Isotopes of molybdenum
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Mo) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
There are 33 known isotopes of molybdenum (42Mo) ranging in atomic mass from 83 to 115, as well as four metastable nuclear isomers. Seven isotopes occur naturally, with atomic masses of 92, 94, 95, 96, 97, 98, and 100. Of these naturally occurring isotopes, six (all but 100Mo) have never been observed to decay, but all are theoretically capable of radioactive decay. All unstable isotopes of molybdenum decay into isotopes of zirconium, niobium, technetium, and ruthenium.[5]
Molybdenum-100 is the only naturally occurring isotope that is not stable. Molybdenum-100 has a half-life of approximately 1×1019 y and undergoes double beta decay into ruthenium-100. Molybdenum-98 is the most common isotope, comprising 24.14% of all molybdenum on Earth. Molybdenum isotopes with mass numbers 111 and up all have half-lives of approximately .15 µs.[5]
List of isotopes
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life[n 1] | decay mode(s)[6][n 2] |
daughter isotope(s)[n 3] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|
excitation energy | |||||||||
83Mo | 42 | 41 | 82.94874(54)# | 23(19) ms [6(+30-3) ms] |
β+ | 83Nb | 3/2−# | ||
β+, p | 82Zr | ||||||||
84Mo | 42 | 42 | 83.94009(43)# | 3.8(9) ms [3.7(+10-8) s] |
β+ | 84Nb | 0+ | ||
85Mo | 42 | 43 | 84.93655(30)# | 3.2(2) s | β+ | 85Nb | (1/2−)# | ||
86Mo | 42 | 44 | 85.93070(47) | 19.6(11) s | β+ | 86Nb | 0+ | ||
87Mo | 42 | 45 | 86.92733(24) | 14.05(23) s | β+ (85%) | 87Nb | 7/2+# | ||
β+, p (15%) | 86Zr | ||||||||
88Mo | 42 | 46 | 87.921953(22) | 8.0(2) min | β+ | 88Nb | 0+ | ||
89Mo | 42 | 47 | 88.919480(17) | 2.11(10) min | β+ | 89Nb | (9/2+) | ||
89mMo | 387.5(2) keV | 190(15) ms | IT | 89Mo | (1/2−) | ||||
90Mo | 42 | 48 | 89.913937(7) | 5.56(9) h | β+ | 90Nb | 0+ | ||
90mMo | 2874.73(15) keV | 1.12(5) µs | 8+# | ||||||
91Mo | 42 | 49 | 90.911750(12) | 15.49(1) min | β+ | 91Nb | 9/2+ | ||
91mMo | 653.01(9) keV | 64.6(6) s | IT (50.1%) | 91Mo | 1/2− | ||||
β+ (49.9%) | 91Nb | ||||||||
92Mo | 42 | 50 | 91.906811(4) | Observationally Stable[n 4] | 0+ | 0.14649(106) | |||
92mMo | 2760.46(16) keV | 190(3) ns | 8+ | ||||||
93Mo | 42 | 51 | 92.906813(4) | 4,000(800) y | EC | 93Nb | 5/2+ | ||
93mMo | 2424.89(3) keV | 6.85(7) h | IT (99.88%) | 93Mo | 21/2+ | ||||
β+ (.12%) | 93Nb | ||||||||
94Mo | 42 | 52 | 93.9050883(21) | Stable[n 5] | 0+ | 0.09187(33) | |||
95Mo[n 6] | 42 | 53 | 94.9058421(21) | Stable[n 5] | 5/2+ | 0.15873(30) | |||
96Mo | 42 | 54 | 95.9046795(21) | Stable[n 5] | 0+ | 0.16673(30) | |||
97Mo[n 6] | 42 | 55 | 96.9060215(21) | Stable[n 5] | 5/2+ | 0.09582(15) | |||
98Mo[n 6] | 42 | 56 | 97.90540482(21) | Observationally Stable[n 7] | 0+ | 0.24292(80) | |||
99Mo[n 6][n 8] | 42 | 57 | 98.9077119(21) | 2.7489(6) d | β− | 99mTc | 1/2+ | ||
99m1Mo | 97.785(3) keV | 15.5(2) µs | 5/2+ | ||||||
99m2Mo | 684.5(4) keV | 0.76(6) µs | 11/2− | ||||||
100Mo[n 9][n 6] | 42 | 58 | 99.907477(6) | 8.5(5)×1018 a | β−β− | 100Ru | 0+ | 0.09744(65) | |
101Mo | 42 | 59 | 100.910347(6) | 14.61(3) min | β− | 101Tc | 1/2+ | ||
102Mo | 42 | 60 | 101.910297(22) | 11.3(2) min | β− | 102Tc | 0+ | ||
103Mo | 42 | 61 | 102.91321(7) | 67.5(15) s | β− | 103Tc | (3/2+) | ||
104Mo | 42 | 62 | 103.91376(6) | 60(2) s | β− | 104Tc | 0+ | ||
105Mo | 42 | 63 | 104.91697(8) | 35.6(16) s | β− | 105Tc | (5/2−) | ||
106Mo | 42 | 64 | 105.918137(19) | 8.73(12) s | β− | 106Tc | 0+ | ||
107Mo | 42 | 65 | 106.92169(17) | 3.5(5) s | β− | 107Tc | (7/2−) | ||
107mMo | 66.3(2) keV | 470(30) ns | (5/2−) | ||||||
