Macrophage colony-stimulating factor

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Available structures
PDB Ortholog search: PDBe RCSB
Aliases CSF1, CSF-1, MCSF, colony stimulating factor 1
External IDs MGI: 1339753 HomoloGene: 7282 GeneCards: 1435
RNA expression pattern
PBB GE CSF1 207082 at tn.png

PBB GE CSF1 211839 s at tn.png
More reference expression data
Species Human Mouse
RefSeq (mRNA)



RefSeq (protein)



Location (UCSC) Chr 1: 109.91 – 109.93 Mb Chr 3: 107.74 – 107.76 Mb
PubMed search [1] [2]
View/Edit Human View/Edit Mouse

The colony stimulating factor 1 (CSF1), also known as macrophage colony-stimulating factor (M-CSF), is a secreted cytokine which influences hematopoietic stem cells to differentiate into macrophages or other related cell types. Eukaryotic cells also produce M-CSF in order to combat intercellular viral infection. It is one of the three experimentally described colony-stimulating factors. M-CSF binds to the colony stimulating factor 1 receptor. It may also be involved in development of the placenta.[1]


M-CSF is a cytokine. The active form of the protein is found extracellularly as a disulfide-linked homodimer, and is thought to be produced by proteolytic cleavage of membrane-bound precursors.[1]

Four transcript variants encoding three different isoforms (a proteoglycan, glycoprotein and cell surface protein)[2] have been found for this gene.[1]


M-CSF (or CSF-1) is a hematopoietic growth factor that is involved in the proliferation, differentiation, and survival of monocytes, macrophages, and bone marrow progenitor cells.[3] M-CSF affects macrophages and monocytes in several ways, including stimulating increased phagocytic and chemotactic activity, and increased tumour cell cytotoxicity.[4] The role of M-CSF is not only restricted to the monocyte/macrophage cell lineage. By interacting with its membrane receptor (CSF1R or M-CSF-R encoded by the c-fms proto-oncogene), M-CSF also modulates the proliferation of earlier hematopoietic progenitors and influence numerous physiological processes involved in immunology, metabolism, fertility and pregnancy.[5]

M-CSF released by osteoblasts (as a result of endocrine stimulation by parathyroid hormone) exerts paracrine effects on osteoclasts[citation needed]. M-CSF binds to receptors on osteoclasts inducing differentiation, and ultimately leading to increased plasma calcium levels—through the resorption (breakdown) of bone[citation needed]. Additionally, high levels of CSF-1 expression are observed in the endometrial epithelium of the pregnant uterus as well as high levels of its receptor CSF1R in the placental trophoblast. Studies have shown that activation of trophoblasitc CSF1R by local high levels of CSF-1 is essential for normal embryonic implantation and placental development. More recently, it was discovered that CSF-1 and its receptor CSF1R are implicated in the mammary gland during normal development and neoplastic growth.[6]

Clinical significance[edit]

Locally produced M-CSF in the vessel wall contributes to the development and progression of atherosclerosis.[7]

M-CSF has been described to play a role in renal pathology including acute kidney injury and chronic renal failure.[8][9] The chronic activation of monocytes can lead to multiple metabolic, hematologic and immunologic abnormalities in patients with chronic renal failure.[8] In the context of acute kidney injury, M-CSF has been implicated in promoting repair following injury,[10] but also been described in an opposing role, driving proliferation of a pro-inflammatory macrophage phenotype.[11]


Macrophage colony-stimulating factor has been shown to interact with PIK3R2.[12]


