User:Gumshoe2/sandbox
Appearance
- Abraham, R.; Marsden, J. E.; Ratiu, T. (1988). Manifolds, tensor analysis, and applications. Applied Mathematical Sciences. Vol. 75 (Second edition of 1983 original ed.). New York: Springer-Verlag. doi:10.1007/978-1-4612-1029-0. ISBN 0-387-96790-7. MR 0960687. Zbl 0875.58002.
- Ahlfors, Lars V. (2006). Lectures on quasiconformal mappings. University Lecture Series. Vol. 38. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard (Second edition of 1966 original ed.). Providence, RI: American Mathematical Society. doi:10.1090/ulect/038. ISBN 0-8218-3644-7. MR 2241787.
- Aubin, Thierry (1998). Some nonlinear problems in Riemannian geometry. Springer Monographs in Mathematics. Berlin: Springer-Verlag. doi:10.1007/978-3-662-13006-3. ISBN 3-540-60752-8. MR 1636569. Zbl 0896.53003.
- Bao, D.; Chern, S.-S.; Shen, Z. (2000). An introduction to Riemann–Finsler geometry. Graduate Texts in Mathematics. Vol. 200. New York: Springer-Verlag. doi:10.1007/978-1-4612-1268-3. ISBN 0-387-98948-X. MR 1747675. Zbl 0954.53001.
- Berline, Nicole; Getzler, Ezra; Vergne, Michèle (2004). Heat kernels and Dirac operators. Grundlehren Text Editions (Corrected reprint of the 1992 original ed.). Berlin: Springer-Verlag. doi:10.1007/978-3-642-58088-8. ISBN 978-3-540-20062-8. MR 2273508. Zbl 1037.58015.
- Besse, Arthur L. (1987). Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. Vol. 10. Reprinted in 2008. Berlin: Springer-Verlag. doi:10.1007/978-3-540-74311-8. ISBN 3-540-15279-2. MR 0867684. Zbl 0613.53001.
- Billingsley, Patrick (1995). Probability and measure. Wiley Series in Probability and Mathematical Statistics (Third edition of 1979 original ed.). New York: John Wiley & Sons, Inc. ISBN 0-471-00710-2. MR 1324786.
- Blackadar, Bruce (1998). K-theory for operator algebras. Mathematical Sciences Research Institute Publications. Vol. 5 (Second edition of 1986 original ed.). Cambridge: Cambridge University Press. doi:10.1007/978-1-4613-9572-0. ISBN 0-521-63532-2. MR 1656031. Zbl 0913.46054.
- Blair, David E. (2010). Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics. Vol. 203 (Second edition of 2002 original ed.). Boston, MA: Birkhäuser Boston, Ltd. doi:10.1007/978-0-8176-4959-3. ISBN 978-0-8176-4958-6. MR 2682326. Zbl 1246.53001.
- Bochnak, Jacek; Coste, Michel; Roy, Marie-Françoise (1998). Real algebraic geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. Vol. 36 (Translated and revised from 1987 French original ed.). Berlin: Springer-Verlag. doi:10.1007/978-3-662-03718-8. ISBN 3-540-64663-9. MR 1659509. Zbl 0912.14023.
- Bridson, Martin R.; Haefliger, André (1999). Metric spaces of non-positive curvature. Grundlehren der mathematischen Wissenschaften. Vol. 319. Berlin: Springer-Verlag. doi:10.1007/978-3-662-12494-9. ISBN 3-540-64324-9. MR 1744486. Zbl 0988.53001.
- Burago, Dmitri; Burago, Yuri; Ivanov, Sergei (2001). A course in metric geometry. Graduate Studies in Mathematics. Vol. 33. Providence, RI: American Mathematical Society. doi:10.1090/gsm/033. ISBN 0-8218-2129-6. MR 1835418. Zbl 0981.51016. (Erratum: [1])
- Chavel, Isaac (1984). Eigenvalues in Riemannian geometry. Pure and Applied Mathematics. Vol. 115. Orlando, FL: Academic Press. doi:10.1016/s0079-8169(08)x6051-9. ISBN 0-12-170640-0. MR 0768584. Zbl 0551.53001.
