Jump to content

List of interstellar and circumstellar molecules

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 94.41.8.191 (talk) at 14:48, 29 November 2016 (→‎Theoretical models). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

This is a list of molecules that have been detected in the interstellar medium and circumstellar envelopes, grouped by the number of component atoms. The chemical formula is listed for each detected compound, along with any ionized form that has also been observed.

Detection

The molecules listed below were detected by spectroscopy. Their spectral features are generated by transitions of component electrons between different energy levels, or by rotational or vibrational spectra. Detection usually occurs in radio, microwave, or infrared portions of the spectrum.[1]

Interstellar molecules are formed by chemical reactions within very sparse interstellar or circumstellar clouds of dust and gas. Usually this occurs when a molecule becomes ionized, often as the result of an interaction with a cosmic ray. This positively charged molecule then draws in a nearby reactant by electrostatic attraction of the neutral molecule's electrons. Molecules can also be generated by reactions between neutral atoms and molecules, although this process is generally slower.[2] The dust plays a critical role of shielding the molecules from the ionizing effect of ultraviolet radiation emitted by stars.[3]

History

The chemistry of life may have begun shortly after the Big Bang, 13.8 billion years ago, during a habitable epoch when the Universe was only 10–17 million years old.[4][5]

The first carbon-containing molecule detected in the interstellar medium was the methylidyne radical (CH) in 1937.[6] From the early 1970s it was becoming evident that interstellar dust consisted of a large component of more complex organic molecules (COMs),[7] probably polymers. Chandra Wickramasinghe proposed the existence of polymeric composition based on the molecule formaldehyde (H2CO).[8] Fred Hoyle and Chandra Wickramasinghe later proposed the identification of bicyclic aromatic compounds from an analysis of the ultraviolet extinction absorption at 2175 Å,[9] thus demonstrating the existence of polycyclic aromatic hydrocarbon molecules in space.

In 2004, scientists reported[10] detecting the spectral signatures of anthracene and pyrene in the ultraviolet light emitted by the Red Rectangle nebula (no other such complex molecules had ever been found before in outer space). This discovery was considered a confirmation of a hypothesis that as nebulae of the same type as the Red Rectangle approach the ends of their lives, convection currents cause carbon and hydrogen in the nebulae's core to get caught in stellar winds, and radiate outward.[11] As they cool, the atoms supposedly bond to each other in various ways and eventually form particles of a million or more atoms. The scientists inferred[10] that since they discovered polycyclic aromatic hydrocarbons (PAHs) — which may have been vital in the formation of early life on Earth — in a nebula, by necessity they must originate in nebulae.[11]

In 2010, fullerenes (or "buckyballs") were detected in nebulae.[12] Fullerenes have been implicated in the origin of life; according to astronomer Letizia Stanghellini, "It's possible that buckyballs from outer space provided seeds for life on Earth."[13]

In October 2011, scientists found using spectroscopy that cosmic dust contains complex organic compounds ("amorphous organic solids with a mixed aromatic-aliphatic structure") that could be created naturally, and rapidly, by stars.[14][15][16] The compounds are so complex that their chemical structures resemble the makeup of coal and petroleum; such chemical complexity was previously thought to arise only from living organisms.[14] These observations suggest that organic compounds introduced on Earth by interstellar dust particles could serve as basic ingredients for life due to their surface-catalytic activities.[17][18] One of the scientists suggested that these compounds may have been related to the development of life on Earth and said that, "If this is the case, life on Earth may have had an easier time getting started as these organics can serve as basic ingredients for life."[14]

In August 2012, astronomers at Copenhagen University reported the detection of a specific sugar molecule, glycolaldehyde, in a distant star system. The molecule was found around the protostellar binary IRAS 16293-2422, which is located 400 light years from Earth.[19][20] Glycolaldehyde is needed to form ribonucleic acid, or RNA, which is similar in function to DNA. This finding suggests that complex organic molecules may form in stellar systems prior to the formation of planets, eventually arriving on young planets early in their formation.[21]

In September 2012, NASA scientists reported that PAHs, subjected to interstellar medium (ISM) conditions, are transformed, through hydrogenation, oxygenation, and hydroxylation, to more complex organics — "a step along the path toward amino acids and nucleotides, the raw materials of proteins and DNA, respectively".[22][23] Further, as a result of these transformations, the PAHs lose their spectroscopic signature which could be one of the reasons "for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks."[22][23]

PAHs are found everywhere in deep space[24] and, in June 2013, PAHs were detected in the upper atmosphere of Titan, the largest moon of the planet Saturn.[25]

In 2013, Dwayne Heard at the University of Leeds suggested[26] that quantum mechanical tunneling could explain a reaction his group observed taking place, at a significantly higher than expected rate, between cold (around 63 Kelvin) hydroxyl and methanol molecules, apparently bypassing intramolecular energy barriers which would have to be overcome by thermal energy or ionization events for the same rate to exist at warmer temperatures. The proposed tunneling mechanism may help explain the common observation of fairly complex molecules (up to tens of atoms) in interstellar space.

A particularly large and rich region for detecting interstellar molecules is Sagittarius B2 (Sgr B2). This giant molecular cloud lies near the center of the Milky Way galaxy and is a frequent target for new searches. About half of the molecules listed below were first found near Sgr B2, and nearly every other molecule has since been detected in this feature.[27] A rich source of investigation for circumstellar molecules is the relatively nearby star CW Leonis (IRC +10216), where about 50 compounds have been identified.[28]

In March 2015, NASA scientists reported that, for the first time, complex DNA and RNA organic compounds of life, including uracil, cytosine and thymine, have been formed in the laboratory under outer space conditions, using starting chemicals, such as pyrimidine, found in meteorites. Pyrimidine, like polycyclic aromatic hydrocarbons (PAHs), the most carbon-rich chemical found in the Universe, may have been formed in red giants or in interstellar dust and gas clouds, according to the scientists.[29]

In October 2016, astronomers reported that the very basic chemical ingredients of life—the carbon-hydrogen molecule (CH, or methylidyne radical), the carbon-hydrogen positive ion (CH+) and the carbon ion (C+)—are the result, in large part, of ultraviolet light from stars, rather than in other ways, such as the result of turbulent events related to supernovae and young stars, as thought earlier.[30][31]

Theoretical models

To explain the observed ratios of isomeric compounds, the minimum energy principle has been used. In the majority of cases, it explains that some organic entities have greater abundance than their isomers due to the lower total energies of the first one. However, a few exceptions where the principle fails are also known.[32]

Another approach ignores energy and deals only with the molecular complexity estimated by the information entropy index. It speculates that the points of several natural compounds (urea, pyrimidine, dihydroxyacetone, uracil, cytosine, glycine, and alanine) fall into the range of the values typical for the known interstellar molecules that indicates high probability of their detection in interstellar environment. Additionally the molecules with maximal information entropy, i.e. the most complex compounds, make up approximately a half of the interstellar set and their percentage is decreased with the size. This trend may be associated with the different stabilities of the molecules with uniform (usually more stable) and diversified (usually less stable) chemical structures, so the detectable molecules with a large size must possess symmetric structure more probably than non-symmetric. The remarkable detection of low-entropy (highly symmetric) fullerene molecules supports this assumption. It is also noted that information entropy reflects the depth of hydrogenation of interstellar entities: the molecules with maximal information entropy are hydrogen-poor whereas the others are mainly hydrogen-rich.[33]

Molecules

The following tables list molecules that have been detected in the interstellar medium, grouped by the number of component atoms. If there is no entry in the molecule column, only the ionized form has been detected. For molecules where no designation was given in the scientific literature, that field is left empty. Mass is given in atomic mass units. The total number of unique species, including distinct ionization states, is listed in parentheses in each section header.

Most of the molecules detected so far are organic. Only one inorganic species has been observed in molecules which contain at least five atoms, SiH4.[34] Larger molecules have so far all had at least one carbon atom, with no N−N or O−O bonds.[34]

Carbon monoxide is frequently used to trace the distribution of mass in molecular clouds.[35]

Diatomic (43)

Molecule Designation Mass Ions
AlCl Aluminium monochloride[36][37] 62.5
AlF Aluminium monofluoride[36][38] 46
AlO Aluminium monoxide[39] 43
Argonium[40][41] 41 ArH+
C2 Diatomic carbon[42][43] 24
Fluoromethylidynium 31 CF+[44]
CH Methylidyne radical[30][45] 13 CH+[46]
CN Cyanogen radical[36][45][47][48] 26 CN+,[49] CN[50]
CO Carbon monoxide[36][51][52] 28 CO+[53]
CP Carbon monophosphide[48] 43
CS Carbon monosulfide[36] 44
FeO Iron(II) oxide[54] 82
H2 Molecular hydrogen[55] 2
HCl Hydrogen chloride[56] 36.5 HCl+[57]
HF Hydrogen fluoride[58] 20
HO Hydroxyl radical[36] 17 OH+[59]
KCl Potassium chloride[36][37] 75.5
NH Nitrogen monohydride[60][61] 15
N2 Molecular nitrogen[62][63] 28
NO Nitric oxide[64] 30 NO+[49]
NS Nitrogen sulfide[36] 46
NaCl Sodium chloride[36][37] 58.5
Magnesium monohydride cation 25.3 MgH+[49]
NaI Sodium iodide[65] 150
O2 Molecular oxygen[66] 32
PN Phosphorus mononitride[67] 45
PO Phosphorus monoxide[68] 47
SH Sulfur monohydride[69] 33 SH+[70]
SO Sulfur monoxide[36] 48 SO+[46]
SiC Carborundum[36][71] 40
SiN Silicon mononitride[36] 42
SiO Silicon monoxide[36] 44
SiS Silicon monosulfide[36] 60
TiO Titanium oxide[72] 63.9
The H+
3
cation is one of the most abundant ions in the universe. It was first detected in 1993.[73][74]

