Jump to content

Isotopes of lutetium

From Wikipedia, the free encyclopedia
(Redirected from Lutetium-155m)

Isotopes of lutetium (71Lu)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
173Lu synth 1.37 y ε 173Yb
174Lu synth 3.31 y β+ 174Yb
175Lu 97.4% stable
176Lu 2.60% 3.701×1010 y β 176Hf
ε[1]0.45% 176Yb
177Lu synth 6.65 d β 177Hf
Standard atomic weight Ar°(Lu)

Naturally occurring lutetium (71Lu) is composed of one stable isotope 175Lu (97.41% natural abundance) and one long-lived radioisotope, 176Lu with a half-life of 37 billion years (2.59% natural abundance). Forty radioisotopes have been characterized, with the most stable, besides 176Lu, being 174Lu with a half-life of 3.31 years, and 173Lu with a half-life of 1.37 years. All of the remaining radioactive isotopes have half-lives that are less than 9 days, and the majority of these have half-lives that are less than half an hour. This element also has 18 meta states, with the most stable being 177mLu (t1/2 160.4 days), 174mLu (t1/2 142 days) and 178mLu (t1/2 23.1 minutes).

The known isotopes of lutetium range in mass number from 149 to 190. The primary decay mode before the most abundant stable isotope, 175Lu, is electron capture (with some alpha and positron emission), and the primary mode after is beta emission. The primary decay products before 175Lu are isotopes of ytterbium and the primary products after are isotopes of hafnium. All isotopes of lutetium are either radioactive or, in the case of 175Lu, observationally stable, meaning that 175Lu is predicted to be radioactive but no actual decay has been observed.[4]

List of isotopes

[edit]


Nuclide
[n 1]
Z N Isotopic mass (Da)[5]
[n 2][n 3]
Half-life[1]
[n 4][n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope

