2024 in archosaur paleontology: Difference between revisions
Macrochelys (talk | contribs) |
→New bird taxa: Added new taxa Tags: Mobile edit Mobile web edit |
||
Line 566: | Line 566: | ||
| |
| |
||
An [[enantiornithine]]. The type species is ''I. attenboroughi''. |
An [[enantiornithine]]. The type species is ''I. attenboroughi''. |
||
| |
|||
|- |
|||
| |
|||
''[[Pristineanis]]''<ref name=Pristineanis>{{Cite journal|last1=Mayr |first1=G. |last2=Kitchener |first2=A. C. |title=The Picocoraciades (hoopoes, rollers, woodpeckers, and allies) from the early Eocene London Clay of Walton-on-the-Naze |year=2024 |journal=PalZ |doi=10.1007/s12542-024-00687-9 |doi-access=free }}</ref> |
|||
| |
|||
Gen. et 2 sp. et comb. nov |
|||
| |
|||
Valid |
|||
| |
|||
Mayr & Kitchener |
|||
| |
|||
Eocene |
|||
| |
|||
London Clay |
|||
| |
|||
{{Flag|United Kingdom}}<br/> |
|||
{{Flag|United States}} |
|||
| |
|||
A possible member of [[Piciformes]]. The type species is ''P. minor''; genus also includes new species ''P. major'', as well as ''"Neanis" kistneri'' Feduccia (1973). |
|||
| |
|||
|- |
|||
| |
|||
''[[Septencoracias|Septencoracias simillimus]]''<ref name=Pristineanis /> |
|||
| |
|||
Sp. nov |
|||
| |
|||
Valid |
|||
| |
|||
Mayr & Kitchener |
|||
| |
|||
Eocene (Ypresian) |
|||
| |
|||
London Clay |
|||
| |
|||
{{Flag|United Kingdom}} |
|||
| |
|||
A member of [[Coraciiformes]] belonging or related to the family [[Coraciiformes]]. |
|||
| |
|||
|- |
|||
| |
|||
''[[Waltonirrisor]]''<ref name=Pristineanis /> |
|||
| |
|||
Gen. et sp. nov |
|||
| |
|||
Valid |
|||
| |
|||
Mayr & Kitchener |
|||
| |
|||
Eocene (Ypresian) |
|||
| |
|||
London Clay |
|||
| |
|||
{{Flag|United Kingdom}} |
|||
| |
|||
A member of [[Upupiformes]]. The type species is ''W. tendringensis''. |
|||
| |
| |
||
|- |
|- |
Revision as of 07:36, 11 April 2024
| |||
---|---|---|---|
+... |
This article records new taxa of every kind of fossil archosaur that are scheduled to be described during 2024, as well as other significant discoveries and events related to the paleontology of archosaurs that will be published in 2024.
Pseudosuchians
New pseudosuchian taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
In press |
Martins et al. |
Late Cretaceous |
A baurusuchid. Announced in 2023; the final article version was published in 2024. |
||||
Sp. nov |
Narváez et al. |
Eocene (Lutetian) |
A basal member of Crocodyloidea. |
|||||
Gen. et sp. nov |
Reyes, Martz & Small |
Late Triassic (Norian) |
An aetosaur. The type species is G. muelleri. |
|||||
Gen. et sp. nov |
Valid |
López-Rojas et al. |
Late Jurassic (Kimmeridgian-Tithonian) |
A goniopholidid crocodylomorph. The type species is O. paimogonectes. |
||||
Gen. et comb. nov |
Desojo & Rauhut |
Triassic (Ladinian-Carnian) |
Pinheiros-Chiniquá Sequence of the Santa Maria Supersequence |
A member of Paracrocodylomorpha, probably belonging to the group Poposauroidea. The type species is "Prestosuchus" loricatus von Huene (1938). |
||||
Gen et sp. nov |
In press |
Pochat-Cottilloux et al. |
Early Cretaceous |
An atoposaurid. The type species is V. sakonnakhonensis. |
General pseudosuchian research
- A study on the anatomy of the skull and on the neurology of Tarjadia ruthae is published by Desojo et al. (2024).[7]
- Redescription of the skeletal anatomy of Shuvosaurus inexpectatus is published by Nesbitt & Chatterjee (2024).[8]
- Mastrantonio et al. (2024) describe the anatomy of the postcranial skeleton of the most complete specimen of Prestosuchus chiniquensis reported to date, and revise the diagnosis for P. chiniquensis.[9]
Aetosaur research
Crocodylomorph research
- Young et al. (2024) provide higher level systematization for Thalattosuchia under both the PhyloCode and the International Code of Zoological Nomenclature, naming new taxa Neothalattosuchia, Euthalattosuchia and Dakosaurina.[10]
- A study on the morphology of osteoderms of Indosinosuchus and an unnamed member of Mesoeucrocodylia from the Late Jurassic Phu Noi excavation site (Thailand) is published by Bhuttarach et al. (2024).[11]