- Chow, Shui Nee; Hale, Jack K. (1982). Methods of bifurcation theory. Grundlehren der Mathematischen Wissenschaften. Vol. 251. New York–Berlin: Springer-Verlag. doi:10.1007/978-1-4613-8159-4. ISBN 0-387-90664-9. MR 0660633. Zbl 0487.47039.
- Chung, Fan R. K. (1997). Spectral graph theory. CBMS Regional Conference Series in Mathematics. Vol. 92. Providence, RI: American Mathematical Society. doi:10.1090/cbms/092. ISBN 0-8218-0315-8. MR 1421568. Zbl 0867.05046.
- Courant, R.; Hilbert, D. (1962). Methods of mathematical physics. Volume II: Partial differential equations. New York–London: Interscience Publishers. doi:10.1002/9783527617234. MR 0140802. Zbl 0099.29504.
- Davies, E. B. (1989). Heat kernels and spectral theory. Cambridge Tracts in Mathematics. Vol. 92. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511566158. ISBN 0-521-36136-2. MR 0990239.
- de Rham, Georges (1984). Differentiable manifolds. Forms, currents, harmonic forms. Grundlehren der mathematischen Wissenschaften. Vol. 266. Translated by Smith, F. R. With an introduction by S. S. Chern. (Translation of 1955 French original ed.). Berlin: Springer-Verlag. doi:10.1007/978-3-642-61752-2. ISBN 3-540-13463-8. MR 0760450. Zbl 0534.58003.
- DeVore, Ronald A.; Lorentz, George G. (1993). Constructive approximation. Grundlehren der mathematischen Wissenschaften. Vol. 303. Berlin: Springer-Verlag. ISBN 3-540-50627-6. MR 1261635. Zbl 0797.41016.
- do Carmo, Manfredo P. (2016). Differential geometry of curves & surfaces (Revised and updated second edition of 1976 original ed.). Mineola, NY: Dover Publications, Inc. ISBN 978-0-486-80699-0. MR 3837152. Zbl 1352.53002.
- do Carmo, Manfredo Perdigão (1992). Riemannian geometry. Mathematics: Theory & Applications. Translated from the second Portuguese edition by Francis Flaherty. Boston, MA: Birkhäuser Boston, Inc. ISBN 0-8176-3490-8. MR 1138207. Zbl 0752.53001.
- Doob, J. L. (1953). Stochastic processes. New York: John Wiley & Sons, Inc. MR 0058896.
- Durrett, Rick (2019). Probability – theory and examples. Cambridge Series in Statistical and Probabilistic Mathematics. Vol. 49 (Fifth edition of 1991 original ed.). Cambridge: Cambridge University Press. doi:10.1017/9781108591034. ISBN 978-1-108-47368-2. MR 3930614.
- Eisenhart, Luther Pfahler (1926). Riemannian geometry. Reprinted in 1997. Princeton: Princeton University Press. doi:10.1515/9781400884216. ISBN 0-691-02353-0. JFM 52.0721.01.
- Ekeland, Ivar; Témam, Roger (1999). Convex analysis and variational problems. Classics in Applied Mathematics. Vol. 28 (Corrected reprint of the 1976 English edition of 1974 French original ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611971088. ISBN 0-89871-450-8. MR 1727362. Zbl 0939.49002.
- Evans, Lawrence C.; Gariepy, Ronald F. (2015). Measure theory and fine properties of functions. Textbooks in Mathematics (Revised edition of 1992 original ed.). Boca Raton, FL: CRC Press. doi:10.1201/b18333. ISBN 978-1-4822-4238-6. MR 3409135. Zbl 1310.28001.
