Jump to content

Isotopes of rhenium

From Wikipedia, the free encyclopedia
(Redirected from Rhenium-177m2)

Isotopes of rhenium (75Re)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
185Re 37.4% stable
186Re synth 3.7185 d β 186Os
ε 186W
186mRe synth 2×105 y IT 186Re
β 186Os
187Re 62.6% 4.12×1010 y β 187Os
Standard atomic weight Ar°(Re)

Naturally occurring rhenium (75Re) is 37.4% 185Re, which is stable (although it is predicted to decay), and 62.6% 187Re, which is unstable but has a very long half-life (4.12×1010 years).[4] Among elements with a known stable isotope, only indium and tellurium similarly occur with a stable isotope in lower abundance than the long-lived radioactive isotope.

There are 36 other unstable isotopes recognized, the longest-lived of which are 183Re with a half-life of 70 days, 184Re with a half-life of 38 days, 186Re with a half-life of 3.7186 days, 182Re with a half-life of 64.0 hours, and 189Re with a half-life of 24.3 hours. There are also numerous isomers, the longest-lived of which are 186mRe with a half-life of 200,000 years and 184mRe with a half-life of 177.25 days.[5] All others have half-lives less than a day.

List of isotopes

[edit]


Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4][n 5]
Decay
mode

[n 6]
Daughter
isotope

[n 7][n 8]
Spin and
parity
[n 9][n 5]
Natural abundance (mole fraction)
Excitation energy[n 5] Normal proportion Range of variation
159Re[6] 75 84 21(4) μs p (92.5%) 158W (11/2−)
α (7.5%) 155Ta
160Re[7] 75 85 159.98212(43)# 611(7) μs p (89%) 159W (2−)
α (11%) 156Ta
160mRe[8] 185(21)# keV 2.8(1) μs IT 160Re (9+)
161Re 75 86 160.97759(22) 0.37(4) ms p 160W 1/2+
161mRe 123.8(13) keV 15.6(9) ms α 157Ta 11/2−
162Re 75 87 161.97600(22)# 107(13) ms α (94%) 158Ta (2−)
β+ (6%) 162W
162mRe 173(10) keV 77(9) ms α (91%) 158Ta (9+)
β+ (9%) 162W
163Re 75 88 162.972081(21) 390(70) ms β+ (68%) 163W (1/2+)
α (32%) 159Ta
163mRe 115(4) keV 214(5) ms α (66%) 159Ta (11/2−)
β+ (34%) 163W
164Re 75 89 163.97032(17)# 0.53(23) s α (58%) 160Ta high
β+ (42%) 164W
164mRe 120(120)# keV 530(230) ms (2#)−
165Re 75 90 164.967089(30) 1# s β+ 165W 1/2+#
α 161Ta
165mRe 47(26) keV 2.1(3) s β+ (87%) 165W 11/2−#
α (13%) 161Ta
166Re 75 91 165.96581(9)# 2# s β+ 166W 2−#
α 162Ta
167Re 75 92 166.96260(6)# 3.4(4) s α 163Ta 9/2−#
β+ 167W
167mRe 130(40)# keV 5.9(3) s β+ (99.3%) 167W 1/2+#
α (.7%) 163Ta
168Re 75 93 167.96157(3) 4.4(1) s β+ (99.99%) 168W (5+, 6+, 7+)
α (.005%) 164Ta
168mRe non-exist 6.6(15) s
169Re 75 94 168.95879(3) 8.1(5) s β+ (99.99%) 169W 9/2−#
α (.005%) 165Ta
169mRe 145(29) keV 15.1(15) s β+ (99.8%) 169W 1/2+#
α (.2%) 164Ta
170Re 75 95 169.958220(28) 9.2(2) s β+ (99.99%) 170W (5+)
α (.01%) 166Ta