Triatomic (43)

Molecule Designation Mass Ions
AlNC Aluminium isocyanide[36] 53
AlOH Aluminium hydroxide[75] 44
C3 Tricarbon[43] 36
C2H Ethynyl radical[36][47] 25
CCN Cyanomethylidyne[76] 38
C2O Dicarbon monoxide[77] 40
C2S Thioxoethenylidene[78] 56
C2P [79] 55
CO2 Carbon dioxide[80] 44
FeCN Iron cyanide[81] 82
Protonated molecular hydrogen 3 H+
3
[73][74]
H2C Methylene radical[82] 14
Chloronium 37.5 H2Cl+[83]
H2O Water[84] 18 H2O+[85]
HO2 Hydroperoxyl[86] 33
H2S Hydrogen sulfide[36] 34
HCN Hydrogen cyanide[36][47][87] 27
HNC Hydrogen isocyanide[88] 27
HCO Formyl radical[89] 29 HCO+[46][89][90]
HCP Phosphaethyne[91] 44
Thioformyl 45 HCS+[46][90]
HNC Hydrogen isocyanide[92] 27
Diazenylium 29 HN+
2
[90]
HNO Nitroxyl[93] 31
Isoformyl 29 HOC+[47]
KCN Potassium cyanide[36] 65
MgCN Magnesium cyanide[36] 50
MgNC Magnesium isocyanide[36] 50
NH2 Amino radical[94] 16
Diazenylium 29 N2H+[46][95]
N2O Nitrous oxide[96] 44
NaCN Sodium cyanide[36] 49
NaOH Sodium hydroxide[97] 40
OCS Carbonyl sulfide[98] 60
O3 Ozone[99] 48
SO2 Sulfur dioxide[36][100] 64
c-SiC2 c-Silicon dicarbide[36][71] 52
SiCSi Disilicon carbide[101] 68
SiCN Silicon carbonitride[102] 54
SiNC [103] 54
TiO2 Titanium dioxide[72] 79.9
Formaldehyde is an organic molecule that is widely distributed in the interstellar medium.[104]

Four atoms (27)

Molecule Designation Mass Ions
CH3 Methyl radical[105] 15
l-C3H Propynylidyne[36][106] 37 l-C3H+[107]
c-C3H Cyclopropynylidyne[108] 37
C3N Cyanoethynyl[109] 50 C3N[110]
C3O Tricarbon monoxide[106] 52
C3S Tricarbon sulfide[36][78] 68
Hydronium 19 H3O+[111]
C2H2 Acetylene[112] 26
H2CN Methylene amidogen[113] 28 H2CN+[46]
H2CO Formaldehyde[104] 30
H2CS Thioformaldehyde[114] 46
HCCN [115] 39
HCCO Ketenyl[116] 41
Protonated hydrogen cyanide 28 HCNH+[90]
Protonated carbon dioxide 45 HOCO+[117]
HCNO Fulminic acid[118] 43
HOCN Cyanic acid[119] 43
HOOH Hydrogen peroxide[120] 34
HNCO Isocyanic acid[100] 43
HNCS Isothiocyanic acid[121] 59
NH3 Ammonia[36][122] 17
HSCN Thiocyanic acid[123] 59
SiC3 Silicon tricarbide[36]  64
HMgNC Hydromagnesium isocyanide[124]  51.3
Methane, the primary component of natural gas, has also been detected on comets and in the atmosphere of several planets in the Solar System.[125]

Five atoms (19)

Molecule Designation Mass Ions
Ammonium ion[126][127]  18 NH+
4
CH4 Methane[128] 16
CH3O Methoxy radical[129] 31
c-C3H2 Cyclopropenylidene[47][130][131] 38
l-H2C3 Propadienylidene[131] 38
H2CCN Cyanomethyl[132] 40
H2C2O Ketene[100] 42
H2CNH Methylenimine[133] 29
HNCNH Carbodiimide[134] 42
Protonated formaldehyde 31 H2COH+[135]
C4H Butadiynyl[36] 49 C4H[136]
HC3N Cyanoacetylene[36][47][90][137][138] 51
HCC-NC Isocyanoacetylene[139] 51
HCOOH Formic acid[140][137] 46
NH2CN Cyanamide[141] 42
Protonated cyanogen 53 NCCNH+[142]
HC(O)CN Cyanoformaldehyde[143] 55
SiC4 Silicon-carbide cluster[71] 92
SiH4 Silane[144] 32
In the ISM, formamide (above) can combine with methylene to form acetamide.[145]

Six atoms (16)

Molecule Designation Mass Ions
c-H2C3O Cyclopropenone[146] 54
E-HNCHCN E-Cyanomethanimine[147] 54
C2H4 Ethylene[148] 28
CH3CN Acetonitrile[100][149][150] 40
CH3NC Methyl isocyanide[149] 40
CH3OH Methanol[100][151] 32
CH3SH Methanethiol[152] 48
l-H2C4 Diacetylene[36][153] 50
Protonated cyanoacetylene 52 HC3NH+[90]
HCONH2 Formamide[145] 44
C5H Pentynylidyne[36][78] 61
C5N Cyanobutadiynyl radical[154] 74
HC2CHO Propynal[155] 54
HC4N [36]  63
CH2CNH Ketenimine[130] 40
C5S [156] 92
Acetaldehyde (above) and its isomers vinyl alcohol and ethylene oxide have all been detected in interstellar space.[157]

Seven atoms (10)

Molecule Designation Mass Ions
c-C2H4O Ethylene oxide[158] 44
CH3C2H Methylacetylene[47] 40
H3CNH2 Methylamine[159] 31
CH2CHCN Acrylonitrile[100][149] 53
H2CHCOH Vinyl alcohol[157] 44
C6H Hexatriynyl radical[36][78] 73 C6H[131][160]
HC4CN Cyanodiacetylene[100][138][149] 75
CH3CHO Acetaldehyde[36][158] 44
CH3NCO Methyl isocyanate[161] 57
The radio signature of acetic acid, a compound found in vinegar, was confirmed in 1997.[162]

Eight atoms (11)

Molecule Designation Mass
H3CC2CN Methylcyanoacetylene[163] 65
H2COHCHO Glycolaldehyde[164] 60
HCOOCH3 Methyl formate[100][137][164] 60
CH3COOH Acetic acid[162] 60
H2C6 Hexapentaenylidene[36][153] 74
CH2CHCHO Propenal[130] 56
CH2CCHCN Cyanoallene[130][163] 65
CH3CHNH Ethanimine[165] 43
C7H Heptatrienyl radical[166] 85
NH2CH2CN Aminoacetonitrile[167] 56
(NH2)2CO Urea[168] 60

Nine atoms (10)

Molecule Designation Mass Ions
CH3C4H Methyldiacetylene[169] 64
CH3OCH3 Dimethyl Ether[170] 46
CH3CH2CN Propionitrile[36][100][149] 55
CH3CONH2 Acetamide[130][145] 59
CH3CH2OH Ethanol[171] 46
C8H Octatetraynyl radical[172] 97 C8H[173][174]
HC7N Cyanohexatriyne or Cyanotriacetylene[36][122][175][176] 99
CH3CHCH2 Propylene (propene)[177] 42
CH3CH2SH Ethyl mercaptan[178] 62
Diacetylene, HCCCCH
Methyldiacetylene, HCCCCCH3
Cyanotetraacetylene, HCCCCCCCCCN
A number of polyyne-derived chemicals are among the heaviest molecules found in the interstellar medium.

Ten or more atoms (15)

Atoms Molecule Designation Mass Ions
10 (CH3)2CO Acetone[100][179] 58
10 (CH2OH)2 Ethylene glycol[180][181] 62
10 CH3CH2CHO Propanal[130] 58
10 CH3C5N Methyl-cyano-diacetylene[130] 89
10 CH3CHCH2O Propylene oxide[182] 58
11 HC8CN Cyanotetra-acetylene[36][175] 123
11 C2H5OCHO Ethyl formate[183] 74
11 CH3COOCH3 Methyl acetate[184] 74
11 CH3C6H Methyltriacetylene[130][169] 88
12 C6H6 Benzene[153] 78
12 C3H7CN n-Propyl cyanide[183] 69
12 (CH3)2CHCN iso-Propyl cyanide[185][186] 69
13 HC10CN Cyanodecapentayne[175] 147
13 HC11N Cyanopentaacetylene[175] 159
60 C60 Buckminsterfullerene
(C60 fullerene)
[187]
720 C+
60
[188][189]
70 C70 C70 fullerene[187] 840

Deuterated molecules (20)

These molecules all contain one or more deuterium atoms, a heavier isotope of hydrogen.

Atoms Molecule Designation
2 HD Hydrogen deuteride[190][191]
3 H2D+, HD+
2
Trihydrogen cation[190][191]
3 HDO, D2O Heavy water[192][193]
3 DCN Hydrogen cyanide[194]
3 DCO Formyl radical[194]
3 DNC Hydrogen isocyanide[194]
3 N2D+ [194] 
4 NH2D, NHD2, ND3 Ammonia[191][195][196]
4 HDCO, D2CO Formaldehyde[191][197]
4 DNCO Isocyanic acid[198]
5 NH3D+ Ammonium ion[199][200]
6 NH
2
CDO
; NHDCHO
Formamide[198]
7 CH2DCCH, CH3CCD Methylacetylene[201][202]

Unconfirmed (13)

Evidence for the existence of the following molecules has been reported in scientific literature, but the detections are either described as tentative by the authors, or have been challenged by other researchers. They await independent confirmation.