- Federer, Herbert (1969). Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften. Vol. 153. Berlin–Heidelberg–New York: Springer-Verlag. doi:10.1007/978-3-642-62010-2. ISBN 978-3-540-60656-7. MR 0257325. Zbl 0176.00801.
- Feller, William (1968). An introduction to probability theory and its applications. Volume I (Third edition of 1950 original ed.). New York–London–Sydney: John Wiley & Sons, Inc. MR 0228020.
- Feller, William (1971). An introduction to probability theory and its applications. Volume II (Second edition of 1966 original ed.). New York–London–Sydney: John Wiley & Sons, Inc. MR 0270403.
- Folland, Gerald B. (1999). Real analysis. Modern techniques and their applications. Pure and Applied Mathematics (Second edition of 1984 original ed.). New York: John Wiley & Sons, Inc. ISBN 0-471-31716-0. MR 1681462. Zbl 0924.28001.
- Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques (2004). Riemannian geometry. Universitext (Third ed.). Springer-Verlag. doi:10.1007/978-3-642-18855-8. ISBN 3-540-20493-8. MR 2088027. Zbl 1068.53001.
- Gilbarg, David; Trudinger, Neil S. (2001). Elliptic partial differential equations of second order. Classics in Mathematics (Reprint of the second ed.). Berlin: Springer-Verlag. doi:10.1007/978-3-642-61798-0. ISBN 3-540-41160-7. MR 1814364. Zbl 1042.35002.
- Gilkey, Peter B. (1995). Invariance theory, the heat equation, and the Atiyah–Singer index theorem. Studies in Advanced Mathematics (Second edition of 1984 original ed.). Boca Raton, FL: CRC Press. doi:10.1201/9780203749791. ISBN 0-8493-7874-5. MR 1396308. Zbl 0856.58001.
- Giusti, Enrico (1984). Minimal surfaces and functions of bounded variation. Monographs in Mathematics. Vol. 80. Basel: Birkhäuser Verlag. doi:10.1007/978-1-4684-9486-0. ISBN 0-8176-3153-4. MR 0775682. Zbl 0545.49018.
- Gromov, Misha (1999). Metric structures for Riemannian and non-Riemannian spaces. Progress in Mathematics. Vol. 152. Translated by Bates, Sean Michael. With appendices by M. Katz, P. Pansu, and S. Semmes. (Based on the 1981 French original ed.). Boston, MA: Birkhäuser Boston, Inc. doi:10.1007/978-0-8176-4583-0. ISBN 0-8176-3898-9. MR 1699320. Zbl 0953.53002.
- Hale, Jack (1977). Theory of functional differential equations. Applied Mathematical Sciences. Vol. 3 (Second edition of 1971 original ed.). New York–Heidelberg: Springer-Verlag. doi:10.1007/978-1-4612-9892-2. ISBN 978-1-4612-9894-6. MR 0508721. Zbl 0352.34001.
- Hale, Jack K. (1980). Ordinary differential equations (Second edition of 1969 original ed.). Huntington, NY: Robert E. Krieger Publishing Co., Inc. ISBN 0-89874-011-8. MR 0587488. Zbl 0433.34003.
- Hale, Jack K. (1988). Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographs. Vol. 25. Providence, RI: American Mathematical Society. doi:10.1090/surv/025. ISBN 0-8218-1527-X. MR 0941371. Zbl 0642.58013.
- Hale, Jack K.; Verduyn Lunel, Sjoerd M. (1993). Introduction to functional-differential equations. Applied Mathematical Sciences. Vol. 99. New York: Springer-Verlag. doi:10.1007/978-1-4612-4342-7. ISBN 0-387-94076-6. MR 1243878. Zbl 0787.34002.
- Hall, P.; Heyde, C. C. (1980). Martingale limit theory and its application. Probability and Mathematical Statistics. San Diego, CA: Academic Press. doi:10.1016/C2013-0-10818-5. ISBN 0-12-319350-8.