[n 7]
Spin and
parity[1]
[n 8][n 5]
Natural abundance (mole fraction)
Excitation energy[n 5] Normal proportion[1] Range of variation
149Lu[6] 71 78 450+170
−100
 ns
p 148Yb 11/2−
150Lu 71 79 149.97341(32)# 45(3) ms p 149Yb (5−)
150mLu 22(5) keV 40(7) μs p 149Yb (8+)
151Lu 71 80 150.96747(32)# 78.4(9) ms p (?%) 150Yb 11/2−
β+ (?%) 151Yb
151mLu 57(4) keV 16.0(5) μs p 150Yb 3/2+
152Lu 71 81 151.96412(21)# 650(70) ms β+ (85%) 152Yb (4−, 5−, 6−)
β+, p (15%) 151Tm
153Lu 71 82 152.95880(16) 0.9(2) s α (?%) 149Tm 11/2−
β+ (?%) 153Yb
153m1Lu 80(5) keV 1# s IT 153Lu 1/2+
153m2Lu 2502.5(4) keV >0.1 μs IT 153Lu 23/2−
153m3Lu 2632.9(5) keV 15(3) μs IT 153Lu 27/2−
154Lu 71 83 153.95742(22)# 1# s (2−)
154m1Lu 62(12) keV 1.12(8) s β+ (?%) 154Yb (9+)
β+p (?%) 153Tm
β+α (?%) 150Er
154m2Lu 2724(100)# keV 35(3) μs IT 154Lu (17+)
155Lu 71 84 154.954326(21) 68(2) ms α (90%) 151Tm 11/2−
β+ (10%) 155Yb
155m1Lu 21(4) keV 138(9) ms α (76%) 151Tm 1/2+
β+ (24%) 155Yb
155m2Lu 1780.3(18) keV 2.69(3) ms α 151Tm 25/2−#
156Lu 71 85 155.953087(58) 494(12) ms α 152Tm (2)−
156m1Lu[n 9] 10(250) keV 198(2) ms α 152Tm 10+
156m2Lu 2611(250) keV 179(4) ns IT 156Lu 19−
157Lu 71 86 156.950145(13) 7.7(20) s β+ (?%) 157Yb (1/2+)
α (?%) 153Tm
157mLu 20.9(20) keV 4.79(12) s β+ (92.3%) 157Yb (11/2−)
α (7.7%) 153Tm
158Lu 71 87 157.949316(16) 10.6(3) s β+ (99.09%) 158Yb (2)−
α (0.91%) 154Tm
159Lu 71 88 158.946636(40) 12.1(10) s β+ 159Yb 1/2+
α (rare) 155Tm
160Lu 71 89 159.946033(61) 36.1(3) s β+ 160Yb 2−#
160mLu[n 9] 0(100)# keV 40(1) s β+ 160Yb
161Lu 71 90 160.943572(30) 77(2) s β+ 161Yb 1/2+
161mLu 182(5)# keV 7.3(4) ms IT 161Lu (9/2−)
162Lu 71 91 161.943283(81) 1.37(2) min β+ 162Yb 1−
162m1Lu[n 9] 120(200)# keV 1.5 min β+ 162Yb 4−#
162m2Lu[n 10] 300(200)# keV 1.9 min 9−#
163Lu 71 92 162.941179(30) 3.97(13) min β+ 163Yb 1/2+
164Lu 71 93 163.941339(30) 3.14(3) min β+ 164Yb 1−
165Lu 71 94 164.939407(28) 10.74(10) min β+ 165Yb 1/2+
166Lu 71 95 165.939859(32) 2.65(10) min β+ 166Yb 6−
166m1Lu 34.37(22) keV 1.41(10) min β+ (58%) 166Yb 3−
IT (42%) 166Lu
166m2Lu 43.0(4) keV 2.12(10) min β+ (90%) 166Yb 0−
IT (10%) 166Lu
167Lu 71 96 166.938243(40) 51.5(10) min β+ 167Yb 7/2+
167mLu 50(40)# keV >1 min 1/2+
168Lu 71 97 167.938730(41) 5.5(1) min β+ 168Yb 6−
168mLu 160(40) keV 6.7(4) min β+ 168Yb 3+
169Lu 71 98 168.9376458(32) 34.06(5) h β+ 169Yb 7/2+
169mLu 29.0(5) keV 160(10) s IT 169Lu 1/2−
170Lu 71 99 169.938479(18) 2.012(30) d β+ 170Yb 0+
170mLu 92.91(9) keV 670(100) ms IT 170Lu 4−
171Lu 71 100 170.9379186(20) 8.247(23) d β+ 171Yb 7/2+
171mLu 71.13(8) keV 79(2) s IT 171Lu 1/2−
172Lu 71 101 171.9390913(25) 6.70(3) d β+ 172Yb 4−
172m1Lu 41.86(4) keV 3.7(5) min IT 172Lu 1−
172m2Lu 65.79(4) keV 332(20) ns IT 172Lu (1)+
172m3Lu 109.41(10) keV 440(12) μs IT 172Lu (1)+
172m4Lu 213.57(17) keV 150 ns IT 172Lu (6−)
173Lu 71 102 172.9389357(17) 1.37(1) y EC 173Yb 7/2+
173mLu 123.672(13) keV 74.2(10) μs IT 173Lu 5/2−
174Lu 71 103 173.9403428(17) 3.31(5) y β+ 174Yb 1−
174m1Lu 170.83(5) keV 142(2) d IT (99.38%) 174Lu 6−
EC (0.62%) 174Yb
174m2Lu 240.818(4) keV 395(15) ns IT 174Lu 3+
174m3Lu 365.183(6) keV 145(3) ns IT 174Lu 4−
174m4Lu 1855.7(5) keV 194(24) ns IT 174Lu 13+
174m5Lu 4068.4(9) keV 97(10) ns IT 174Lu (21+)
174m6Lu 5849.6(9) keV 242(19) ns IT 174Lu (26−)
175Lu 71 104 174.9407772(13) Observationally stable[n 11] 7/2+ 0.97401(13)
175m1Lu 353.48(13) keV 1.49(7) μs IT 175Lu 5/2−
175m2Lu 1392.4(4) keV 984(30) μs IT 175Lu 19/2+
176Lu[n 12][n 13] 71 105 175.9426917(13) 3.701(17)×1010 y β (99.55%) 176Hf 7− 0.02599(13)
β+ (0.45%) 176Yb
176m1Lu 122.845(4) keV 3.664(19) h β (99.90%) 176Hf 1−
EC (0.095%) 176Yb
176m2Lu 1514.5(5) keV 312(69) ns IT 176Lu 12+
176m3Lu 1587.8(6) keV 40(3) μs IT 176Lu 14+
177Lu 71 106 176.9437636(13) 6.6443(9) d β 177Hf 7/2+
177m1Lu 150.3984(10) keV 130.1(24) ns IT 177Lu 9/2−
177m2Lu 569.6721(15) keV 155(7) μs IT 177Lu 1/2+
177m3Lu 970.1757(24) keV 160.4(3) d β (77.30%) 177Hf 23/2−
IT (22.70%) 177Lu
177m4Lu 2771.7(5) keV 625(62) ns IT 177Lu 33/2+
177m5Lu 3530.4(6) keV 6(2) μs IT 177Lu 39/2−
178Lu 71 107 177.9459601(24) 28.4(2) min β 178Hf 1+
178mLu 123.8(26) keV 23.1(3) min β 178Hf 9−
179Lu 71 108 178.9473330(55) 4.59(6) h β 179Hf 7/2+
179mLu 592.4(4) keV 3.1(9) ms IT 179Lu 1/2+
180Lu 71 109 179.949891(76) 5.7(1) min β 180Hf 5+
180m1Lu 13.9(3) keV ~1 s 3−
180m2Lu 624.0(5) keV >1 ms IT 180Lu (9−)
181Lu 71 110 180.95191(14) 3.5(3) min β 181Hf 7/2+#
182Lu 71 111 181.95516(22)# 2.0(2) min β 182Hf 1−#
183Lu 71 112 182.957363(86) 58(4) s β 183Hf 7/2+#
184Lu 71 113 183.96103(22)# 20(3) s β 184Hf (3+)
185Lu 71 114 184.96354(32)# 20# s
[>300 ns]
7/2+#
186Lu 71 115 185.96745(43)# 6# s
[>300 ns]
187Lu 71 116 186.97019(43)# 7# s
[>300 ns]
7/2+#
188Lu 71 117 187.97443(43)# 1# s
[>300 ns]
189Lu[7] 71 118
190Lu[8] 71 119
This table header & footer:
  1. ^ mLu – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition


