215371.
  66. ^ Hwang, K.-J.; et al. (2012). "The first in situ observation of Kelvin-Helmholtz waves at high-latitude magnetopause during strongly dawnward interplanetary magnetic field conditions". J. Geophys. Res. 117 (A8): A08233. Bibcode:2012JGRA..117.8233H. doi:10.1029/2011JA017256.
  67. ^ Norgren, C.; et al. (2012). "Lower hybrid drift waves: space observations". Physical Review Letters. 109 (5): 55001. Bibcode:2012PhRvL.109e5001N. doi:10.1103/PhysRevLett.109.055001. PMID 23006181.
  68. ^ Nykyri, K.; et al. (2012). "On the origin of high-energy particles in the cusp diamagnetic cavity". Journal of Atmospheric and Solar-Terrestrial Physics. 87–88 (Special Issue on Physical Process in the Cusp: Plasma Transport and Energization): 70–81. Bibcode:2012JASTP..87...70N. doi:10.1016/j.jastp.2011.08.012.
  69. ^ Wei, Y.; et al. (2012). "Enhanced atmospheric oxygen outflow on Earth and Mars driven by a corotating interaction region". J. Geophys. Res. 117 (A16): 3208. Bibcode:2012JGRA..117.3208W. doi:10.1029/2011JA017340.
  70. ^ Egedal, J.; et al. (2012). "Large-scale electron acceleration by parallel electric fields during magnetic reconnection". Nature Physics. 8 (4): 321–324. Bibcode:2012NatPh...8..321E. doi:10.1038/nphys2249.
  71. ^ André, M.; C.M. Cully (February 2012). "Low-energy ions: A previously hidden solar system particle population, in press". Geophys. Res. Lett. 39 (3): n/a. Bibcode:2012GeoRL..39.3101A. doi:10.1029/2011GL050242.
  72. ^ Schwartz, S.J.; et al. (2011). "Electron temperature gradient scale at collisionless shocks". Physical Review Letters. 107 (21): 215002. Bibcode:2011PhRvL.107u5002S. doi:10.1103/PhysRevLett.107.215002. hdl:10044/1/18881. PMID 22181889.
  73. ^ Shay, M.A.; et al. (2011). "Super-Alfvénic Propagation of Substorm Reconnection Signature and Poynting Flux". Physical Review Letters. 107 (6): 065001. arXiv:1104.0922. Bibcode:2011PhRvL.107f5001S. doi:10.1103/PhysRevLett.107.065001. PMID 21902330.
  74. ^ Turner, A.J.; et al. (2011). "Nonaxisymmetric Anisotropy of Solar Wind Turbulence". Physical Review Letters. 107 (9): 095002. arXiv:1106.2023. Bibcode:2011PhRvL.107i5002T. doi:10.1103/PhysRevLett.107.095002. PMID 21929247.
  75. ^ Khotyaintsev, Y.; et al. (2011). "Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons". Physical Review Letters. 106 (16): 165001. Bibcode:2011PhRvL.106p5001K. doi:10.1103/PhysRevLett.106.165001. PMID 21599373.
  76. ^ Marklund, G.T.; et al. (2011). "Altitude distribution of the auroral acceleration potential determined from Cluster satellite data at different heights". Physical Review Letters. 106 (5): 055002. Bibcode:2011PhRvL.106e5002M. doi:10.1103/PhysRevLett.106.055002. PMID 21405403.
  77. ^ Echim, M.; et al. (2011). "Comparative investigation of the terrestrial and Venusian magnetopause: Kinetic modeling and experimental observations by Cluster and Venus Express". Planet. Space Sci. 59 (10): 1028–1038. Bibcode:2011P&SS...59.1028E. doi:10.1016/j.pss.2010.04.019.
  78. ^ Sahraoui, F.; et al. (2010). "Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind". Physical Review Letters. 105 (13): 131101. Bibcode:2010PhRvL.105m1101S. doi:10.1103/PhysRevLett.105.131101. PMID 21230758.
  79. ^ Masson, A.; et al. (2011), "A decade revealing the Sun-Earth connection in three dimensions", Eos, Transactions, American Geophysical Union, 92 (1): 4, Bibcode:2011EOSTr..92Q...4M, doi:10.1029/2011EO010007
  80. ^ Kistler, L.M.; et al. (2010). "Cusp as a source for oxygen in the plasma sheet during geomagnetic storms". J. Geophys. Res. 115 (A3): A03209. Bibcode:2010JGRA..115.3209K. doi:10.1029/2009JA014838.