- Hawking, S. W.; Ellis, G. F. R. (1973). The large scale structure of space-time. Cambridge Monographs on Mathematical Physics. Vol. 1. London−New York: Cambridge University Press. doi:10.1017/CBO9780511524646. ISBN 9780521099066. MR 0424186. Zbl 0265.53054.
- Heinonen, Juha (2001). Lectures on analysis on metric spaces. Universitext. New York: Springer-Verlag. doi:10.1007/978-1-4613-0131-8. ISBN 0-387-95104-0. MR 1800917. Zbl 0985.46008.
- Helgason, Sigurdur (2001). Differential geometry, Lie groups, and symmetric spaces. Graduate Studies in Mathematics. Vol. 34 (Corrected reprint of the 1978 original ed.). Providence, RI: American Mathematical Society. doi:10.1090/gsm/034. ISBN 0-8218-2848-7. MR 1834454. Zbl 0993.53002.
- Jost, Jürgen (2017). Riemannian geometry and geometric analysis. Universitext (Seventh edition of 1995 original ed.). Springer, Cham. doi:10.1007/978-3-319-61860-9. ISBN 978-3-319-61859-3. MR 3726907. Zbl 1380.53001.
- Kallenberg, Olav (2021). Foundations of modern probability. Probability Theory and Stochastic Modelling. Vol. 99 (Third edition of 1997 original ed.). Springer, Cham. doi:10.1007/978-3-030-61871-1. ISBN 978-3-030-61871-1. MR 4226142.
- Karatzas, Ioannis; Shreve, Steven E. (1991). Brownian motion and stochastic calculus. Graduate Texts in Mathematics. Vol. 113 (Second edition of 1988 original ed.). New York: Springer-Verlag. doi:10.1007/978-1-4612-0949-2. ISBN 0-387-97655-8. MR 1121940.
- Kobayashi, Shoshichi; Nomizu, Katsumi (1963). Foundations of differential geometry. Volume I. New York–London: John Wiley & Sons, Inc. MR 0152974. Zbl 0119.37502.
- Kobayashi, Shoshichi; Nomizu, Katsumi (1969). Foundations of differential geometry. Volume II. Interscience Tracts in Pure and Applied Mathematics. Vol. 15. Reprinted in 1996. New York–London: John Wiley & Sons, Inc. ISBN 0-471-15732-5. MR 0238225. Zbl 0175.48504.
- Lang, Serge (1993). Real and functional analysis. Graduate Texts in Mathematics. Vol. 142 (Third ed.). New York: Springer-Verlag. doi:10.1007/978-1-4612-0897-6. ISBN 0-387-94001-4. MR 1216137.
- Lang, Serge (1994). Algebraic number theory. Graduate Texts in Mathematics. Vol. 110 (Second edition of 1970 original ed.). New York: Springer-Verlag. doi:10.1007/978-1-4612-0853-2. ISBN 0-387-94225-4. MR 1282723.
- Lang, Serge (1999). Fundamentals of differential geometry. Graduate Texts in Mathematics. Vol. 191. New York: Springer-Verlag. doi:10.1007/978-1-4612-0541-8. ISBN 0-387-98593-X. MR 1666820. Zbl 0932.53001.
- Lang, Serge (2002). Algebra. Graduate Texts in Mathematics. Vol. 211 (Revised third edition of 1965 original ed.). New York: Springer-Verlag. doi:10.1007/978-1-4613-0041-0. ISBN 0-387-95385-X. MR 1878556.
- Lawson, H. Blaine Jr.; Michelsohn, Marie-Louise (1989). Spin geometry. Princeton Mathematical Series. Vol. 38. Princeton, NJ: Princeton University Press. ISBN 0-691-08542-0. MR 1031992. Zbl 0688.57001.
- Lee, John M. (2013). Introduction to smooth manifolds. Graduate Texts in Mathematics. Vol. 218 (Second edition of 2003 original ed.). New York: Springer. doi:10.1007/978-1-4419-9982-5. ISBN 978-1-4419-9981-8. MR 2954043. Zbl 1258.53002.