- Weryński et al. (2024) identify a teleosauroid rostrum from the Częstochowa Sponge Limestone Formation (Poland) as belonging to a non-machimosaurin machimosaurid feeding on large prey, with morphological similarities to Neosteneosaurus edwardsi and Proexochokefalos heberti, providing evidence that such teleosauroids were present outside of Western Europe during the Oxfordian.[12]
- Scheyer et al. (2024) describe teleosauroid tooth crowns associated with ichthyosaur remains (with scavenging traces also produced by a teleosauroid) from the Bajocian Hauptrogenstein Formation (Switzerland), representing the oldest fossil material of a member of the tribe Machimosaurini reported to date.[13]
- Hua, Liston & Tabouelle (2024) describe a specimen of Metriorhynchus cf. superciliosus from the Callovian strata from the "Vaches Noires" cliffs of Villers-sur-Mer (France), preserved with gastric contents that include remains of the gill apparatus of Leedsichthys, and interpret the studied specimen as providing evidence of Metriorhynchus scavenging on the remains of Leedsichthys.[14]
- A study on the bone histology of Araripesuchus buitreraensis, providing evidence of generally slow, annually interrupted growth rate, is published by Navarro et al. (2024).[15]
- Evidence of a continuous and coordinated tooth replacement in Armadillosuchus arrudai, ensuring that the animal would not lose too many teeth simultaneously and that its feeding abilities were not affected by tooth loss, is presented by Borsoni, Carvalho & Marinho (2024).[16]
- Dos Santos et al. (2024) describe the skeletal anatomy of the most complete juvenile baurusuchid specimen reported to date, and report evidence of differences in skull ornamentation and muscle development between juvenile and adult baurusuchid specimens which might be indicative of ontogenetic niche partitioning.[17]
- Fossil material of a goniopholidid, interpreted as a basal form that shared several anatomical traits with derived members of the group, is described from the Lower Cretaceous Kitadani Formation (Japan) by Obuse & Shibata (2024).[18]
- Yates & Stein (2024) interpret Ultrastenos willisi and "Baru" huberi as synonymous, but maintain Ultrastenos as a distinct mekosuchine genus, resulting in a new combination Ultrastenos huberi.[19]
- Redescription of Arambourgia gaudryi is published by Conedera et al. (2024), who recover A. gaudryi as an alligatorine, and interpret it as a semi-terrestrial animal.[20]
- Redescription of Crocodylus palaeindicus and a study on the phylogenetic relationships of members of Crocodyloidea is published by Chabrol et al. (2024), who consider Crocodylus sivalensis to be a junior synonym of C. palaeindicus, find evidence of a close relationship of Crocodylus checchiai and Crocodylus falconensis with extant American crocodiles, recover Kinyang as a crocodyline rather than osteolaemine, recover Albertosuchus knudsenii, Prodiplocynodon langi and "Crocodylus" affinis outside Crocodyloidea, and consider an alligatoroid placement for the clade Orientalosuchina to be highly labile.[21]
Non-avian dinosaurs
New dinosaur taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Alvarez Nogueira et al. |
Late Cretaceous (Cenomanian-Turonian) |
An elasmarian ornithopod. The type species is C. nekul. |
|||||
Gen. et sp. nov |
Valid |
Xing et al. |
Late Cretaceous (Turonian-Early Coniacian) |
An ankylosaurid. The type species is D. yingliangis. |
||||
Gen. et sp. nov |
Atkins-Weltman et al. |
Late Cretaceous (Maastrichtian) |
A caenagnathid theropod. The type species is E. infernalis. |
|||||
Gen. et sp. nov |
Valid |
Han et al. |
Late Cretaceous (Cenomanian-Turonian) |
Zhoutian Formation |
A titanosaur sauropod. The type species is G. cavocaudatus. |
|||
Gen. et sp. nov |
Valid |
Rotatori et al. |
Late Jurassic |
An early diverging iguanodontian ornithopod, possibly a dryomorphan. The type species is H. martinhotomasorum. |
||||
Gen. et sp. nov |
Valid |
Filippi et al. |
Late Cretaceous (Santonian) |