Atoms Molecule Designation
2 SiH Silylidine[88]
4 PH3 Phosphine[203]
4 MgCCH Magnesium monoacetylide[156]
4 NCCP Cyanophosphaethyne[156]
5 C5 Linear C5[43]
5 H2NCO+ [204]
4 SiH3CN Silyl cyanide[156]
10 H2NH2CCOOH Glycine[205][206]
12 CO(CH2OH)2 Dihydroxyacetone[207]
12 C2H5OCH3 Ethyl methyl ether[208]
18 C
10
H+
8
Naphthalene cation[209]
24 C24 Graphene[210]
24 C14H10 Anthracene[10][211]
26 C16H10 Pyrene[10]

See also

References

  1. ^ Shu, Frank H. (1982), The Physical Universe: An Introduction to Astronomy, University Science Books, ISBN 0-935702-05-9
  2. ^ Dalgarno, A. (2006), "Interstellar Chemistry Special Feature: The galactic cosmic ray ionization rate", Proceedings of the National Academy of Sciences, 103 (33): 12269–12273, Bibcode:2006PNAS..10312269D, doi:10.1073/pnas.0602117103, PMC 1567869, PMID 16894166
  3. ^ Brown, Laurie M.; Pais, Abraham; Pippard, A. B. (1995), "The physics of the interstellar medium", Twentieth Century Physics (2nd ed.), CRC Press, p. 1765, ISBN 0-7503-0310-7
  4. ^ Loeb, Abraham (October 2014). "The Habitable Epoch of the Early Universe". International Journal of Astrobiology. 13 (4): 337–339. arXiv:1312.0613. Bibcode:2014IJAsB..13..337L. doi:10.1017/S1473550414000196. Retrieved 15 December 2014.
  5. ^ Dreifus, Claudia (2 December 2014). "Much-Discussed Views That Go Way Back - Avi Loeb Ponders the Early Universe, Nature and Life". New York Times. Retrieved 3 December 2014.
  6. ^ Woon, D. E. (May 2005), Methylidyne radical, The Astrochemist, retrieved 2007-02-13
  7. ^ Ruaud, M.; Loison, J.C.; Hickson, K.M.; Gratier, P.; Hersant, F.; Wakelam, V. (2015). "Modeling Complex Organic Molecules in dense regions: Eley-Rideal and complex induced reaction". Monthly Notices of the Royal Astronomical Society. 447 (4): 4004–4017. arXiv:1412.6256. Bibcode:2015MNRAS.447.4004R. doi:10.1093/mnras/stu2709.
  8. ^ N.C. Wickramasinghe, Formaldehyde Polymers in Interstellar Space, Nature, 252, 462, 1974
  9. ^ F. Hoyle and N.C. Wickramasinghe, Identification of the lambda 2200Å interstellar absorption feature, Nature, 270, 323, 1977
  10. ^ a b c d Battersby, S. (2004). "Space molecules point to organic origins". New Scientist. Retrieved 11 December 2009.
  11. ^ a b Mulas, G.; Malloci, G.; Joblin, C.; Toublanc, D. (2006). "Estimated IR and phosphorescence emission fluxes for specific polycyclic aromatic hydrocarbons in the Red Rectangle". Astronomy and Astrophysics. 446 (2): 537–549. arXiv:astro-ph/0509586. Bibcode:2006A&A...446..537M. doi:10.1051/0004-6361:20053738.
  12. ^ García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Stanghellini, L.; Villaver, E.; Shaw, R. A.; Szczerba, R.; Perea-Calderón, J. V. (2010-10-28). "Formation Of Fullerenes In H-Containing Planatary Nebulae". The Astrophysical Journal Letters. 724 (1): L39–L43. arXiv:1009.4357. Bibcode:2010ApJ...724L..39G. doi:10.1088/2041-8205/724/1/L39.
  13. ^ Atkinson, Nancy (2010-10-27). "Buckyballs Could Be Plentiful in the Universe". Universe Today. Retrieved 2010-10-28.
  14. ^ a b c Chow, Denise (26 October 2011). "Discovery: Cosmic Dust Contains Organic Matter from Stars". Space.com. Retrieved 2011-10-26.
  15. ^ ScienceDaily Staff (26 October 2011). "Astronomers Discover Complex Organic Matter Exists Throughout the Universe". ScienceDaily. Retrieved 2011-10-27.
  16. ^ Kwok, Sun; Zhang, Yong (26 October 2011). "Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features". Nature. 479 (7371): 80–3. Bibcode:2011Natur.479...80K. doi:10.1038/nature10542. PMID 22031328.
  17. ^ Gallori, Enzo (November 2010). "Astrochemistry and the origin of genetic material". Rendiconti Lincei. 22 (2): 113–118. doi:10.1007/s12210-011-0118-4. Retrieved 2011-08-11.
  18. ^ Martins, Zita (February 2011). "Organic Chemistry of Carbonaceous Meteorites". Elements. 7 (1): 35–40. doi:10.2113/gselements.7.1.35. Retrieved 2011-08-11.
  19. ^ Than, Ker (August 29, 2012). "Sugar Found In Space". National Geographic. Retrieved August 31, 2012.
  20. ^ Staff (August 29, 2012). "Sweet! Astronomers spot sugar molecule near star". AP News. Retrieved August 31, 2012.
  21. ^ Jørgensen, J. K.; Favre, C.; Bisschop, S.; Bourke, T.; Dishoeck, E.; Schmalzl, M. (2012). "Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA" (PDF). The Astrophysical Journal Letters. eprint. 757: L4. arXiv:1208.5498. Bibcode:2012ApJ...757L...4J. doi:10.1088/2041-8205/757/1/L4.
  22. ^ a b Staff (September 20, 2012). "NASA Cooks Up Icy Organics to Mimic Life's Origins". Space.com. Retrieved September 22, 2012.
  23. ^ a b Gudipati, Murthy S.; Yang, Rui (September 1, 2012). "In-Situ Probing Of Radiation-Induced Processing Of Organics In Astrophysical Ice Analogs—Novel Laser Desorption Laser Ionization Time-Of-Flight Mass Spectroscopic Studies". The Astrophysical Journal Letters. 756 (1): L24. Bibcode:2012ApJ...756L..24G. doi:10.1088/2041-8205/756/1/L24. Retrieved September 22, 2012.
  24. ^ Clavin, Whitney (10 February 2015). "Why Comets Are Like Deep Fried Ice Cream". NASA. Retrieved 10 February 2015.
  25. ^ López-Puertas, Manuel (June 6, 2013). "PAH's in Titan's Upper Atmosphere". CSIC. Retrieved June 6, 2013.
  26. ^ http://www.sciencenews.org/view/generic/id/351444/description/Interstellar_chemistry_makes_use_of_quantum_shortcut#comment_351468
  27. ^ Cummins, S. E.; Linke, R. A.; Thaddeus, P. (1986), "A survey of the millimeter-wave spectrum of Sagittarius B2", Astrophysical Journal Supplement Series, 60: 819–878, Bibcode:1986ApJS...60..819C, doi:10.1086/191102
  28. ^ Kaler, James B. (2002), The hundred greatest stars, Copernicus Series, Springer, ISBN 0-387-95436-8, retrieved 2011-05-09
  29. ^ Marlaire, Ruth (3 March 2015). "NASA Ames Reproduces the Building Blocks of Life in Laboratory". NASA. Retrieved 5 March 2015.
  30. ^ a b Landau, Elizabeth (12 October 2016). "Building Blocks of Life's Building Blocks Come From Starlight". NASA. Retrieved 13 October 2016.
  31. ^ Morris, Patrick W.; Gupta, Harshal; Nagy, Zsofia; Pearson, John C.; Ossenkopf-Okada, Volker; Falgarone, Edith; Lis, Dariusz C.; Gerin, Maryvonne; Melnick, Gary; Neufeld, David A.; Bergin, Edwin A. (2016). "Herschel/HIFI Spectral Mapping of C+, CH+, and CH in Orion BN/Kl: The Prevailing Role of Ultraviolet Irradiation in CH+ Formation". The Astrophysical Journal. 829: 15. Bibcode:2016ApJ...829...15M. doi:10.3847/0004-637X/829/1/15.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  32. ^ Lattelais, M.; Pauzat, F.; Ellinger, Y.; Ceccarelli, C. (2009). "INTERSTELLAR COMPLEX ORGANIC MOLECULES AND THE MINIMUM ENERGY PRINCIPLE". Astrophysical Journal Letters. 696. doi:10.1088/0004-637X/696/2/L133.
  33. ^ Sabirov, Denis (1 December 2016). "Information entropy of interstellar and circumstellar carbon-containing molecules: Molecular size against structural complexity". Computational and Theoretical Chemistry. 1097 (1): 83–91. doi:10.1016/j.comptc.2016.10.014.
  34. ^ a b Klemperer, William (2011), "Astronomical Chemistry", Annual Review of Physical Chemistry, 62: 173–184, doi:10.1146/annurev-physchem-032210-103332
  35. ^ The Structure of Molecular Cloud Cores, Centre for Astrophysics and Planetary Science, University of Kent, retrieved 2007-02-16
  36. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am Ziurys, Lucy M. (2006), "The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life", Proceedings of the National Academy of Sciences, 103 (33): 12274–12279, Bibcode:2006PNAS..10312274Z, doi:10.1073/pnas.0602277103, PMC 1567870, PMID 16894164