- Lieb, Elliott H.; Loss, Michael (2001). Analysis. Graduate Studies in Mathematics. Vol. 14 (Second edition of 1997 original ed.). Providence, RI: American Mathematical Society. ISBN 0-8218-2783-9. MR 1817225.
- Lieberman, Gary M. (1996). Second order parabolic differential equations. River Edge, NJ: World Scientific Publishing Co., Inc. doi:10.1142/3302. ISBN 981-02-2883-X. MR 1465184.
- Loève, Michel (1978). Probability theory. II. Graduate Texts in Mathematics. Vol. 46 (Fourth edition of 1955 original ed.). New York–Heidelberg: Springer-Verlag. ISBN 0-387-90262-7. MR 0651018.
- McDuff, Dusa; Salamon, Dietmar (2017). Introduction to symplectic topology. Oxford Graduate Texts in Mathematics (Third edition of 1995 original ed.). Oxford: Oxford University Press. doi:10.1093/oso/9780198794899.001.0001. ISBN 978-0-19-879490-5. MR 3674984. Zbl 1380.53003.
- Milnor, J. (1963). Morse theory. Annals of Mathematics Studies. Vol. 51. Princeton, N.J.: Princeton University Press. MR 0163331. Zbl 0108.10401.
- Misner, Charles W.; Thorne, Kip S.; Wheeler, John Archibald (1973). Gravitation. San Francisco, CA: W. H. Freeman and Company. ISBN 0-7503-0948-2. MR 0418833. Zbl 1375.83002.
- Morrey, Charles B., Jr. (1966). Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften. Vol. 130. New York: Springer-Verlag. doi:10.1007/978-3-540-69952-1. MR 0202511. Zbl 1213.49002.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - O'Neill, Barrett (1983). Semi-Riemannian geometry. With applications to relativity. Pure and Applied Mathematics. Vol. 103. New York: Academic Press, Inc. doi:10.1016/s0079-8169(08)x6002-7. ISBN 0-12-526740-1. MR 0719023. Zbl 0531.53051.
- Petersen, Peter (2016). Riemannian geometry. Graduate Texts in Mathematics. Vol. 171 (Third edition of 1998 original ed.). Springer, Cham. doi:10.1007/978-3-319-26654-1. ISBN 978-3-319-26652-7. MR 3469435. Zbl 1417.53001.
- Revuz, Daniel; Yor, Marc (1999). Continuous martingales and Brownian motion. Grundlehren der mathematischen Wissenschaften. Vol. 293 (Third edition of 1991 original ed.). Berlin: Springer-Verlag. doi:10.1007/978-3-662-06400-9. ISBN 3-540-64325-7. MR 1725357.
- Rudin, Walter (1987). Real and complex analysis (Third edition of 1966 original ed.). New York: McGraw-Hill Book Co. ISBN 0-07-054234-1. MR 0924157. Zbl 0925.00005.
- Schouten, J. A. (1954). Ricci-calculus. An introduction to tensor analysis and its geometrical applications. Die Grundlehren der mathematischen Wissenschaften. Vol. 10 (Second edition of 1923 original ed.). Berlin–Göttingen–Heidelberg: Springer-Verlag. doi:10.1007/978-3-662-12927-2. ISBN 978-3-540-01805-6. MR 0066025. Zbl 0057.37803.
- Shiryaev, Albert N. (2019). Probability—2. Graduate Texts in Mathematics. Vol. 95. Translated by Boas, R. P.; Chibisov, D. M. (Third edition of 1980 original ed.). New York: Springer. doi:10.1007/978-0-387-72208-5. ISBN 978-0-387-72207-8. MR 3930599.