171Re 75 96 170.95572(3) 15.2(4) s β+ 171W (9/2−)
172Re 75 97 171.95542(6) 15(3) s β+ 172W (5)
172mRe 0(100)# keV 55(5) s β+ 172W (2)
173Re 75 98 172.95324(3) 1.98(26) min β+ 173W (5/2−)
174Re 75 99 173.95312(3) 2.40(4) min β+ 174W
175Re 75 100 174.95138(3) 5.89(5) min β+ 175W (5/2−)
176Re 75 101 175.95162(3) 5.3(3) min β+ 176W 3+
177Re 75 102 176.95033(3) 14(1) min β+ 177W 5/2−
177mRe 84.71(10) keV 50(10) μs 5/2+
178Re 75 103 177.95099(3) 13.2(2) min β+ 178W (3+)
179Re 75 104 178.949988(26) 19.5(1) min β+ 179W (5/2)+
179m1Re 65.39(9) keV 95(25) μs (5/2−)
179m2Re 1684.59(14)+Y keV >0.4 μs (23/2+)
180Re 75 105 179.950789(23) 2.44(6) min β+ 180W (1)−
181Re 75 106 180.950068(14) 19.9(7) h β+ 181W 5/2+
182Re 75 107 181.95121(11) 64.0(5) h β+ 182W 7+
182m1Re 60(100) keV 12.7(2) h β+ 182W 2+
182m2Re 235.736(10)+X keV 585(21) ns 2−
182m3Re 461.3(1)+X keV 0.78(9) μs (4−)
183Re 75 108 182.950820(9) 70.0(14) d EC 183W 5/2+
183mRe 1907.6(3) keV 1.04(4) ms IT 183Re (25/2+)
184Re 75 109 183.952521(5) 35.4(7) d[5] β+ 184W 3(−)
184mRe 188.01(4) keV 177.25(7) d[5] IT (75.4%) 184Re 8(+)
β+ (24.6%) 184W
185Re 75 110 184.9529550(13) Observationally Stable[n 10] 5/2+ 0.3740(2)
185mRe 2124(2) keV 123(23) ns (21/2)
186Re 75 111 185.9549861(13) 3.7186(5) d β (93.1%) 186Os 1−
EC (6.9%) 186W
186mRe 149(7) keV 2.0(5)×105 y IT[n 11] 186Re (8+)
187Re[n 12][n 13] 75 112 186.9557531(15) 4.12(2)×1010 y[n 14] β[n 15] 187Os 5/2+ 0.6260(2)
188Re 75 113 187.9581144(15) 17.0040(22) h β 188Os 1−
188mRe 172.069(9) keV 18.59(4) min IT 188Re (6)−
189Re 75 114 188.959229(9) 24.3(4) h β 189Os 5/2+
190Re 75 115 189.96182(16) 3.1(3) min β 190Os (2)−
190mRe 210(50) keV 3.2(2) h β (54.4%) 190Os (6−)
IT (45.6%) 190Re
191Re 75 116 190.963125(11) 9.8(5) min β 191Os (3/2+, 1/2+)
192Re 75 117 191.96596(21)# 16(1) s β 192Os
193Re 75 118 192.96747(21)# 30# s [>300 ns] 5/2+#
194Re 75 119 193.97042(32)# 2# s [>300 ns]
This table header & footer:
  1. ^ mRe – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition


    p: Proton emission
  7. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  8. ^ Bold symbol as daughter – Daughter product is stable.
  9. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  10. ^ Believed to undergo α decay to 181Ta
  11. ^ Theoretically capable of β- decay to 186Os[1][9]
  12. ^ primordial radionuclide
  13. ^ Used in rhenium–osmium dating
  14. ^ Can undergo Bound-state β decay with a half-life of 32.9 years when fully ionized
  15. ^ Theorized to also undergo α decay to 183Ta

Rhenium-186

[edit]

Rhenium-186 is a beta emitter and radiopharmaceutical that is used to treat glioblastoma,[10] is used in theranostic medicine[11] and has been reported to be used in synoviorthesis.[12]