  37. ^ a b c Cernicharo, J.; Guelin, M. (1987), "Metals in IRC+10216 - Detection of NaCl, AlCl, and KCl, and tentative detection of AlF", Astronomy and Astrophysics, 183 (1): L10–L12, Bibcode:1987A&A...183L..10C
  38. ^ Ziurys, L. M.; Apponi, A. J.; Phillips, T. G. (1994), "Exotic fluoride molecules in IRC +10216: Confirmation of AlF and searches for MgF and CaF", Astrophysical Journal, 433 (2): 729–732, Bibcode:1994ApJ...433..729Z, doi:10.1086/174682
  39. ^ Tenenbaum, E. D.; Ziurys, L. M. (2009), "Millimeter Detection of AlO (X2Σ+): Metal Oxide Chemistry in the Envelope of VY Canis Majoris", Astrophysical Journal, 694: L59–L63, Bibcode:2009ApJ...694L..59T, doi:10.1088/0004-637X/694/1/L59
  40. ^ Barlow, M. J.; Swinyard, B. M.; Owen, P. J.; Cernicharo, J.; Gomez, H. L.; Ivison, R. J.; Lim, T. L.; Matsuura, M.; Miller, S.; Olofsson, G.; Polehampton, E. T. (2013), "Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula", Science, 342 (6164): 1343–1345, doi:10.1126/science.124358213
  41. ^ Quenqua, Douglas (13 December 2013). "Noble Molecules Found in Space". New York Times. Retrieved 13 December 2013.
  42. ^ Lambert, D. L.; Sheffer, Y.; Federman, S. R. (1995), "Hubble Space Telescope observations of C2 molecules in diffuse interstellar clouds", Astrophysical Journal, 438: 740–749, Bibcode:1995ApJ...438..740L, doi:10.1086/175119
  43. ^ a b c Galazutdinov, G. A.; Musaev, F. A.; Krelowski, J. (2001), "On the detection of the linear C5 molecule in the interstellar medium", Monthly Notices of the Royal Astronomical Society, 325 (4): 1332–1334, Bibcode:2001MNRAS.325.1332G, doi:10.1046/j.1365-8711.2001.04388.x
  44. ^ Neufeld, D. A.; et al. (2006), "Discovery of interstellar CF+", Astronomy and Astrophysics, 454 (2): L37–L40, arXiv:astro-ph/0603201, Bibcode:2006A&A...454L..37N, doi:10.1051/0004-6361:200600015
  45. ^ a b Adams, Walter S. (1941), "Some Results with the COUDÉ Spectrograph of the Mount Wilson Observatory", Astrophysical Journal, 93: 11–23, Bibcode:1941ApJ....93...11A, doi:10.1086/144237
  46. ^ a b c d e f Smith, D. (1988), "Formation and Destruction of Molecular Ions in Interstellar Clouds", Philosophical Transactions of the Royal Society of London, 324 (1578): 257–273, Bibcode:1988RSPTA.324..257S, doi:10.1098/rsta.1988.0016
  47. ^ a b c d e f g Fuente, A.; et al. (2005), "Photon-dominated Chemistry in the Nucleus of M82: Widespread HOC+ Emission in the Inner 650 Parsec Disk", Astrophysical Journal, 619 (2): L155–L158, arXiv:astro-ph/0412361, Bibcode:2005ApJ...619L.155F, doi:10.1086/427990
  48. ^ a b Guelin, M.; Cernicharo, J.; Paubert, G.; Turner, B. E. (1990), "Free CP in IRC + 10216", Astronomy and Astrophysics, 230: L9–L11, Bibcode:1990A&A...230L...9G
  49. ^ a b c Dopita, Michael A.; Sutherland, Ralph S. (2003), Astrophysics of the diffuse universe, Springer-Verlag, ISBN 3-540-43362-7
  50. ^ Agúndez, M.; et al. (2010-07-30), "Astronomical identification of CN, the smallest observed molecular anion", Astronomy & Astrophysics, 517: L2, arXiv:1007.0662, Bibcode:2010A&A...517L...2A, doi:10.1051/0004-6361/201015186, retrieved 2010-09-03
  51. ^ Khan, Amina. "Did two planets around nearby star collide? Toxic gas holds hints". LA Times. Retrieved March 9, 2014.
  52. ^ "Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk". Science. 343: 1490–1492. March 6, 2014. arXiv:1404.1380. Bibcode:2014Sci...343.1490D. doi:10.1126/science.1248726. Retrieved March 9, 2014. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  53. ^ Latter, W. B.; Walker, C. K.; Maloney, P. R. (1993), "Detection of the Carbon Monoxide Ion (CO+) in the Interstellar Medium and a Planetary Nebula", Astrophysical Journal Letters, 419: L97, Bibcode:1993ApJ...419L..97L, doi:10.1086/187146
  54. ^ Furuya, R. S.; et al. (2003), "Interferometric observations of FeO towards Sagittarius B2", Astronomy and Astrophysics, 409 (2): L21–L24, Bibcode:2003A&A...409L..21F, doi:10.1051/0004-6361:20031304
  55. ^ Adams, Walter S. (1970), "Rocket Observation of Interstellar Molecular Hydrogen", Astrophysical Journal, 161: L81–L85, Bibcode:1970ApJ...161L..81C, doi:10.1086/180575
  56. ^ Blake, G. A.; Keene, J.; Phillips, T. G. (1985), "Chlorine in dense interstellar clouds - The abundance of HCl in OMC-1", Astrophysical Journal, Part 1, 295: 501–506, Bibcode:1985ApJ...295..501B, doi:10.1086/163394
  57. ^ De Luca, M.; Gupta, H.; Neufeld, D.; Gerin, M.; Teyssier, D.; Drouin, B. J.; Pearson, J. C.; Lis, D. C.; Monje, R. (2012), "Herschel/HIFI Discovery of HCl+ in the Interstellar Medium", The Astrophysical Journal Letters, 751 (2): L37, Bibcode:2012ApJ...751L..37D, doi:10.1088/2041-8205/751/2/L37 {{citation}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  58. ^ Neufeld, David A.; et al. (1997), "Discovery of Interstellar Hydrogen Fluoride", Astrophysical Journal Letters, 488 (2): L141–L144, arXiv:astro-ph/9708013, Bibcode:1997ApJ...488L.141N, doi:10.1086/310942
  59. ^ Wyrowski, F.; et al. (2009), "First interstellar detection of OH+", Astronomy & Astrophysics, 518: A26, arXiv:1004.2627, Bibcode:2010A&A...518A..26W, doi:10.1051/0004-6361/201014364
  60. ^ Meyer, D. M.; Roth, K. C. (1991), "Discovery of interstellar NH", Astrophysical Journal Letters, 376: L49–L52, Bibcode:1991ApJ...376L..49M, doi:10.1086/186100
  61. ^ Wagenblast, R.; et al. (January 1993), "On the origin of NH in diffuse interstellar clouds", Monthly Notices of the Royal Astronomical Society, 260 (2): 420–424, Bibcode:1993MNRAS.260..420W, doi:10.1093/mnras/260.2.420
  62. ^ <Please add first missing authors to populate metadata.> (June 9, 2004), Astronomers Detect Molecular Nitrogen Outside Solar System, Space Daily, retrieved 2010-06-25
  63. ^ Knauth, D. C; et al. (2004), "The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations", Nature, 429 (6992): 636–638, Bibcode:2004Natur.429..636K, doi:10.1038/nature02614, PMID 15190346, retrieved 2010-06-25
  64. ^ McGonagle, D.; et al. (1990), "Detection of nitric oxide in the dark cloud L134N", Astrophysical Journal, Part 1, 359: 121–124, Bibcode:1990ApJ...359..121M, doi:10.1086/169040
  65. ^ Whiteoak, J. B.; Gardner, F. F. (1985), "Interstellar NaI absorption towards the stellar association ARA OB1", Astronomical Society of Australia, Proceedings, 6 (2), Sydney: 164–171, Bibcode:1985PASAu...6..164W
  66. ^ Staff writers (March 27, 2007), Elusive oxygen molecule finally discovered in interstellar space, Physorg.com, retrieved 2007-04-02
  67. ^ Ziurys, L. M. (1987), "Detection of interstellar PN - The first phosphorus-bearing species observed in molecular clouds", Astrophysical Journal Letters, 321: L81–L85, Bibcode:1987ApJ...321L..81Z, doi:10.1086/185010
  68. ^ Tenenbaum, E. D.; Woolf, N. J.; Ziurys, L. M. (2007), "Identification of phosphorus monoxide (X 2 Pi r) in VY Canis Majoris: Detection of the first PO bond in space", Astrophysical Journal Letters, 666: L29–L32, Bibcode:2007ApJ...666L..29T, doi:10.1086/521361
  69. ^ Yamamura, S. T.; Kawaguchi, K.; Ridgway, S. T. (2000), "Identification of SH v=1 Ro-vibrational Lines in R Andromedae", The Astrophysical Journal, 528 (1): L33–L36, arXiv:astro-ph/9911080, Bibcode:2000ApJ...528L..33Y, doi:10.1086/312420, PMID 10587489
  70. ^ Menten, K. M.; et al. (2011), "Submillimeter Absorption from SH+, a New Widespread Interstellar Radical, 13CH+ and HCl", Astronomy & Astrophysics, 525: A77, arXiv:1009.2825, Bibcode:2011A&A...525A..77M, doi:10.1051/0004-6361/201014363, retrieved 2010-12-03.
  71. ^ a b c Pascoli, G.; Comeau, M. (1995), "Silicon Carbide in Circumstellar Environment", Astrophysics and Space Science, 226: 149–163, Bibcode:1995Ap&SS.226..149P, doi:10.1007/BF00626907