  81. ^ Yuan, Z.; et al. (2010). "Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites". Geophys. Res. Lett. 37 (7): L07108. Bibcode:2010GeoRL..37.7108Y. doi:10.1029/2010GL042711.
  82. ^ Laakso, Harri; Taylor, Matthew; Escoubet, C. Philippe (2010). Laakso, H.; et al. (eds.). The Cluster Active Archive – Studying the Earth's Space Plasma Environment. Astrophysics and Space Science Proceedings. 11. Astrophys. & Space Sci. Proc. series, Springer. pp. 1–489. Bibcode:2010ASSP...11.....L. doi:10.1007/978-90-481-3499-1. ISBN 978-90-481-3498-4.
  83. ^ Hietala, H.; et al. (2009). "Supermagnetosonic jets behind a collisionless quasiparallel shock". Physical Review Letters. 103 (24): 245001. arXiv:0911.1687. Bibcode:2009PhRvL.103x5001H. doi:10.1103/PhysRevLett.103.245001. PMID 20366203.
  84. ^ Zong, Q.-G.; et al. (2009). "Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt". Journal of Geophysical Research. 114 (A10): A10204. Bibcode:2009JGRA..11410204Z. doi:10.1029/2009JA014393.
  85. ^ Dunlop, M.; et al. (2009). "Reconnection at High Latitudes: Antiparallel Merging". Physical Review Letters. 102 (7): 075005. Bibcode:2009PhRvL.102g5005D. doi:10.1103/PhysRevLett.102.075005. PMID 19257682.
  86. ^ Sahraoui, F.; et al. (2009). "Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale". Physical Review Letters. 102 (23): 231102. Bibcode:2009PhRvL.102w1102S. doi:10.1103/PhysRevLett.102.231102. PMID 19658919.
  87. ^ Dandouras, I.; et al. (2009). "Magnetosphere response to the 2005 and 2006 extreme solar events as observed by the Cluster and Double Star spacecraft". Adv. Space Res. 43 (23): 618–623. Bibcode:2009AdSpR..43..618D. doi:10.1016/j.asr.2008.10.015.
  88. ^ Yordanova, E.; et al. (2008). "Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft". Physical Review Letters. 100 (20): 205003. Bibcode:2008PhRvL.100t5003Y. doi:10.1103/PhysRevLett.100.205003. PMID 18518544.
  89. ^ Engwall, E.; et al. (2009). "Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft". Nature Geoscience. 2 (1): 24–27. Bibcode:2009NatGe...2...24E. doi:10.1038/ngeo387.
  90. ^ Eastwood, J.; et al. (2008). "The science of space weather". Phil. Trans. R. Soc. A. 366 (1884): 4489–4500. Bibcode:2008RSPTA.366.4489E. doi:10.1098/rsta.2008.0161. PMID 18812302.
  91. ^ Kronberg, E.; et al. (2008). "Comparison of periodic substorms at Jupiter and Earth". J. Geophys. Res. 113: A04212. Bibcode:2008JGRA..11304212K. doi:10.1029/2007JA012880.
  92. ^ Nilsson, H.; et al. (2008). "An assessment of the role of the centrifugal acceleration mechanism in high altitude polar cap oxygen ion outflow". Annales Geophysicae. 26 (1): 145–157. Bibcode:2008AnGeo..26..145N. doi:10.5194/angeo-26-145-2008.
  93. ^ He, J.-S.; et al. (2008). "Electron trapping around a magnetic null". Geophys. Res. Lett. 35 (14): L14104. Bibcode:2008GeoRL..3514104H. doi:10.1029/2008GL034085.
  94. ^ He, J.-S.; et al. (2008). "A magnetic null geometry reconstructed from Cluster spacecraft observations". J. Geophys. Res. 113: A05205. Bibcode:2008JGRA..11305205H. doi:10.1029/2007JA012609.
  95. ^ Mutel, R.L.; et al. (2008). "Cluster multispacecraft determination of AKR angular beaming". Geophys. Res. Lett. 35 (7): L07104. arXiv:0803.0078. Bibcode:2008GeoRL..3507104M. doi:10.1029/2008GL033377.
  96. ^ Wei, X.H.; et al. (2007). "Cluster observations of waves in the whistler frequency range associated with magnetic reconnection in the Earth's magnetotail". J. Geophys. Res. 112 (A10): A10225. Bibcode:2007JGRA..11210225W. doi:10.1029/2006JA011771.