A titanosaur sauropod. The type species is I. oslatus. Announced in 2023; the final article version was published in 2024. |
||||
Gen. et sp. nov |
Ren et al. |
Late Jurassic |
A mamenchisaurid sauropod. The type species is J. dongxingensis. The name is preoccupied by Jingia Chen, 1983.[29] |
|||||
Gen. et sp. nov |
Longrich et al. |
Late Cretaceous (Maastrichtian) |
A lambeosaurine hadrosaurid belonging to the tribe Arenysaurini. The type species is M. bata. |
|||||
Gen. et sp. nov |
Isasmendi et al. |
Early Cretaceous (Barremian-Aptian) |
A spinosaurid theropod. The type species is R. lacustris. |
|||||
Sidersaura[32] | Gen. et sp. nov | Valid | Lerzo et al. | Late Cretaceous (Cenomanian-Turonian) | Huincul Formation | Argentina | A rebbachisaurid sauropod. The type species is S. marae. | |
Thyreosaurus[33] | Gen. et sp. nov | Zafaty et al. | Middle Jurassic | El Mers Group | Morocco | A stegosaurian. The type species is T. atlasicus. | ||
Gen. et sp. nov |
Pérez-Moreno et al. |
Late Cretaceous (Campanian-Maastrichtian) |
A titanosaur sauropod. The type species is T. gimenezi. |
|||||
Sp. nov |
Valid |
Dalman et al. |
Late Cretaceous (Campanian-Maastrichtian) |
A tyrannosaurine; a species of Tyrannosaurus. |
||||
Gen. et sp. nov |
In press |
Soto et al. |
Late Cretaceous |
A titanosaur sauropod belonging to the group Saltasauroidea. The type species is U. celeste. |
||||
Gen. et sp. nov |
Valid |
Longrich et al. |
Early Cretaceous (Barremian) |
A hypsilophodontid. The type species is V. insularis. Announced in 2023; the final article version was published in 2024. |
||||
Gen. et sp. nov |
Valid |
Jia et al. |
Early Cretaceous (Albian) |
A stegosaurian. The type species is Y. ultimus. |
General non-avian dinosaur research
- Evidence indicating that the evolution of rostral keratin cover was associated with partial tooth reduction throughout the evolutionary history of dinosaurs, but does not explain the complete loss of teeth in dinosaur lineages, is presented by Aguilar-Pedrayes, Gardner & Organ (2024).[39]
- A study on the evolutionary rates of biting mechanics in herbivorous dinosaurs is published by Kunz and Sakamoto (2024), who interpret their findings as indicating that biomechanic evolution rates can reveal ecological signatures in different lineages and ontogenetic stages.[40]
- Putative bone fragments of large-bodied dinosaurs from Rhaetian strata in France, Germany and United Kingdom are reinterpreted as fossil material of large-bodied ichthyosaurs by Perillo & Sander (2024).[41]
- Romilio et al. (2024) describe dinosaur tracks from the Early Jurassic (Sinemurian) Razorback Beds (Australia), representing the oldest dinosaur tracks from the country to date.[42]
- Troiano et al. (2024) report the discovery of an association of Early Cretaceous dinosaur tracks and petroglyphs from the Serrote do Letreiro Site (Brazil).[43]
- Maidment (2024) describes the diversity of dinosaurs from the upper Morrison Formation (United States) in time and space, and finds evidence supporting cladogenesis as a means of increasing diplodocine diversity over time, as well as spatial segregation of Allosaurus and Camarasaurus species.[44]
- Kirkland et al. (2024) describe the biodiversity of Cretaceous dinosaurs from Utah (United States).[45]
Saurischian research
- A study on the femoral histology of amniotes from the Triassic Ischigualasto Formation (Argentina), including early dinosaurs Chromogisaurus novasi, Eodromaeus murphi, Eoraptor lunensis, Herrerasaurus ischigualastensis and Sanjuansaurus gordilloi, is published by Curry Rogers et al. (2024), who find that early dinosaurs known from this formation grew at least as quickly as sauropodomorph and theropod dinosaurs from the later Mesozoic, and that their elevated growth rates did not set them apart from other amniotes living at the same time.[46]
Theropod research
- Mohabey et al. (2024) review and redescribe Laevisuchus indicus, Jubbulpuria tenuis and Compsosuchus solus, and describe a new noasaurid dentary from central India with procumbent dentition similar to the one present in Masiakasaurus.[47]