  1. ^ a b c "Entrez Gene: CSF1 colony stimulating factor 1 (macrophage)". 
  2. ^ Jang, Mei-Huei; Herber, Deborah M.; Jiang, Xinnong; Nandi, Sayan; Dai, Xu-Ming; Zeller, Geraldine; Stanley, E. Richard; Kelley, Vicki R. (2006-09-15). "Distinct In Vivo Roles of Colony-Stimulating Factor-1 Isoforms in Renal Inflammation". The Journal of Immunology 177 (6): 4055–4063. doi:10.4049/jimmunol.177.6.4055. ISSN 0022-1767. PMID 16951369. 
  3. ^ Stanley ER, Berg KL, Einstein DB, Lee PS, Pixley FJ, Wang Y, Yeung YG (January 1997). "Biology and action of colony--stimulating factor-1". Mol. Reprod. Dev. 46 (1): 4–10. doi:10.1002/(SICI)1098-2795(199701)46:1<4::AID-MRD2>3.0.CO;2-V. PMID 8981357. 
  4. ^ Nemunaitis J (April 1993). "Macrophage function activating cytokines: potential clinical application". Crit. Rev. Oncol. Hematol. 14 (2): 153–71. doi:10.1016/1040-8428(93)90022-V. PMID 8357512. 
  5. ^ Fixe P, Praloran V (June 1997). "Macrophage colony-stimulating-factor (M-CSF or CSF-1) and its receptor: structure-function relationships". Eur. Cytokine Netw. 8 (2): 125–36. PMID 9262961. 
  6. ^ Sapi E (January 2004). "The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update". Exp. Biol. Med. (Maywood) 229 (1): 1–11. PMID 14709771. 
  7. ^ Rajavashisth T, Qiao JH, Tripathi S, Tripathi J, Mishra N, Hua M, Wang XP, Loussararian A, Clinton S, Libby P, Lusis A (June 1998). "Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice". J. Clin. Invest. 101 (12): 2702–10. doi:10.1172/JCI119891. PMC 508861. PMID 9637704. 
  8. ^ a b Le Meur Y.; Fixe P.; Aldigier J-C.; Leroux-Robert C.; Praloran V. (April 1996). "Macrophage colony stimulating factor involvement in uremic patients". Kidney International 50 (196): 1107–1102. doi:10.1038/ki.1996.402. 
  9. ^ "Acute kidney injury: CSF-1 signalling is involved in repair following AKI". Nature Reviews Nephrology 9 (1): 2–2. 2013-01-01. doi:10.1038/nrneph.2012.253. ISSN 1759-5061. 
  10. ^ "CSF-1 signaling mediates recovery from acute kidney injury". 2012-12-03. doi:10.1172/JCI60363. PMC 3533529. PMID 23143303. Retrieved 2015-10-29. 
  11. ^ Cao, Qi; Wang, Yiping; Zheng, Dong; Sun, Yan; Wang, Changqi; Wang, Xin M.; Lee, Vincent W. S.; Wang, Ya; Zheng, Guoping (2014-04-01). "Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo". Kidney International 85 (4): 794–806. doi:10.1038/ki.2013.341. ISSN 0085-2538. 
  12. ^ Gout I, Dhand R, Panayotou G, Fry MJ, Hiles I, Otsu M, Waterfield MD (December 1992). "Expression and characterization of the p85 subunit of the phosphatidylinositol 3-kinase complex and a related p85 beta protein by using the baculovirus expression system". Biochem. J. 288 (2): 395–405. doi:10.1042/bj2880395. PMC 1132024. PMID 1334406. 

Further reading[edit]