  97. ^ Trines, R.; et al. (2007). "Spontaneous Generation of Self-Organized Solitary Wave Structures at Earth's Magnetopause". Physical Review Letters. 99 (20): 205006. Bibcode:2007PhRvL..99t5006T. doi:10.1103/PhysRevLett.99.205006. PMID 18233152.
  98. ^ Phan, T.; et al. (2007). "Evidence for an Elongated (>60 Ion Skin Depths) Electron Diffusion Region during Fast Magnetic Reconnection". Physical Review Letters. 99 (25): 255002. Bibcode:2007PhRvL..99y5002P. doi:10.1103/PhysRevLett.99.255002. PMID 18233527.
  99. ^ Grigorenko, E.E.; et al. (2007). "Spatial-Temporal characteristics of ion beamlets in the plasma sheet boundary layer of magnetotail". J. Geophys. Res. 112 (A5): A05218. Bibcode:2007JGRA..112.5218G. doi:10.1029/2006JA011986.
  100. ^ Lavraud, B.; et al. (2007). "Strong bulk plasma acceleration in Earth's magnetosheath: A magnetic slingshot effect?". Geophys. Res. Lett. 34 (14): L14102. Bibcode:2007GeoRL..3414102L. doi:10.1029/2007GL030024.
  101. ^ Rosenqvist, L.; et al. (2007). "An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection". Ann. Geophys. 25 (2): 507–517. Bibcode:2007AnGeo..25..507R. doi:10.5194/angeo-25-507-2007.
  102. ^ Lui, A.T.Y.; et al. (2007). "Breakdown of the frozen-in condition in the Earth's magnetotail". J. Geophys. Res. 112 (A4): A04215. Bibcode:2007JGRA..112.4215L. doi:10.1029/2006JA012000.
  103. ^ Haaland, S.E.; et al. (2007). "High-latitude plasma convection from Cluster EDI measurements: method and IMF-dependence". Ann. Geophys. 25 (1): 239–253. Bibcode:2007AnGeo..25..239H. doi:10.5194/angeo-25-239-2007.
  104. ^ Förster, M.; et al. (2007). "High-latitude plasma convection from Cluster EDI: variances and solar wind correlations". Ann. Geophys. 25 (7): 1691–1707. Bibcode:2007AnGeo..25.1691F. doi:10.5194/angeo-25-1691-2007.
  105. ^ Sergeev, V.; et al. (2007). "Strong bulk plasma acceleration in Earth's magnetosheath: A magnetic slingshot effect?". Geophys. Res. Lett. 34 (2): L02103. Bibcode:2007GeoRL..3402103S. doi:10.1029/2006GL028452.
  106. ^ Rae, J.; et al. (2005). "Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval". J. Geophys. Res. 110 (A12): A12211. Bibcode:2005JGRA..11012211R. doi:10.1029/2005JA011007.
  107. ^ Zong, Q.-G.; et al. (2007). "Ultralow frequency modulation of energetic particles in the dayside magnetosphere". Geophys. Res. Lett. 34 (12): L12105. Bibcode:2007GeoRL..3412105Z. doi:10.1029/2007GL029915.
  108. ^ Xiao, C.J.; et al. (2007). "Satellite observations of separator-line geometry of three-dimensional magnetic reconnection". Nature Physics. 3 (9): 603–607. arXiv:0705.1021. Bibcode:2007NatPh...3..609X. doi:10.1038/nphys650.
  109. ^ Lobzin, V.V.; et al. (2007). "Ultralow frequency modulation of energetic particles in the dayside magnetosphere". Geophys. Res. Lett. 34 (5): L05107. Bibcode:2007GeoRL..3405107L. doi:10.1029/2006GL029095.
  110. ^ Lui, A.T.Y.; et al. (2006). "Cluster observation of plasma flow reversal in the magnetotail during a substorm". Ann. Geophys. 24 (7): 2005–2013. Bibcode:2006AnGeo..24.2005L. doi:10.5194/angeo-24-2005-2006.
  111. ^ Retinò, A.; et al. (2007). "In situ evidence of magnetic reconnection in turbulent plasma". Nature Physics. 3 (4): 236–238. Bibcode:2007NatPh...3..236R. doi:10.1038/nphys574.
  112. ^ Henderson, P.; et al. (2006). "Cluster PEACE observations of electron pressure tensor divergence in the magnetotail" (PDF). Geophys. Res. Lett. 33 (22): L22106. Bibcode:2006GeoRL..3322106H. doi:10.1029/2006GL027868.