108Mo | 42 | 66 | 107.92345(21)# | 1.09(2) s | β− | 108Tc | 0+ | ||
109Mo | 42 | 67 | 108.92781(32)# | 0.53(6) s | β− | 109Tc | (7/2−)# | ||
110Mo | 42 | 68 | 109.92973(43)# | 0.27(1) s | β− (>99.9%) | 110Tc | 0+ | ||
β−, n (<.1%) | 109Tc | ||||||||
111Mo | 42 | 69 | 110.93441(43)# | 200# ms [>300 ns] |
β− | 111Tc | |||
112Mo | 42 | 70 | 111.93684(64)# | 150# ms [>300 ns] |
β− | 112Tc | 0+ | ||
113Mo | 42 | 71 | 112.94188(64)# | 100# ms [>300 ns] |
β− | 113Tc | |||
114Mo | 42 | 72 | 113.94492(75)# | 80# ms [>300 ns] |
0+ | ||||
115Mo | 42 | 73 | 114.95029(86)# | 60# ms [>300 ns] |
- ^ Bold for isotopes with half-lives longer than the age of the universe (nearly stable)
- ^ Abbreviations:
EC: Electron capture
IT: Isomeric transition - ^ Bold for stable isotopes
- ^ Believed to decay by β+β+ to 92Zr with a half-life over 1.9×1020 years
- ^ a b c d Believed to be capable of spontaneous fission
- ^ a b c d e Fission product
- ^ Believed to decay by β−β− to 98Ru with a half-life of over 1×1014 years
- ^ Used to produce the medically useful radioisotope technetium-99m
- ^ Primordial radionuclide
Notes
- Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
Applications
Molybdenum-99 is produced commercially by intense neutron-bombardment of a highly purified uranium-235 target, followed rapidly by extraction.[7] It is used as a parent radioisotope in technetium-99m generators to produce the even shorter-lived daughter isotope technetium-99m, which is used in many medical procedures.
References
- ^ a b Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ Kajan, I.; Heinitz, S.; Kossert, K.; Sprung, P.; Dressler, R.; Schumann, D. (2021-10-05). "First direct determination of the 93Mo half-life". Scientific Reports. 11 (1). doi:10.1038/s41598-021-99253-5. ISSN 2045-2322. PMC 8492754. PMID 34611245.
- ^ "Standard Atomic Weights: Molybdenum". CIAAW. 2013.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ a b D. R. Lide, ed. (2006). CRC Handbook of Chemistry and Physics. Vol. 11. CRC Press. pp. 87–88. ISBN 0-8493-0487-3.
- ^ "Universal Nuclide Chart". nucleonica.
{{cite web}}
: Unknown parameter|registration=
ignored (|url-access=
suggested) (help) - ^ Frank N. Von Hippel; Laura H. Kahn (December 2006). "Feasibility of Eliminating the Use of Highly Enriched Uranium in the Production of Medical Radioisotopes". Science & Global Security. 14 (2 & 3): 151–162. doi:10.1080/08929880600993071. Retrieved 2010-03-26.
- Isotope masses from:
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
{{cite journal}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help)
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
- Isotopic compositions and standard atomic masses from:
- J. R. de Laeter; J. K. Böhlke; P. De Bièvre; H. Hidaka; H. S. Peiser; K. J. R. Rosman; P. D. P. Taylor (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- M. E. Wieser; M. Berglund (2009). "Atomic weights of the elements 2007 (IUPAC Technical Report)" (PDF). Pure and Applied Chemistry. 81 (11): 2131–2156. doi:10.1351/PAC-REP-09-08-03.
{{cite journal}}
: Unknown parameter|laysummary=
ignored (help)
- Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
{{cite journal}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help) - National Nuclear Data Center. "NuDat 2.1 database". Brookhaven National Laboratory. Retrieved 23 February 2017.
- N. E. Holden (2004). "Table of the Isotopes". In D. R. Lide (ed.). CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. Section 11. ISBN 978-0-8493-0485-9.
{{cite book}}
: Unknown parameter|nopp=
ignored (|no-pp=
suggested) (help)
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.