References

[edit]
  1. ^ a b Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Rhenium". CIAAW. 1973.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Bosch, F.; Faestermann, T.; Friese, J.; et al. (1996). "Observation of bound-state β decay of fully ionized 187Re: 187Re-187Os Cosmochronometry". Physical Review Letters. 77 (26): 5190–5193. Bibcode:1996PhRvL..77.5190B. doi:10.1103/PhysRevLett.77.5190. PMID 10062738.
  5. ^ a b c Janiak, Ł.; Gierlik, M.; R. Prokopowicz, G. Madejowski; Wronka, S.; Rzadkiewicz, J.; Carroll, J. J.; Chiara, C. J. (2022). "Half-life of the 188-keV isomer of 184Re". Physical Review C. 106 (44303): 044303. Bibcode:2022PhRvC.106d4303J. doi:10.1103/PhysRevC.106.044303. S2CID 252792730.
  6. ^ Page, R. D.; Bianco, L.; Darby, I. G.; Uusitalo, J.; Joss, D. T.; Grahn, T.; Herzberg, R.-D.; Pakarinen, J.; Thomson, J.; Eeckhaudt, S.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Rahkila, P.; Sarén, J.; Scholey, C.; Steer, A.; Hornillos, M. B. Gómez; Al-Khalili, J. S.; Cannon, A. J.; Stevenson, P. D.; Ertürk, S.; Gall, B.; Hadinia, B.; Venhart, M.; Simpson, J. (26 June 2007). "α decay of Re 159 and proton emission from Ta 155". Physical Review C. 75 (6): 061302. Bibcode:2007PhRvC..75f1302P. doi:10.1103/PhysRevC.75.061302. ISSN 0556-2813. Retrieved 12 June 2023.
  7. ^ Darby, I. G.; Page, R. D.; Joss, D. T.; Bianco, L.; Grahn, T.; Judson, D. S.; Simpson, J.; Eeckhaudt, S.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Rahkila, P.; Sarén, J.; Scholey, C.; Steer, A. N.; Uusitalo, J.; Venhart, M.; Ertürk, S.; Gall, B.; Hadinia, B. (20 June 2011). "Precision measurements of proton emission from the ground states of Ta 156 and Re 160". Physical Review C. 83 (6): 064320. Bibcode:2011PhRvC..83f4320D. doi:10.1103/PhysRevC.83.064320. ISSN 0556-2813. Retrieved 21 June 2023.
  8. ^ Darby, I. G.; Page, R. D.; Joss, D. T.; Simpson, J.; Bianco, L.; Cooper, R. J.; Eeckhaudt, S.; Ertürk, S.; Gall, B.; Grahn, T.; Greenlees, P. T.; Hadinia, B.; Jones, P. M.; Judson, D. S.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppänen, A. -P.; Nyman, M.; Rahkila, P.; Sarén, J.; Scholey, C.; Steer, A. N.; Uusitalo, J.; Venhart, M. (10 January 2011). "Decay of the high-spin isomer in 160Re: Changing single-particle structure beyond the proton drip line". Physics Letters B. 695 (1): 78–81. Bibcode:2011PhLB..695...78D. doi:10.1016/j.physletb.2010.10.052. ISSN 0370-2693.
  9. ^ https://www.nndc.bnl.gov/ensnds/186/Re/adopted.pdf, NNDC Chart of Nuclides, Adopted Levels for 186Re.
  10. ^ "Rhenium-186 liposomes as convection-enhanced nanoparticle brachytherapy for treatment of glioblastoma". academic.oup.com. Retrieved 2024-12-07.
  11. ^ Mastren, Tara; Radchenko, Valery; Bach, Hong T.; Balkin, Ethan R.; Birnbaum, Eva R.; Brugh, Mark; Engle, Jonathan W.; Gott, Matthew D.; Guthrie, James; Hennkens, Heather M.; John, Kevin D.; Ketring, Alan R.; Kuchuk, Marina; Maassen, Joel R.; Naranjo, Cleo M.; Nortier, F. Meiring; Phelps, Tim E.; Jurisson, Silvia S.; Wilbur, D. Scott; Fassbender, Michael E. (2017). "Bulk production and evaluation of high specific activity 186gRe for cancer therapy using enriched 186WO3 targets in a proton beam". Nuclear Medicine and Biology. 49. Elsevier BV: 24–29. doi:10.1016/j.nucmedbio.2017.02.006. ISSN 0969-8051.
  12. ^ "Radiosynoviorthese (RSO) mit Rhenium-186 (Re-186)-Sulfid" (PDF). Retrieved 2024-12-07.