- A study on the affinities of isolated theropod teeth from the Kem Kem Group (Morocco) is published by Hendrickx et al. (2024), who identify teeth of abelisaurids, spinosaurines, carcharodontosaurids and a non-abelisauroid ceratosaur or a megaraptoran.[48]
- A probable ceratosaurid dentary is described from the Toarcian Cañadón Asfalto Formation (Argentina) by Pradelli, Pol & Ezcurra (2024), expanding known theropod diversity from this formation.[49]
- A study on the affinities of isolated theropod teeth from the Bauru Basin (Brazil) is published by Delcourt et al. (2024), who argue that the geographical distribution of abelisaurids in South America was influenced by climatic conditions.[50]
- A study in the bone histology of a mid-sized abelisaurid from the Upper Cretaceous Serra da Galga Formation (Brazil) is published by Aureliano et al. (2024), who report that, despite living in a semiarid tropical environment, the studied specimen had a growth rate similar to those of the Patagonian abelisaurids.[51]
- A study on the skeletal pathologies affecting known specimens of brachyrostran abelisaurids is published by Baiano et al. (2024), who diagnose the fusion of two caudal vertebrae of the holotype specimen of Aucasaurus garridoi as congenital malformation and diagnose partial fusion of five caudal vertebrae of the holotype of Elemgasem nubilus as spondyloraptropathy, in both cases representing the first occurrences of the diagnosed pathologies among non-tetanuran theropods.[52]
- Montealegre, Castillo-Visa & Sellés (2024) describe previously unpublished fossil material of theropods (cf. Protathlitis and a carcharodontosaurid which might be distinct from Concavenator) from the Barremian Arcillas de Morella Formation (Spain).[53]
- Yun (2024) identifies convergent similarities in craniodental anatomy between spinosaurs and phytosaurs.[54]
- Myhrvold et al. (2024) use statistical analyses to reconsider previous descriptions by Fabbri et al. (2022) of spinosaurs such as Spinosaurus as subaqueous foragers,[55] and provide evidence that Spinosaurus was likely not an aquatic pursuit predator.[56]
- Słowiak, Brusatte & Szczygielski (2024) reevaluate the fossil material attributed to Bagaraatan ostromi, interpreting the holotype as an indeterminate juvenile tyrannosaurid, and reporting that some of the fossils originally attributed to B. ostromi are actually caenagnathid bones.[57]
- Longrich & Saitta (2024) review the taxonomic status of Nanotyrannus and argue that multiple lines of evidence support it as a distinct, small-bodied, possibly non-tyrannosaurid taxon, rather than an immature form of Tyrannosaurus.[58]
- Description of the skeletal anatomy of Nothronychus graffami and N. mckinleyi, providing evidence of the presence of traits convergent with extant birds, ornithischian dinosaurs and titanosaur sauropods, is published by Smith & Gillette (2024).[59]
- Park et al. (2024) propose that early pennaraptorans might have used their pennaceous feathers to flush hiding insects and to generate lift or drag during the pursuit of the flushed insects, and propose that such use of the pennaceous feathers might have contributed to the evolution of larger and stiffer feathers.[60]
- A characterization of how number and shape of flight feathers correlate with locomotory style in extant birds is published by Kiat & O'Connor (2024). Extrapolating these patterns to Mesozoic pennaraptorans, the authors suggest that Caudipteryx and anchiornithines may have been secondarily flightless.[61]
- A study on the evolution of the pectoral girdle of pennaraptorans is published by Wu et al. (2024), who report evidence of modifications changing the range of motion of the forelimb that preceded the origin of flight in paravians, as well as evidence of subsequent flight adaptive modifications in avialans.[62]
- Meade et al. (2024) report evidence indicating that the ability of the skull to resist large mechanical stresses appeared early in oviraptorosaur evolution, before the appearance of the highly modified oviraptorid cranial architecture.[63]