  72. ^ a b Kamiński, T.; et al. (2013), "Pure rotational spectra of TiO and TiO2 in VY Canis Majoris", Astronomy and Astrophysics, 551: A113, arXiv:1301.4344, Bibcode:2013A&A...551A.113K, doi:10.1051/0004-6361/201220290
  73. ^ a b Oka, Takeshi (2006), "Interstellar H3+", Proceedings of the National Academy of Sciences, 103 (33): 12235–12242, Bibcode:2006PNAS..10312235O, doi:10.1073/pnas.0601242103, PMC 1567864, PMID 16894171, retrieved 2007-02-04
  74. ^ a b Geballe, T. R.; Oka, T. (1996), "Detection of H3+ in Interstellar Space", Nature, 384 (6607): 334–335, Bibcode:1996Natur.384..334G, doi:10.1038/384334a0, PMID 8934516
  75. ^ Tenenbaum, E. D.; Ziurys, L. M. (2010), "Exotic Metal Molecules in Oxygen-rich Envelopes: Detection of AlOH (X1Σ+) in VY Canis Majoris", Astrophysical Journal, 712: L93–L97, Bibcode:2010ApJ...712L..93T, doi:10.1088/2041-8205/712/1/L93
  76. ^ Anderson, J. K.; et al. (2014), "Detection of CCN (X2Πr) in IRC+10216: Constraining Carbon-chain Chemistry", Astrophysical Journal, 795: L1, Bibcode:2014ApJ...795L...1A, doi:10.1088/2041-8205/795/1/L1
  77. ^ Ohishi, Masatoshi, Masatoshi; et al. (1991), "Detection of a new carbon-chain molecule, CCO", Astrophysical Journal Letters, 380: L39–L42, Bibcode:1991ApJ...380L..39O, doi:10.1086/186168
  78. ^ a b c d Irvine, William M.; et al. (1988), "Newly detected molecules in dense interstellar clouds", Astrophysical Letters and Communications, 26: 167–180, Bibcode:1988ApL&C..26..167I, PMID 11538461
  79. ^ Halfen, D. T.; Clouthier, D. J.; Ziurys, L. M. (2008), "Detection of the CCP Radical (X 2Πr) in IRC +10216: A New Interstellar Phosphorus-containing Species", Astrophysical Journal, 677 (2): L101–L104, Bibcode:2008ApJ...677L.101H, doi:10.1086/588024
  80. ^ Whittet, D. C. B.; Walker, H. J. (1991), "On the occurrence of carbon dioxide in interstellar grain mantles and ion-molecule chemistry", Monthly Notices of the Royal Astronomical Society, 252: 63–67, Bibcode:1991MNRAS.252...63W, doi:10.1093/mnras/252.1.63
  81. ^ Zack, L. N.; Halfen, D. T.; Ziurys, L. M. (June 2011), "Detection of FeCN (X 4Δi) in IRC+10216: A New Interstellar Molecule", The Astrophysical Journal Letters, 733 (2): L36, Bibcode:2011ApJ...733L..36Z, doi:10.1088/2041-8205/733/2/L36
  82. ^ Hollis, J. M.; Jewell, P. R.; Lovas, F. J. (1995), "Confirmation of interstellar methylene", Astrophysical Journal, Part 1, 438: 259–264, Bibcode:1995ApJ...438..259H, doi:10.1086/175070
  83. ^ Lis, D. C.; et al. (2010-10-01), "Herschel/HIFI discovery of interstellar chloronium (H2Cl+)", Astronomy & Astrophysics, 521: L9, arXiv:1007.1461, Bibcode:2010A&A...521L...9L, doi:10.1051/0004-6361/201014959.
  84. ^ Europe's space telescope ISO finds water in distant places, ESO, April 29, 1997, archived from the original on 2006-12-22, retrieved 2007-02-08
  85. ^ Ossenkopf, V.; et al. (2010), "Detection of interstellar oxidaniumyl: Abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334", Astronomy & Astrophysics, 518: L111, arXiv:1005.2521, Bibcode:2010A&A...518L.111O, doi:10.1051/0004-6361/201014577.
  86. ^ Parise, B.; Bergman, P.; Du, F. (2012), "Detection of the hydroperoxyl radical HO2 toward ρ Ophiuchi A. Additional constraints on the water chemical network", Astronomy & Astrophysics Letters, 541: L11–L14, arXiv:1205.0361, Bibcode:2012A&A...541L..11P, doi:10.1051/0004-6361/201219379
  87. ^ Snyder, L. E.; Buhl, D. (1971), "Observations of Radio Emission from Interstellar Hydrogen Cyanide", Astrophysical Journal, 163: L47–L52, Bibcode:1971ApJ...163L..47S, doi:10.1086/180664
  88. ^ a b Schilke, P.; Benford, D. J.; Hunter, T. R.; Lis, D. C., Phillips, T. G.; Phillips, T. G. (2001), "A Line Survey of Orion-KL from 607 to 725 GHz", Astrophysical Journal Supplement Series, 132 (2): 281–364, Bibcode:2001ApJS..132..281S, doi:10.1086/318951{{citation}}: CS1 maint: multiple names: authors list (link)
  89. ^ a b Schenewerk, M. S.; Snyder, L. E.; Hjalmarson, A. (1986), "Interstellar HCO - Detection of the missing 3 millimeter quartet", Astrophysical Journal Letters, 303: L71–L74, Bibcode:1986ApJ...303L..71S, doi:10.1086/184655
  90. ^ a b c d e f Kawaguchi, Kentarou; et al. (1994), "Detection of a new molecular ion HC3NH(+) in TMC-1", Astrophysical Journal, 420: L95, Bibcode:1994ApJ...420L..95K, doi:10.1086/187171
  91. ^ Agúndez, M.; Cernicharo, J.; Guélin, M. (2007), "Discovery of Phosphaethyne (HCP) in Space: Phosphorus Chemistry in Circumstellar Envelopes", The Astrophysical Journal, 662 (2): L91, Bibcode:2007ApJ...662L..91A, doi:10.1086/519561, retrieved 2007-06-02
  92. ^ Schilke, P.; Comito, C.; Thorwirth, S. (2003), "First Detection of Vibrationally Excited HNC in Space", The Astrophysical Journal, 582 (2): L101–L104, Bibcode:2003ApJ...582L.101S, doi:10.1086/367628, retrieved 2008-09-14
  93. ^ Hollis, J. M.; et al. (1991), "Interstellar HNO: Confirming the Identification - Atoms, ions and molecules: New results in spectral line astrophysics", Atoms, 16, San Francisco: ASP: 407–412, Bibcode:1991ASPC...16..407H
  94. ^ van Dishoeck, Ewine F.; et al. (1993), "Detection of the Interstellar NH 2 Radical", Astrophysical Journal Letters, 416: L83–L86, Bibcode:1993ApJ...416L..83V, doi:10.1086/187076
  95. ^ Womack, M.; Ziurys, L. M.; Wyckoff, S. (1992), "A survey of N2H(+) in dense clouds - Implications for interstellar nitrogen and ion-molecule chemistry", Astrophysical Journal, Part 1, 387: 417–429, Bibcode:1992ApJ...387..417W, doi:10.1086/171094
  96. ^ Ziurys, L. M.; et al. (1994), "Detection of interstellar N2O: A new molecule containing an N-O bond", Astrophysical Journal Letters, 436: L181–L184, Bibcode:1994ApJ...436L.181Z, doi:10.1086/187662
  97. ^ Hollis, J. M.; Rhodes, P. J. (November 1, 1982), "Detection of interstellar sodium hydroxide in self-absorption toward the galactic center", Astrophysical Journal Letters, 262: L1–L5, Bibcode:1982ApJ...262L...1H, doi:10.1086/183900
  98. ^ Goldsmith, P. F.; Linke, R. A. (1981), "A study of interstellar carbonyl sulfide", Astrophysical Journal, Part 1, 245: 482–494, Bibcode:1981ApJ...245..482G, doi:10.1086/158824
  99. ^ Phillips, T. G.; Knapp, G. R. (1980), "Interstellar Ozone", American Astronomical Society Bulletin, 12: 440, Bibcode:1980BAAS...12..440P
  100. ^ a b c d e f g h i j Johansson, L. E. B.; et al. (1984), "Spectral scan of Orion A and IRC+10216 from 72 to 91 GHz", Astronomy and Astrophysics, 130 (2): 227–256, Bibcode:1984A&A...130..227J
  101. ^ Cernicharo, José; et al. (2015), "Discovery of SiCSi in IRC+10216: a Missing Link Between Gas and Dust Carriers OF Si–C Bonds", Astrophysical Journal Letters, 806: L3, Bibcode:2015ApJ...806L...3C, doi:10.1088/2041-8205/806/1/L3
  102. ^ Guélin, M.; et al. (2004), "Astronomical detection of the free radical SiCN", Astronomy and Astrophysics, 363: L9–L12, Bibcode:2000A&A...363L...9G
  103. ^ Guélin, M.; et al. (2004), "Detection of the SiNC radical in IRC+10216", Astronomy and Astrophysics, 426 (2): L49–L52, Bibcode:2004A&A...426L..49G, doi:10.1051/0004-6361:200400074
  104. ^ a b Snyder, Lewis E.; et al. (1999), "Microwave Detection of Interstellar Formaldehyde", Physical Review Letters, 61 (2): 77–115, Bibcode:1969PhRvL..22..679S, doi:10.1103/PhysRevLett.22.679
  105. ^ Feuchtgruber, H.; et al. (June 2000), "Detection of Interstellar CH3", The Astrophysical Journal, 535 (2): L111–L114, arXiv:astro-ph/0005273, Bibcode:2000ApJ...535L.111F, doi:10.1086/312711, PMID 10835311