  113. ^ Marklund, G.; et al. (2007). "Cluster observations of an auroral potential and associated field-aligned current reconfiguration during thinning of the plasma sheet boundary layer". J. Geophys. Res. 112 (A1): n/a. Bibcode:2007JGRA..112.1208M. doi:10.1029/2006JA011804.
  114. ^ Nykyri, K.; et al. (2006). "Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank". Ann. Geophys. 24 (10): 2619–2643. Bibcode:2006AnGeo..24.2619N. doi:10.5194/angeo-24-2619-2006.
  115. ^ Darrouzet, F.; et al. (2006). "Spatial gradients in the plasmasphere from Cluster". Geophys. Res. Lett. 33 (8): L08105. Bibcode:2006GeoRL..3308105D. doi:10.1029/2006GL025727.
  116. ^ Darrouzet, F.; et al. (2006). "Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations". Ann. Geophys. 24 (6): 1737–1758. Bibcode:2006AnGeo..24.1737D. doi:10.5194/angeo-24-1737-2006.
  117. ^ Marchaudon, A.; et al. (2005). "Simultaneous Double Star and Cluster FTEs observations on the dawnside flank of the magnetosphere". Ann. Geophys. 23 (8): 2877–2887. Bibcode:2005AnGeo..23.2877M. doi:10.5194/angeo-23-2877-2005.
  118. ^ Cao, J.B.; et al. (2006). "Joint observations by Cluster satellites of bursty bulk flows in the magnetotail". J. Geophys. Res. 111 (A4): A04206. Bibcode:2006JGRA..111.4206C. doi:10.1029/2005JA011322.
  119. ^ Xiao, C.J.; et al. (2006). "In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail". Nature Physics. 2 (7): 478–483. arXiv:physics/0606014. Bibcode:2006NatPh...2..478X. doi:10.1038/nphys342.
  120. ^ Parks, G.; et al. (2006). "Larmor radius size density holes discovered in the solar wind upstream of Earth's bow shock". Phys. Plasmas. 13 (5): 050701. Bibcode:2006PhPl...13e0701P. doi:10.1063/1.2201056.
  121. ^ Mozer, F.; et al. (2005). "Spatial gradients in the plasmasphere from Cluster". Geophys. Res. Lett. 32 (24): L24102. Bibcode:2005GeoRL..3224102M. doi:10.1029/2005GL024092.
  122. ^ Zhang, T.L..; et al. (2005). "Double Star/Cluster observation of neutral sheet oscillations on 5 August 2004". Ann. Geophys. 23 (8): 2909–2914. Bibcode:2005AnGeo..23.2909Z. doi:10.5194/angeo-23-2909-2005.
  123. ^ Sahraoui, F.; et al. (2006). "Anisotropic turbulent spectra in the terrestrial magnetosheath: Cluster observations". Physical Review Letters. 96 (7): 075002. Bibcode:2006PhRvL..96g5002S. doi:10.1103/PhysRevLett.96.075002. PMID 16606099.
  124. ^ Phan, T.; et al. (2006). "A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind". Nature. 439 (7073): 175–178. Bibcode:2006Natur.439..175P. doi:10.1038/nature04393. PMID 16407946.
  125. ^ Horne, R.B.; et al. (2005). "Wave acceleration of electrons in the Van Allen radiation belts". Nature. 437 (7056): 227–230. Bibcode:2005Natur.437..227H. doi:10.1038/nature03939. PMID 16148927.
  126. ^ Sundkvist, D.; et al. (2005). "In situ multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence". Nature. 436 (7052): 825–828. Bibcode:2005Natur.436..825S. doi:10.1038/nature03931. PMID 16094363.
  127. ^ Vallat, C.; et al. (2005). "First current density measurements in the ring current region using simultaneous multi-spacecraft CLUSTER-FGM data". Ann. Geophys. 23 (5): 1849–1865. Bibcode:2005AnGeo..23.1849V. doi:10.5194/angeo-23-1849-2005.
  128. ^ Øieroset, M.; et al. (2005). "Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003". Geophys. Res. Lett. 32 (12): L12S07. Bibcode:2005GeoRL..3212S07O. doi:10.1029/2004GL021523.
  129. ^ Li, W.; et al. (2005). "Plasma sheet formation during long period of northward IMF". Geophys. Res. Lett. 32 (12): L12S08. Bibcode:2005GeoRL..3212S08L. doi:10.1029/2004GL021524.
  130. ^ Louarn, P.; et al. (2004). "Cluster observations of complex 3D magnetic structures at the magnetopause". Geophys. Res. Lett. 31 (19): L19805. Bibcode:2004GeoRL..3119805L. doi:10.1029/2004GL020625.