- Simon, Leon (1983). Lectures on geometric measure theory (PDF). Proceedings of the Centre for Mathematical Analysis, Australian National University. Vol. 3. Canberra: Australian National University, Centre for Mathematical Analysis. ISBN 0-86784-429-9. MR 0756417.
- Spivak, Michael (1999). A comprehensive introduction to differential geometry. Volume four (Third edition of 1975 original ed.). Publish or Perish, Inc. ISBN 0-914098-73-X. MR 0532833. Zbl 1213.53001.
- Spivak, Michael (1999). A comprehensive introduction to differential geometry: volume five (Third edition of 1975 original ed.). Publish or Perish, Inc. ISBN 0-914098-74-8. MR 0532834. Zbl 1213.53001.
- Struik, Dirk J. (1961). Lectures on classical differential geometry. Reprinted in 1988. (Second edition of 1950 original ed.). London: Addison-Wesley Publishing Co. ISBN 0-486-65609-8. MR 0939369. Zbl 0105.14707.
- Taylor, Michael E. (2011). Partial differential equations I. Basic theory. Applied Mathematical Sciences. Vol. 115 (Second edition of 1996 original ed.). New York: Springer. doi:10.1007/978-1-4419-7055-8. ISBN 978-1-4419-7054-1. MR 2744150. Zbl 1206.35002.
- Taylor, Michael E. (2011). Partial differential equations II. Qualitative studies of linear equations. Applied Mathematical Sciences. Vol. 116 (Second edition of 1996 original ed.). New York: Springer. doi:10.1007/978-1-4419-7052-7. ISBN 978-1-4419-7051-0. MR 2743652. Zbl 1206.35003.
- Taylor, Michael E. (2011). Partial differential equations III. Nonlinear equations. Applied Mathematical Sciences. Vol. 117 (Second edition of 1996 original ed.). New York: Springer. doi:10.1007/978-1-4419-7049-7. ISBN 978-1-4419-7048-0. MR 2744149.
- Temam, Roger (1984). Navier–Stokes equations. Theory and numerical analysis. Studies in Mathematics and its Applications. Vol. 2. With an appendix by F. Thomasset (Third edition of 1977 original ed.). Amsterdam: North-Holland Publishing Company. doi:10.1090/chel/343. ISBN 0-444-87558-1. MR 0769654. Zbl 0568.35002.
- Temam, Roger (1997). Infinite-dimensional dynamical systems in mechanics and physics. Applied Mathematical Sciences. Vol. 68 (Second edition of 1988 original ed.). New York: Springer-Verlag. doi:10.1007/978-1-4612-0645-3. ISBN 0-387-94866-X. MR 1441312. Zbl 0871.35001.
- Villani, Cédric (2003). Topics in optimal transportation. Graduate Studies in Mathematics. Vol. 58. Providence, RI: American Mathematical Society. doi:10.1090/gsm/058. ISBN 0-8218-3312-X. MR 1964483. Zbl 1106.90001.
- Villani, Cédric (2009). Optimal transport. Old and new. Grundlehren der mathematischen Wissenschaften. Vol. 338. Berlin: Springer-Verlag. doi:10.1007/978-3-540-71050-9. ISBN 978-3-540-71049-3. MR 2459454. Zbl 1156.53003.
- Wald, Robert M. (1984). General relativity. Chicago, IL: University of Chicago Press. ISBN 0-226-87032-4. MR 0757180. Zbl 0549.53001.
- Warner, Frank W. (1983). Foundations of differentiable manifolds and Lie groups. Graduate Texts in Mathematics. Vol. 94 (Corrected reprint of the 1971 original ed.). New York–Berlin: Springer-Verlag. doi:10.1007/978-1-4757-1799-0. ISBN 0-387-90894-3. MR 0722297. Zbl 0516.58001.
- Wolf
- Ziemer, William P. (1989). Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics. Vol. 120. New York: Springer-Verlag. doi:10.1007/978-1-4612-1015-3. ISBN 0-387-97017-7. MR 1014685. Zbl 0692.46022.