  106. ^ a b Irvine, W. M.; et al. (1984), "Confirmation of the Existence of Two New Interstellar Molecules: C3H and C3O", Bulletin of the American Astronomical Society, 16: 877, Bibcode:1984BAAS...16..877I
  107. ^ Pety, J.; et al. (2012), "The IRAM-30 m line survey of the Horsehead PDR. II. First detection of the l-C3MH+ hydrocarbon cation", Astronomy & Astrophysics, 548: A68, arXiv:1210.8178, Bibcode:2012A&A...548A..68P, doi:10.1051/0004-6361/201220062
  108. ^ Mangum, J. G.; Wootten, A. (1990), "Observations of the cyclic C3H radical in the interstellar medium", Astronomy and Astrophysics, 239: 319–325, Bibcode:1990A&A...239..319M
  109. ^ Bell, M. B.; Matthews, H. E. (1995), "Detection of C3N in the spiral arm gas clouds in the direction of Cassiopeia A", Astrophysical Journal, Part 1, 438: 223–225, Bibcode:1995ApJ...438..223B, doi:10.1086/175066
  110. ^ Thaddeus, P.; et al. (2008), "Laboratory and Astronomical Detection of the Negative Molecular Ion C3N-", The Astrophysical Journal, 677 (2): 1132–1139, Bibcode:2008ApJ...677.1132T, doi:10.1086/528947
  111. ^ Wootten, Alwyn; et al. (1991), "Detection of interstellar H3O(+) - A confirming line", Astrophysical Journal Letters, 380: L79–L83, Bibcode:1991ApJ...380L..79W, doi:10.1086/186178
  112. ^ Ridgway, S. T.; et al. (1976), "Circumstellar acetylene in the infrared spectrum of IRC+10216", Nature, 264: 345, 346, Bibcode:1976Natur.264..345R, doi:10.1038/264345a0
  113. ^ Ohishi, Masatoshi; et al. (1994), "Detection of a new interstellar molecule, H2CN", Astrophysical Journal Letters, 427: L51–L54, Bibcode:1994ApJ...427L..51O, doi:10.1086/187362
  114. ^ Minh, Y. C.; Irvine, W. M.; Brewer, M. K. (1991), "H2CS abundances and ortho-to-para ratios in interstellar clouds", Astronomy and Astrophysics, 244: 181–189, Bibcode:1991A&A...244..181M, PMID 11538284
  115. ^ Guelin, M.; Cernicharo, J. (1991), "Astronomical detection of the HCCN radical - Toward a new family of carbon-chain molecules?", Astronomy and Astrophysics, 244: L21–L24, Bibcode:1991A&A...244L..21G
  116. ^ Agúndez, M.; et al. (2015), "Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical", Astronomy and Astrophysics, 577: L5, Bibcode:2015A&A...577L...5A, doi:10.1051/0004-6361/201526317
  117. ^ Minh, Y. C.; Irvine, W. M.; Ziurys, L. M. (1988), "Observations of interstellar HOCO(+) - Abundance enhancements toward the Galactic center", Astrophysical Journal, Part 1, 334: 175–181, Bibcode:1988ApJ...334..175M, doi:10.1086/166827
  118. ^ Marcelino, Núria; et al. (2009), "Discovery of fulminic acid, HCNO, in dark clouds", Astrophysical Journal, 690: L27–L30, arXiv:0811.2679, Bibcode:2009ApJ...690L..27M, doi:10.1088/0004-637X/690/1/L27
  119. ^ Brünken, S.; et al. (2010-07-22), "Interstellar HOCN in the Galactic center region", Astronomy & Astrophysics, 516: A109, arXiv:1005.2489, Bibcode:2010A&A...516A.109B, doi:10.1051/0004-6361/200912456
  120. ^ Bergman; Parise; Liseau; Larsson; Olofsson; Menten; Güsten (2011), "Detection of interstellar hydrogen peroxide", Astronomy & Astrophysics, 531: L8, arXiv:1105.5799, Bibcode:2011A&A...531L...8B, doi:10.1051/0004-6361/201117170.
  121. ^ Frerking, M. A.; Linke, R. A.; Thaddeus, P. (1979), "Interstellar isothiocyanic acid", Astrophysical Journal Letters, 234: L143–L145, Bibcode:1979ApJ...234L.143F, doi:10.1086/183126
  122. ^ a b Nguyen-Q-Rieu; Graham, D.; Bujarrabal, V. (1984), "Ammonia and cyanotriacetylene in the envelopes of CRL 2688 and IRC + 10216", Astronomy and Astrophysics, 138 (1): L5–L8, Bibcode:1984A&A...138L...5N
  123. ^ Halfen, D. T.; et al. (September 2009), "Detection of a New Interstellar Molecule: Thiocyanic Acid HSCN", The Astrophysical Journal Letters, 702 (2): L124–L127, Bibcode:2009ApJ...702L.124H, doi:10.1088/0004-637X/702/2/L124
  124. ^ Cabezas, C.; et al. (2013), "Laboratory and Astronomical Discovery of Hydromagnesium Isocyanide", Astrophysical Journal, 775: 133, arXiv:1309.0371, Bibcode:2013ApJ...775..133C, doi:10.1088/0004-637X/775/2/133
  125. ^ Butterworth, Anna L.; et al. (2004), "Combined element (H and C) stable isotope ratios of methane in carbonaceous chondrites", Monthly Notices of the Royal Astronomical Society, 347 (3): 807–812, Bibcode:2004MNRAS.347..807B, doi:10.1111/j.1365-2966.2004.07251.x
  126. ^ http://www.astro.uni-koeln.de/site/vorhersagen/molecules/ism/Ammonium.html
  127. ^ http://iopscience.iop.org/2041-8205/771/1/L10/
  128. ^ Lacy, J. H.; et al. (1991), "Discovery of interstellar methane - Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds", Astrophysical Journal, 376: 556–560, Bibcode:1991ApJ...376..556L, doi:10.1086/170304{{citation}}: CS1 maint: multiple names: authors list (link)
  129. ^ Cernicharo, J.; Marcelino, N.; Roueff, E.; Gerin, M.; Jiménez-Escobar, A.; Muñoz Caro, G. M. (2012), "Discovery of the Methoxy Radical, CH3O, toward B1: Dust Grain and Gas-phase Chemistry in Cold Dark Clouds", The Astrophysical Journal Letters, 759 (2): L43–L46, Bibcode:2012ApJ...759L..43C, doi:10.1088/2041-8205/759/2/L43
  130. ^ a b c d e f g h Finley, Dave (August 7, 2006), Researchers Use NRAO Telescope to Study Formation Of Chemical Precursors to Life, National Radio Astronomy Observatory, retrieved 2006-08-10
  131. ^ a b c Fossé, David; et al. (2001), "Molecular Carbon Chains and Rings in TMC-1", Astrophysical Journal, 552 (1): 168–174, arXiv:astro-ph/0012405, Bibcode:2001ApJ...552..168F, doi:10.1086/320471, retrieved 2008-09-14
  132. ^ Irvine, W. M.; et al. (1988), "Identification of the interstellar cyanomethyl radical (CH2CN) in the molecular clouds TMC-1 and Sagittarius B2", Astrophysical Journal Letters, 334: L107–L111, Bibcode:1988ApJ...334L.107I, doi:10.1086/185323
  133. ^ Dickens, J. E.; et al. (1997), "Hydrogenation of Interstellar Molecules: A Survey for Methylenimine (CH2NH)", Astrophysical Journal, 479 (1 Pt 1): 307–12, Bibcode:1997ApJ...479..307D, doi:10.1086/303884, PMID 11541227
  134. ^ McGuire, B.A.; et al. (2012), "Interstellar Carbodiimide (HNCNH): A New Astronomical Detection from the GBT PRIMOS Survey via Maser Emission Features", The Astrophysical Journal Letters, 758 (2): L33–L38, arXiv:1209.1590, Bibcode:2012ApJ...758L..33M, doi:10.1088/2041-8205/758/2/L33
  135. ^ Ohishi, Masatoshi; et al. (1996), "Detection of a New Interstellar Molecular Ion, H2COH+ (Protonated Formaldehyde)", Astrophysical Journal, 471 (1): L61–4, Bibcode:1996ApJ...471L..61O, doi:10.1086/310325, PMID 11541244
  136. ^ Cernicharo, J.; et al. (2007), "Astronomical detection of C4H, the second interstellar anion", Astronomy and Astrophysics, 61 (2): L37–L40, Bibcode:2007A&A...467L..37C, doi:10.1051/0004-6361:20077415
  137. ^ a b c Liu, S.-Y.; Mehringer, D. M.; Snyder, L. E. (2001), "Observations of Formic Acid in Hot Molecular Cores", Astrophysical Journal, 552 (2): 654–663, Bibcode:2001ApJ...552..654L, doi:10.1086/320563
  138. ^ a b Walmsley, C. M.; Winnewisser, G.; Toelle, F. (1990), "Cyanoacetylene and cyanodiacetylene in interstellar clouds", Astronomy and Astrophysics, 81 (1–2): 245–250, Bibcode:1980A&A....81..245W
  139. ^ Kawaguchi, Kentarou; et al. (1992), "Detection of isocyanoacetylene HCCNC in TMC-1", Astrophysical Journal, 386 (2): L51–L53, Bibcode:1992ApJ...386L..51K, doi:10.1086/186290
  140. ^ Zuckerman, B.; Ball, John A.; Gottleib, Carl A. (1971). "Microwave Detection of Interstellar Formic Acid". Astrophysical Journal. 163: L41. Bibcode:1971ApJ...163L..41Z. doi:10.1086/180663.
  141. ^ Turner, B. E.; et al. (1975), "Microwave detection of interstellar cyanamide", Astrophysical Journal, 201: L149–L152, Bibcode:1975ApJ...201L.149T, doi:10.1086/181963