  • Rajavashisth T, Qiao JH, Tripathi S, Tripathi J, Mishra N, Hua M, Wang XP, Loussararian A, Clinton S, Libby P, Lusis A (June 1998). "Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice". J. Clin. Invest. 101 (12): 2702–10. doi:10.1172/JCI119891. PMC 508861. PMID 9637704. 
  • Stanley ER, Berg KL, Einstein DB, Lee PS, Yeung YG (1995). "The biology and action of colony stimulating factor-1". Stem Cells. 12 Suppl 1: 15–24; discussion 25. PMID 7696959. 
  • Alterman RL, Stanley ER (1994). "Colony stimulating factor-1 expression in human glioma". Mol. Chem. Neuropathol. 21 (2–3): 177–88. doi:10.1007/BF02815350. PMID 8086034. 
  • Stanley ER, Berg KL, Einstein DB, Lee PS, Pixley FJ, Wang Y, Yeung YG (1997). "Biology and action of colony--stimulating factor-1". Mol. Reprod. Dev. 46 (1): 4–10. doi:10.1002/(SICI)1098-2795(199701)46:1<4::AID-MRD2>3.0.CO;2-V. PMID 8981357. 
  • Sweet MJ, Hume DA (2004). "CSF-1 as a regulator of macrophage activation and immune responses". Arch. Immunol. Ther. Exp. (Warsz.) 51 (3): 169–77. PMID 12894871. 
  • Mroczko B, Szmitkowski M (2005). "Hematopoietic cytokines as tumor markers". Clin. Chem. Lab. Med. 42 (12): 1347–54. doi:10.1515/CCLM.2004.253. PMID 15576295. 
  • Pandit J, Bohm A, Jancarik J, Halenbeck R, Koths K, Kim SH (1993). "Three-dimensional structure of dimeric human recombinant macrophage colony-stimulating factor". Science 258 (5086): 1358–62. doi:10.1126/science.1455231. PMID 1455231. 
  • Suzu S, Ohtsuki T, Yanai N, Takatsu Z, Kawashima T, Takaku F, Nagata N, Motoyoshi K (1992). "Identification of a high molecular weight macrophage colony-stimulating factor as a glycosaminoglycan-containing species". J. Biol. Chem. 267 (7): 4345–8. PMID 1531650. 
  • Saltman DL, Dolganov GM, Hinton LM, Lovett M (1992). "Reassignment of the human macrophage colony stimulating factor gene to chromosome 1p13-21". Biochem. Biophys. Res. Commun. 182 (3): 1139–43. doi:10.1016/0006-291X(92)91850-P. PMID 1540160. 
  • Praloran V, Chevalier S, Gascan H (1992). "Macrophage colony-stimulating factor is produced by activated T lymphocytes in vitro and is detected in vivo in T cells from reactive lymph nodes". Blood 79 (9): 2500–1. PMID 1571567. 
  • Price LK, Choi HU, Rosenberg L, Stanley ER (1992). "The predominant form of secreted colony stimulating factor-1 is a proteoglycan". J. Biol. Chem. 267 (4): 2190–9. PMID 1733926. 
  • Pampfer S, Tabibzadeh S, Chuan FC, Pollard JW (1992). "Expression of colony-stimulating factor-1 (CSF-1) messenger RNA in human endometrial glands during the menstrual cycle: molecular cloning of a novel transcript that predicts a cell surface form of CSF-1". Mol. Endocrinol. 5 (12): 1931–8. doi:10.1210/mend-5-12-1931. PMID 1791839. 
  • Stein J, Borzillo GV, Rettenmier CW (1990). "Direct stimulation of cells expressing receptors for macrophage colony-stimulating factor (CSF-1) by a plasma membrane-bound precursor of human CSF-1". Blood 76 (7): 1308–14. PMID 2145044. 
  • Sherr CJ, Rettenmier CW, Sacca R, Roussel MF, Look AT, Stanley ER (1985). "The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1". Cell 41 (3): 665–76. doi:10.1016/S0092-8674(85)80047-7. PMID 2408759. 
  • Cerretti DP, Wignall J, Anderson D, Tushinski RJ, Gallis BM, Stya M, Gillis S, Urdal DL, Cosman D (1988). "Human macrophage-colony stimulating factor: alternative RNA and protein processing from a single gene". Mol. Immunol. 25 (8): 761–70. doi:10.1016/0161-5890(88)90112-5. PMID 2460758. 
  • Takahashi M, Hirato T, Takano M, Nishida T, Nagamura K, Kamogashira T, Nakai S, Hirai Y (1989). "Amino-terminal region of human macrophage colony-stimulating factor (M-CSF) is sufficient for its in vitro biological activity: molecular cloning and expression of carboxyl-terminal deletion mutants of human M-CSF". Biochem. Biophys. Res. Commun. 161 (2): 892–901. doi:10.1016/0006-291X(89)92683-1. PMID 2660794. 
  • Kawasaki ES, Ladner MB, Wang AM, Van Arsdell J, Warren MK, Coyne MY, Schweickart VL, Lee MT, Wilson KJ, Boosman A (1985). "Molecular cloning of a complementary DNA encoding human macrophage-specific colony-stimulating factor (CSF-1)". Science 230 (4723): 291–6. doi:10.1126/science.2996129. PMID 2996129. 
  • Rettenmier CW, Roussel MF, Ashmun RA, Ralph P, Price K, Sherr CJ (1987). "Synthesis of membrane-bound colony-stimulating factor 1 (CSF-1) and downmodulation of CSF-1 receptors in NIH 3T3 cells transformed by cotransfection of the human CSF-1 and c-fms (CSF-1 receptor) genes". Mol. Cell. Biol. 7 (7): 2378–87. PMC 365369. PMID 3039346. 
  • Takahashi M, Hong YM, Yasuda S, Takano M, Kawai K, Nakai S, Hirai Y (1988). "Macrophage colony-stimulating factor is produced by human T lymphoblastoid cell line, CEM-ON: identification by amino-terminal amino acid sequence analysis". Biochem. Biophys. Res. Commun. 152 (3): 1401–9. doi:10.1016/S0006-291X(88)80441-8. PMID 3259875. 
  • Rettenmier CW, Roussel MF (1989). "Differential processing of colony-stimulating factor 1 precursors encoded by two human cDNAs". Mol. Cell. Biol. 8 (11): 5026–34. PMC 365596. PMID 3264877. 
  • Wong GG, Temple PA, Leary AC, Witek-Giannotti JS, Yang YC, Ciarletta AB, Chung M, Murtha P, Kriz R, Kaufman RJ (1987). "Human CSF-1: molecular cloning and expression of 4-kb cDNA encoding the human urinary protein". Science 235 (4795): 1504–8. doi:10.1126/science.3493529. PMID 3493529. 

External links[edit]