  131. ^ Nakamura, R.; et al. (2004). "Spatial scale of high-speed flows in the plasma sheet observed by Cluster". Geophys. Res. Lett. 31 (9): L09804. Bibcode:2004GeoRL..3109804N. doi:10.1029/2004GL019558.
  132. ^ Knetter, T.; et al. (2004). "Four-point discontinuity observations using Cluster magnetic field data: A statistical survey". J. Geophys. Res. 109: A06102. Bibcode:2004JGRA..10906102K. doi:10.1029/2003JA010099.
  133. ^ Décréau, P.; et al. (2004). "Observation of continuum radiations from the Cluster fleet: first results from direction finding". Ann. Geophys. 22 (7): 2607–2624. Bibcode:2004AnGeo..22.2607D. doi:10.5194/angeo-22-2607-2004.
  134. ^ Hasegawa, H.; et al. (2004). "Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin–Helmholtz vortices". Nature. 430 (7001): 755–758. Bibcode:2004Natur.430..755H. doi:10.1038/nature02799. PMID 15306802.
  135. ^ Sergeev, V.; et al. (2004). "Orientation and propagation of current sheet oscillations". Geophys. Res. Lett. 31 (5): L05807. Bibcode:2004GeoRL..31.5807S. doi:10.1029/2003GL019346.
  136. ^ Zong, Q.-G.; et al. (2004). "Triple cusps observed by Cluster-Temporal or spatial effect?". Geophys. Res. Lett. 31 (9): L09810. Bibcode:2004GeoRL..3109810Z. doi:10.1029/2003GL019128.
  137. ^ Bale, S.; et al. (2003). "Density-Transition Scale at Quasiperpendicular Collisionless Shocks". Physical Review Letters. 91 (26): 265004. Bibcode:2003PhRvL..91z5004B. doi:10.1103/PhysRevLett.91.265004. PMID 14754061.
  138. ^ Frey, H.; et al. (2003). "Continuous magnetic reconnection at Earth's magnetopause". Nature. 426 (6966): 533–537. Bibcode:2003Natur.426..533F. doi:10.1038/nature02084. PMID 14654835.
  139. ^ Runov, A.; et al. (2003). "Current sheet structure near magnetic X-line observed by Cluster". Geophys. Res. Lett. 30 (10): 1579. Bibcode:2003GeoRL..30.1579R. doi:10.1029/2002GL016730.
  140. ^ Phan, T.; et al. (2003). "Simultaneous Cluster and IMAGE Observations of Cusp Reconnection and Auroral Spot for Northward IMF". Geophys. Res. Lett. 30 (10): n/a. Bibcode:2003GeoRL..30.1509P. doi:10.1029/2003GL016885.
  141. ^ Runov, A.; et al. (2003). "Cluster observation of a bifurcated current sheet". Geophys. Res. Lett. 30 (2): 1036. Bibcode:2003GeoRL..30.1036R. doi:10.1029/2002GL016136.
  142. ^ Dunlop, M.; et al. (2002). "Four-point Cluster application of magnetic field analysis tools: The Curlometer". J. Geophys. Res. 107 (A11): 1384. Bibcode:2002JGRA..107.1384D. doi:10.1029/2001JA005088.
  143. ^ Nakamura, R.; et al. (2002). "Fast flow during current sheet thinning". Geophys. Res. Lett. 29 (23): 2140. Bibcode:2002GeoRL..29.2140N. doi:10.1029/2002GL016200.
  144. ^ Baker, D.N.; et al. (2002). "A telescopic and microscopic view of a magnetospheric substorm on 31 March 2001". Geophys. Res. Lett. 29 (18): 1862. Bibcode:2002GeoRL..29.1862B. doi:10.1029/2001GL014491.
  145. ^ Marklund, G.; et al. (2001). "Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere". Nature. 414 (6865): 724–727. Bibcode:2001Natur.414..724M. doi:10.1038/414724a. PMID 11742392.
  146. ^ Décréau, P.; et al. (2001). "Early results from the Whisper instrument on Cluster: an overview". Ann. Geophys. 19 (10/12): 1241–1258. Bibcode:2001AnGeo..19.1241D. doi:10.5194/angeo-19-1241-2001.
  147. ^ Paschmann, G.; S.J. Schwartz; C.P. Escoubet; S. Haal, eds. (2005). Outer Magnetospheric Boundaries: Cluster Results. reprinted from Space Sci. Rev., 118, 1–4, Springer, Berlin. pp. 1–434.

External links[edit]