  142. ^ Agúndez, M.; et al. (2015), "Probing non-polar interstellar molecules through their protonated form: Detection of protonated cyanogen (NCCNH+)", Astronomy and Astrophysics, 579: L10, arXiv:1506.07043, Bibcode:2015A&A...579L..10A, doi:10.1051/0004-6361/201526650{{citation}}: CS1 maint: numeric names: authors list (link)
  143. ^ Remijan, Anthony J.; et al. (2008), "Detection of interstellar cyanoformaldehyde (CNCHO)", Astrophysical Journal, 675 (2): L85–L88, Bibcode:2008ApJ...675L..85R, doi:10.1086/533529
  144. ^ Goldhaber, D. M.; Betz, A. L. (1984), "Silane in IRC +10216", Astrophysical Journal Letters, 279: –L55–L58, Bibcode:1984ApJ...279L..55G, doi:10.1086/184255
  145. ^ a b c Hollis, J. M.; et al. (2006), "Detection of Acetamide (CH3CONH2): The Largest Interstellar Molecule with a Peptide Bond", Astrophysical Journal, 643 (1): L25–L28, Bibcode:2006ApJ...643L..25H, doi:10.1086/505110
  146. ^ Hollis, J. M.; et al. (2006), "Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule", Astrophysical Journal, 642 (2): 933–939, Bibcode:2006ApJ...642..933H, doi:10.1086/501121
  147. ^ Zaleski, D. P.; et al. (2013), "Detection of E-Cyanomethanimine toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey", Astrophysical Journal Letters, 765: L109, arXiv:1302.0909, Bibcode:2013ApJ...765L..10Z, doi:10.1088/2041-8205/765/1/L10
  148. ^ Betz, A. L. (1981), "Ethylene in IRC +10216", Astrophysical Journal Letters, 244: –L105, Bibcode:1981ApJ...244L.103B, doi:10.1086/183490
  149. ^ a b c d e Remijan, Anthony J.; et al. (2005), "Interstellar Isomers: The Importance of Bonding Energy Differences", Astrophysical Journal, 632 (1): 333–339, arXiv:astro-ph/0506502, Bibcode:2005ApJ...632..333R, doi:10.1086/432908
  150. ^ "Complex Organic Molecules Discovered in Infant Star System". NRAO. Astrobiology Web. 8 April 2015. Retrieved 2015-04-09.
  151. ^ First Detection of Methyl Alcohol in a Planet-forming Disc. 15 June 2016.
  152. ^ Lambert, D. L.; Sheffer, Y.; Federman, S. R. (1979), "Interstellar methyl mercaptan", Astrophysical Journal Letters, 234: L139–L142, Bibcode:1979ApJ...234L.139L, doi:10.1086/183125
  153. ^ a b c Cernicharo, José; et al. (1997), "Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618", Astrophysical Journal Letters, 546 (2): L123–L126, Bibcode:2001ApJ...546L.123C, doi:10.1086/318871
  154. ^ Guelin, M.; Neininger, N.; Cernicharo, J. (1998), "Astronomical detection of the cyanobutadiynyl radical C_5N", Astronomy and Astrophysics, 335: L1–L4, arXiv:astro-ph/9805105, Bibcode:1998A&A...335L...1G
  155. ^ Irvine, W. M.; et al. (1988), "A new interstellar polyatomic molecule - Detection of propynal in the cold cloud TMC-1", Astrophysical Journal Letters, 335: L89–L93, Bibcode:1988ApJ...335L..89I, doi:10.1086/185346
  156. ^ a b c d Agúndez, M.; et al. (2014), "New molecules in IRC +10216: confirmation of C5S and tentative identification of MgCCH, NCCP, and SiH3CN", Astronomy and Astrophysics, 570: A45, Bibcode:2014A&A...570A..45A, doi:10.1051/0004-6361/201424542
  157. ^ a b Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space, National Radio Astronomy Observatory, October 1, 2001, retrieved 2006-12-20
  158. ^ a b Dickens, J. E.; et al. (1997), "Detection of Interstellar Ethylene Oxide (c-C2H4O)", The Astrophysical Journal, 489 (2): 753–757, Bibcode:1997ApJ...489..753D, doi:10.1086/304821, PMID 11541726
  159. ^ Kaifu, N.; Takagi, K.; Kojima, T. (1975), "Excitation of interstellar methylamine", Astrophysical Journal, 198: L85–L88, Bibcode:1975ApJ...198L..85K, doi:10.1086/181818
  160. ^ McCarthy, M. C.; et al. (2006), "Laboratory and Astronomical Identification of the Negative Molecular Ion C6H", Astrophysical Journal, 652 (2): L141–L144, Bibcode:2006ApJ...652L.141M, doi:10.1086/510238
  161. ^ Halfven, D. T.; et al. (2015), "INTERSTELLAR DETECTION OF METHYL ISOCYANATE CH3NCO IN Sgr B2(N): A LINK FROM MOLECULAR CLOUDS TO COMETS", Astrophysical Journal, 812: L5, arXiv:1509.09305, Bibcode:2015ApJ...812L...5H, doi:10.1088/2041-8205/812/1/L5
  162. ^ a b Mehringer, David M.; et al. (1997), "Detection and Confirmation of Interstellar Acetic Acid", Astrophysical Journal Letters, 480: L71, Bibcode:1997ApJ...480L..71M, doi:10.1086/310612
  163. ^ a b Lovas, F. J.; et al. (2006), "Hyperfine Structure Identification of Interstellar Cyanoallene toward TMC-1", Astrophysical Journal Letters, 637 (1): L37–L40, Bibcode:2006ApJ...637L..37L, doi:10.1086/500431
  164. ^ a b Sincell, Mark (June 27, 2006), "The Sweet Signal of Sugar in Space", Science, American Association for the Advancement of Science, retrieved 2016-01-14
  165. ^ Loomis, R. A.; et al. (2013), "The Detection of Interstellar Ethanimine CH3CHNH) from Observations Taken during the GBT PRIMOS Survey", Astrophysical Journal Letters, 765: L9, arXiv:1302.1121, Bibcode:2013ApJ...765L...9L, doi:10.1088/2041-8205/765/1/L9
  166. ^ Guelin, M.; et al. (1997), "Detection of a new linear carbon chain radical: C7H", Astronomy and Astrophysics, 317: L37–L40, Bibcode:1997A&A...317L...1G
  167. ^ Belloche, A.; et al. (2008), "Detection of amino acetonitrile in Sgr B2(N)", Astronomy & Astrophysics, 482: 179–196, arXiv:0801.3219, Bibcode:2008A&A...482..179B, doi:10.1051/0004-6361:20079203
  168. ^ Remijan, Anthony J.; et al. (2014), "OBSERVATIONAL RESULTS OF A MULTI-TELESCOPE CAMPAIGN IN SEARCH OF INTERSTELLAR UREA [(NH2)2CO]", Astrophysical Journal, 783 (2): 77, arXiv:1401.4483, Bibcode:2014ApJ...783...77R, doi:10.1088/0004-637X/783/2/77
  169. ^ a b Remijan, Anthony J.; et al. (2006), "Methyltriacetylene (CH3C6H) toward TMC-1: The Largest Detected Symmetric Top", Astrophysical Journal, 643 (1): L37–L40, Bibcode:2006ApJ...643L..37R, doi:10.1086/504918
  170. ^ Snyder, L. E.; et al. (1974), "Radio Detection of Interstellar Dimethyl Ether", Astrophysical Journal, 191: L79–L82, Bibcode:1974ApJ...191L..79S, doi:10.1086/181554
  171. ^ Zuckerman, B.; et al. (1975), "Detection of interstellar trans-ethyl alcohol", Astrophysical Journal, 196 (2): L99–L102, Bibcode:1975ApJ...196L..99Z, doi:10.1086/181753
  172. ^ Cernicharo, J.; Guelin, M. (1996), "Discovery of the C8H radical", Astronomy and Astrophysics, 309: L26–L30, Bibcode:1996A&A...309L..27C
  173. ^ Brünken, S.; et al. (2007), "Detection of the Carbon Chain Negative Ion C8H in TMC-1", Astrophysical Journal, 664 (1): L43–L46, Bibcode:2007ApJ...664L..43B, doi:10.1086/520703
  174. ^ Remijan, Anthony J.; et al. (2007), "Detection of C8H and Comparison with C8H toward IRC +10 216", Astrophysical Journal, 664 (1): L47–L50, Bibcode:2007ApJ...664L..47R, doi:10.1086/520704
  175. ^ a b c d Bell, M. B.; et al. (1997), "Detection of HC11N in the Cold Dust Cloud TMC-1", Astrophysical Journal Letters, 483 (1): L61–L64, arXiv:astro-ph/9704233, Bibcode:1997ApJ...483L..61B, doi:10.1086/310732
  176. ^ Kroto, H. W.; et al. (1978), "The detection of cyanohexatriyne, H (C≡ C)3CN, in Heiles's cloud 2", The Astrophysical Journal, 219: L133–L137, Bibcode:1978ApJ...219L.133K, doi:10.1086/182623
  177. ^ Marcelino, N.; et al. (2007), "Discovery of Interstellar Propylene (CH2CHCH3): Missing Links in Interstellar Gas-Phase Chemistry", Astrophysical Journal, 665 (2): L127–L130, arXiv:0707.1308, Bibcode:2007ApJ...665L.127M, doi:10.1086/521398
  178. ^ Kolesniková, L.; et al. (2014), "Spectroscopic Characterization and Detection of Ethyl Mercaptan in Orion", Astrophysical Journal Letters, 784 (1): L7, arXiv:1401.7810, Bibcode:2014ApJ...784L...7K, doi:10.1088/2041-8205/784/1/L7