- The first caenagnathid fossil material from the upper Campanian De-na-zin Member of the Kirtland Formation (New Mexico, United States) is described by Funston, Williamson & Brusatte (2024).[64]
- Description of the skeletal anatomy of Oksoko avarsan is published by Funston (2024).[65]
- Gianechini, Colli & Makovicky (2024) present a reconstruction of the pelvic and hindlimb musculature of Buitreraptor gonzalezorum.[66]
- Based on comparisons to extant birds, joint poses in the foot of Deinonychus during its walk cycle are reconstructed by Manafzadeh, Gatesy & Bhullar (2024).[67]
- Description of the braincase and cranial endocast of Sinovenator changii, interpreted as morphologically intermediate between basal theropods and extant birds, is published by Yu et al. (2024).[68]
Sauropodomorph research
- Evidence of variability of the pneumacity patterns of the cervical and dorsal vertebra in Plateosaurus is presented by Regalado Fernández (2024).[69]
- "Gyposaurus" sinensis is interpreted as a probable junior synonym of Lufengosaurus huenei by Wang, Zhao & You (2024).[70]
- Using Spinophorosaurus as an example, Vidal (2024) explains how virtual 3D models of sauropods have enabled an understanding of their biomechanics. [71]
- Agustí, Alcalá & Santos-Cubedo (2024) propose that sauropod gigantism was an adaptation that increased the ability of sauropods to travel great distances, necessitated by pronounced seasonal changes.[72]
- King et al. (2024) report evidence of a previously unknown form of pneumaticity in a rib of a member of the genus Apatosaurus, and propose that rib pneumaticity among apatosaurines is individually variable.[73]
- Windholz et al. (2024) describe a new rebbachisaurid caudal vertebra from the Cenomanian Candeleros Formation (Argentina), providing new information on the caudal anatomy and pneumaticity in rebbachisaurids.[74]
- Beeston et al. (2024) describe new sauropod material from the Winton Formation (Australia), and interpret Australotitan cooperensis as an indeterminate diamantinasaurian that is likely a junior synonym of Diamantinasaurus matildae.[75]
- Filippi et al. (2024) study fossil material of sauropods from the Cerro Overo – La Invernada area (Bajo de la Carpa Formation; Neuquén Province, Argentina), interpreted as suggestive of the presence of a diverse fauna of titanosauriforms coexisting in the environment during the Santonian.[76]
- An overview of the largest known sauropods from Argentina is published by Calvo (2024).[77]
Ornithischian research
- A study on the taxonomic affinities of isolated ornithischian teeth from Bathonian microvertebrate sites in the United Kingdom, providing evidence of the presence of a previously unknown, diverse ornithischian fauna, is published by Wills, Underwood & Barrett (2024).[78]
Thyreophoran research
- Satchell (2024) reidentified the proximal femur fragment (BELUM K3998) as an indeterminate dinosaur remain, not a potential specimen of Scelidosaurus or an ornithischian.[79]
- The first stegosaurian fossil material from Gansu (China), assigned to Stegosaurus sp., is described from the Lower Cretaceous Hekou Group by Li et al. (2024).[80]
- Cross and Arbour (2024) describe an ankylosaur femur from the Cenomanian Dunvegan Formation (British Columbia, Canada).[81]
Cerapod research
- A review of Early Cretaceous Spanish styracosterns from the Maestrat Basin published by Santos-Cubedo (2024). [82]
- Escanero-Aguilar et al. (2024) describe skull material of a hadrosauriform ornithopod from the Lower Cretaceous Castrillo de la Reina Formation (Spain), interpreted as more derived than Iguanodon but more basal than Proa, and expanding known diversity of ornithopods from the Cameros Basin.[83]
- Nikolov, Dochev, & Brusatte (2024) test the ontogenetic age of small hadrosauroid bones from the Late Cretaceous (Maastrichtian) Kaylaka Formation (Bulgaria), and determine that the specimen likely belonged to a late juvenile or young subadult, rather than a dwarved adult, and suggest that large terrestrial animals were able to populate some European islands via a cyclically appearing or short-lived dispersal route.[84]