    p: Proton emission
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ a b c Order of ground state and isomer is uncertain.
  10. ^ Discovery of this isotope is disputed.
  11. ^ Believed to undergo α decay to 171Tm
  12. ^ primordial radionuclide
  13. ^ Used in lutetium-hafnium dating

Lutetium-177

[edit]

Lutetium (177Lu) chloride, sold under the brand name Lumark among others, is used for radiolabeling other medicines, either as an anti-cancer therapy or for scintigraphy (medical radio-imaging). Its most common side effects are anaemia (low red blood cell counts), thrombocytopenia (low blood platelet counts), leucopenia (low white blood cell counts), lymphopenia (low levels of lymphocytes, a particular type of white blood cell), nausea (feeling sick), vomiting and mild and temporary hair loss.[9][10]

References

[edit]
  1. ^ a b c d e f Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Lutetium". CIAAW. 2024.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (8): 140–1–140–7. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. ISSN 1434-601X. S2CID 201664098.
  5. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. ^ Auranen, K. (16 March 2022). "Nanosecond-Scale Proton Emission from Strongly Oblate-Deformed 149Lu". Physical Review Letters. 128 (11): 2501. Bibcode:2022PhRvL.128k2501A. doi:10.1103/PhysRevLett.128.112501. PMID 35363028. S2CID 247855967.
  7. ^ Haak, K.; Tarasov, O. B.; Chowdhury, P.; et al. (2023). "Production and discovery of neutron-rich isotopes by fragmentation of 198Pt". Physical Review C. 108 (34608): 034608. Bibcode:2023PhRvC.108c4608H. doi:10.1103/PhysRevC.108.034608. S2CID 261649436.
  8. ^ Tarasov, O. B.; Gade, A.; Fukushima, K.; et al. (2024). "Observation of New Isotopes in the Fragmentation of 198Pt at FRIB". Physical Review Letters. 132 (072501). doi:10.1103/PhysRevLett.132.072501.
  9. ^ "Lumark EPAR". European Medicines Agency. 17 September 2018. Retrieved 7 May 2020. Text was copied from this source for which copyright belongs to the European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  10. ^ "EndolucinBeta EPAR". European Medicines Agency (EMA). 17 September 2018. Retrieved 7 May 2020. Text was copied from this source for which copyright belongs to the European Medicines Agency. Reproduction is authorized provided the source is acknowledged.