  179. ^ Snyder, Lewis E.; et al. (2002), "Confirmation of Interstellar Acetone", The Astrophysical Journal, 578 (1): 245–255, Bibcode:2002ApJ...578..245S, doi:10.1086/342273
  180. ^ Hollis, J. M.; et al. (2002), "Interstellar Antifreeze: Ethylene Glycol", Astrophysical Journal, 571 (1): L59–L62, Bibcode:2002ApJ...571L..59H, doi:10.1086/341148, retrieved 2010-07-18
  181. ^ Hollis, J. M. (2005), "Complex Molecules and the GBT: Is Isomerism the Key?" (PDF), Complex Molecules and the GBT: Is Isomerism the Key?, Proceedings of the IAU Symposium 231, Astrochemistry throughout the Universe, Asilomar, CA, pp. 119–127{{citation}}: CS1 maint: location missing publisher (link)
  182. ^ Discovery of the Interstellar Chiral Molecule Propylene Oxide (CH3CHCH2O), 27 June 2016.
  183. ^ a b Belloche, A.; et al. (May 2009), "Increased complexity in interstellar chemistry: Detection and chemical modeling of ethyl formate and n-propyl cyanide in Sgr B2(N)", Astronomy and Astrophysics, 499 (1): 215–232, arXiv:0902.4694, Bibcode:2009A&A...499..215B, doi:10.1051/0004-6361/200811550
  184. ^ Tercero, B.; et al. (2013), "Discovery of Methyl Acetate and Gauche Ethyl Formate in Orion", Astrophysical Journal Letters, 770: L13, arXiv:1305.1135, Bibcode:2013ApJ...770L..13T, doi:10.1088/2041-8205/770/1/L13
  185. ^ Eyre, Michael (26 September 2014). "Complex organic molecule found in interstellar space". BBC News. Retrieved 2014-09-26.
  186. ^ Belloche, Arnaud; Garrod, Robin T.; Müller, Holger S. P.; Menten, Karl M. (26 September 2014). "Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide". Science. 345 (6204): 1584–1587. arXiv:1410.2607. Bibcode:2014Sci...345.1584B. doi:10.1126/science.1256678. PMID 25258074. Retrieved 2014-09-26.
  187. ^ a b Cami, Jan; et al. (July 22, 2010), "Detection of C60 and C70 in a Young Planetary Nebula", Science, 329 (5996): 1180–2, Bibcode:2010Sci...329.1180C, doi:10.1126/science.1192035, PMID 20651118
  188. ^ Foing, B. H.; Ehrenfreund, P. (1994), "Detection of two interstellar absorption bands coincident with spectral features of C60+", Nature, 369 (6478): 296–298, Bibcode:1994Natur.369..296F, doi:10.1038/369296a0.
  189. ^ Berné, Olivier; Mulas, Giacomo; Joblin, Christine (2013), "Interstellar C60+", Astronomy & Astrophysics, 550: L4, arXiv:1211.7252, Bibcode:2013A&A...550L...4B, doi:10.1051/0004-6361/201220730
  190. ^ a b Lacour, S.; et al. (2005), "Deuterated molecular hydrogen in the Galactic ISM. New observations along seven translucent sightlines", Astronomy and Astrophysics, 430 (3): 967–977, arXiv:astro-ph/0410033, Bibcode:2005A&A...430..967L, doi:10.1051/0004-6361:20041589
  191. ^ a b c d Ceccarelli, Cecilia (2002), "Millimeter and infrared observations of deuterated molecules", Planetary and Space Science, 50 (12–13): 1267–1273, Bibcode:2002P&SS...50.1267C, doi:10.1016/S0032-0633(02)00093-4
  192. ^ Green, Sheldon (1989), "Collisional excitation of interstellar molecules - Deuterated water, HDO", Astrophysical Journal Supplement Series, 70: 813–831, Bibcode:1989ApJS...70..813G, doi:10.1086/191358
  193. ^ Butner, H. M.; et al. (2007), "Discovery of interstellar heavy water", Astrophysical Journal, 659 (2): L137–L140, Bibcode:2007ApJ...659L.137B, doi:10.1086/517883
  194. ^ a b c d Turner, B. E.; Zuckerman, B. (1978), "Observations of strongly deuterated molecules - Implications for interstellar chemistry", Astrophysical Journal Letters, 225: L75–L79, Bibcode:1978ApJ...225L..75T, doi:10.1086/182797
  195. ^ Lis, D. C.; et al. (2002), "Detection of Triply Deuterated Ammonia in the Barnard 1 Cloud", Astrophysical Journal, 571 (1): L55–L58, Bibcode:2002ApJ...571L..55L, doi:10.1086/341132.
  196. ^ Hatchell, J. (2003), "High NH2D/NH3 ratios in protostellar cores", Astronomy and Astrophysics, 403 (2): L25–L28, arXiv:astro-ph/0302564, Bibcode:2003A&A...403L..25H, doi:10.1051/0004-6361:20030297.
  197. ^ Turner, B. E. (1990), "Detection of doubly deuterated interstellar formaldehyde (D2CO) - an indicator of active grain surface chemistry", Astrophysical Journal Letters, 362: L29–L33, Bibcode:1990ApJ...362L..29T, doi:10.1086/185840.
  198. ^ a b Coutens, A.; et al. (9 May 2016). "The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium". Astronomy & Astrophysics. 590: L6. arXiv:1605.02562. Bibcode:2016A&A...590L...6C. doi:10.1051/0004-6361/201628612.
  199. ^ Cernicharo, J.; et al. (2013), "Detection of the Ammonium ion in space", Astrophysical Journal Letters, 771: L10, arXiv:1306.3364, Bibcode:2013ApJ...771L..10C, doi:10.1088/2041-8205/771/1/L10
  200. ^ Doménech, J. L.; et al. (2013), "Improved Determinination of the 10-00 Rotational Frequency of NH3D+ from the High-Resolution Spectrum of the ν4 Infrared Band", Astrophysical Journal Letters, 771: L11, arXiv:1306.3792, Bibcode:2013ApJ...771L..11D, doi:10.1088/2041-8205/771/1/L10
  201. ^ Gerin, M.; et al. (1992), "Interstellar detection of deuterated methyl acetylene", Astronomy and Astrophysics, 253 (2): L29–L32, Bibcode:1992A&A...253L..29G.
  202. ^ Markwick, A. J.; Charnley, S. B.; Butner, H. M.; Millar, T. J. (2005), "Interstellar CH3CCD", The Astrophysical Journal, 627 (2): L117–L120, Bibcode:2005ApJ...627L.117M, doi:10.1086/432415.
  203. ^ Agúndez, M.; et al. (2008-06-04), "Tentative detection of phosphine in IRC +10216", Astronomy & Astrophysics, 485 (3): L33, arXiv:0805.4297, Bibcode:2008A&A...485L..33A, doi:10.1051/0004-6361:200810193
  204. ^ Gupta, H.; et al. (2013), "Laboratory Measurements and Tentative Astronomical Identification of H2NCO+", Astrophysical Journal Letters, 778: L1, Bibcode:2013ApJ...778L...1G, doi:10.1088/2041-8205/778/1/L1
  205. ^ Snyder, L. E.; et al. (2005), "A Rigorous Attempt to Verify Interstellar Glycine", Astrophysical Journal, 619 (2): 914–930, arXiv:astro-ph/0410335, Bibcode:2005ApJ...619..914S, doi:10.1086/426677.
  206. ^ Kuan, Y. J.; et al. (2003), "Interstellar Glycine", Astrophysical Journal, 593 (2): 848–867, Bibcode:2003ApJ...593..848K, doi:10.1086/375637.
  207. ^ Widicus Weaver, S. L.; Blake, G. A. (2005), "1,3-Dihydroxyacetone in Sagittarius B2(N-LMH): The First Interstellar Ketose", Astrophysical Journal Letters, 624 (1): L33–L36, Bibcode:2005ApJ...624L..33W, doi:10.1086/430407
  208. ^ Fuchs, G. W.; et al. (2005), "Trans-Ethyl Methyl Ether in Space: A new Look at a Complex Molecule in Selected Hot Core Regions", Astronomy & Astrophysics, 444 (2): 521–530, arXiv:astro-ph/0508395, Bibcode:2005A&A...444..521F, doi:10.1051/0004-6361:20053599, retrieved 2010-07-18
  209. ^ Iglesias-Groth, S.; et al. (2008-09-20), "Evidence for the Naphthalene Cation in a Region of the Interstellar Medium with Anomalous Microwave Emission", The Astrophysical Journal Letters, 685: L55–L58, arXiv:0809.0778, Bibcode:2008ApJ...685L..55I, doi:10.1086/592349 - This spectral assignment has not been independently confirmed, and is described by the authors as "tentative" (page L58).
  210. ^ García-Hernández, D. A.; et al. (2011), "The Formation of Fullerenes: Clues from New C60, C70, and (Possible) Planar C24 Detections in Magellanic Cloud Planetary Nebulae", Astrophysical Journal Letters, 737 (2): L30, arXiv:1107.2595, Bibcode:2011ApJ...737L..30G, doi:10.1088/2041-8205/737/2/L30, retrieved 2011-08-12.
  211. ^ Iglesias-Groth, S.; et al. (May 2010), "A search for interstellar anthracene toward the Perseus anomalous microwave emission region", Monthly Notices of the Royal Astronomical Society, 407 (4): 2157–2165, arXiv:1005.4388, Bibcode:2010MNRAS.407.2157I, doi:10.1111/j.1365-2966.2010.17075.x