- The first described hadrosaurid footprints from the Horseshoe Canyon Formation are described by Powers et al. (2024), who assign them to the ichnospecies Hadrosauropodus langstoni. [85]
- Description of the morphology of the skull and endocranium of Psittacosaurus sibiricus, based on the study of both juvenile and adult specimens, is published by Podlesnov et al. (2024).[86]
- A description endocranial anatomy of the Psittacosaurus lujiatunensis published by Sakagami et al. (2024). [87]
Birds
New bird taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Tennyson et al. |
A species of Ardenna. |
|||||
Eocypselus geminus[89] | Sp. nov | In press | Mayr & Kitchener | Eocene | London Clay | United Kingdom | A species of Eocypselus. | |
Eocypselus grandissimus[89] | Sp. nov | In press | Mayr & Kitchener | Eocene | London Clay | United Kingdom | A species of Eocypselus. | |
Eocypselus paulomajor[89] | Sp. nov | In press | Mayr & Kitchener | Eocene | London Clay | United Kingdom | A species of Eocypselus. | |
Gen. et sp. nov |
In press |
Wang et al. |
An enantiornithine. The type species is I. attenboroughi. |
|||||
Gen. et 2 sp. et comb. nov |
Valid |
Mayr & Kitchener |
Eocene |
London Clay |
A possible member of Piciformes. The type species is P. minor; genus also includes new species P. major, as well as "Neanis" kistneri Feduccia (1973). |
|||
Sp. nov |
Valid |
Mayr & Kitchener |
Eocene (Ypresian) |
London Clay |
A member of Coraciiformes belonging or related to the family Coraciiformes. |
|||
Gen. et sp. nov |
Valid |
Mayr & Kitchener |
Eocene (Ypresian) |
London Clay |
A member of Upupiformes. The type species is W. tendringensis. |
|||
Gen. et comb. nov |
In press |
De Mendoza, Degrange & Tambussi |
A member of Anseriformes of uncertain affinites; a new genus for "Telmabates" howardae. |
Avian research
- A study performing quantitative functional imaging of the brain during rest and flight in rock doves with implications for the evolution of avian flight is published by Balanoff et al. (2024). They found increased neural activity in the cerebellum during flight, and through comparisons with cranial endocasts of extinct theropods, suggest that cerebellar expansion underlying such activity occurred at the base of Maniraptora, prior to the origin of avian flight.[93]
- The Cretaceous fossil record of avialans from China is reviewed by Zhou & Wang (2024).[94]
- A morphometric study of a large sample of specimens of Confuciusornis sanctus is published by Zhou et al. (2024), who interpret their findings as indicative of the presence of sexual dimorphism in this species.[95]
- A study the relationship between the morphology of cervical vertebrae and dietary modes in extant and extinct birds is published by Liu et al. (2024), who report that Bohaiornis, Brevirostruavis and Longipteryx had cervical morphologies resembling those of extant insectivorous or raptorial birds, while Yanornis and Iteravis had cervical morphologies closer to those of extant generalist or herbivorous birds, falling into the ecological niches of aquatic or semiaquatic birds.[96]
- A study on the limb bone histology and growth dynamics of Musivavis amabilis is published by Kundrát et al. (2024).[97]
- A study on the antiquity of the crown group of birds is published by Brocklehurst & Field (2024), who argue that the crown group originated between 110.5 and 90.3 million years ago, and that the majority of higher-order diversification within the crown group either spanned or postdated the Cretaceous-Paleogene transition.[98]
- The histochemistry of an ostrich eggshell from the Miocene Liushu Formation (China) is examined by Wu et al. (2024).[99]
- Schroeter (2024) presents a characterization of diagenetiforms in a moa proteome.[100]
- Fossil material of a possible member of Galloanserae is described from the Upper Cretaceous (Maastrichtian) Lance Formation (Wyoming, United States) by Brownstein (2024), who interprets this finding as supporting a cosmopolitan distribution of early crown birds.[101]
- A study on the evolutionary history of neoavians, as indicated by genomic data, is published by Wu et al. (2024), who argue that the initial diversification of the crown group of birds was correlated with the rise of flowering plants in the Cretaceous, that modern birds survived the Cretaceous–Paleogene extinction event relatively well, and that the Paleocene–Eocene Thermal Maximum had a significant impact on the diversification of the seabirds.[102]
- Zelenkov (2024) describes a fragmentary humerus of a buttonquail from the Lower Pleistocene strata from the Taurida Cave (Crimea), representing the first record of a member of the family Turnicidae from Eurasia from the Pliocene to Middle Pleistocene interval.[103]
- A study on the long limb bone microstructure of extant king penguins throughout their ontogeny is published by Canoville, Robin & de Buffrénil (2024), who find evidence of substantial intraspecific variability regardless of the ontogenetic stage, and evidence indicating that limb bones of king penguins reach adult size early in the development while their microstructure continues to change until adulthood; on the basis of their findings the authors do not consider the conclusions of Cerda, Tambussi & Degrange (2014)[104] and Ksepka et al. (2015)[105] about the paleobiology of fossil penguins to be properly supported by their data.[106]
- The evolutionary dynamics of microsatellites in Adélie penguins based on both modern and ancient genetic samples (up to 46.5 thousand years old) are studied by McComish et al. (2024).[107]
- Leoni et al. (2024) describe the first fossil material of a turkey vulture from cave deposits in northeastern Brazil, which preserves trace marks likely produced by a felid and indicating that the vulture died in the cave it was discovered in.[108]
- Acosta Hospitaleche & Jones (2024) describe fossil material of a large-bodied (with an estimated body mass of around 100 kg) phorusrhacid or phorusrhacid-like bird from the Eocene La Meseta Formation (Seymour Island, Antarctica), interpreted by the authors as likely apex predator of Antarctica during the Eocene.[109]
- Acosta Hospitaleche & Jones (2024) describe partial tibiotarsus of a psilopterine phorusrhacid from the Eocene (Lutetian) Sarmiento Formation (Argentina), interpreted as belonging to a bird with an estimated body mass of approximately 5 kg.[110]
- A carpometacarpus of a Cuban macaw is described from the Pleistocene of El Abrón Cave (Cuba) by Zelenkov (2024).[111]
Pterosaurs
New pterosaur taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Ceoptera[112] | Gen. et sp. nov | Martin-Silverstone et al. | Middle Jurassic | Kilmaluag Formation | United Kingdom | A darwinopteran. The type species is C. evansae. |
Pterosaur research
- A study on the cervical osteology of Anhanguera piscator, Azhdarcho lancicollis and Rhamphorhynchus muensteri, aiming to reconstruct the cervical arthrology of pterosaurs and the position of the pterosaur neck at rest, is published by Buchmann & Rodrigues (2024).[113]
- Yun (2024) uses geometric morphometric analyses to investigate the relationships of pterosaur specimens from the Early Cretaceous Jinju and Hasandong formations (South Korea), and suggests that the material likely cannot be assigned to the Boreopteridae, as had previously been assumed.[114]
- So, Kim & Won (2024) describe a nearly complete skeleton of a probable member of the genus Jeholopterus from the Lower Cretaceous Sinuiju Formation, representing the first pterosaur recond from North Korea reported to date.[115]
- Ciaffi & Bellardini (2024) describe isolated teeth of indeterminate members of Ornithocheiriformes from the Lohan Cura Formation (Neuquén Province, Argentina), providing evidence of a more abundant and diversified ornithocheiriform fauna in the south of the Neuquén Basin (at least in the Albian) than previously known.[116]
Other archosaurs
Other archosaur research
- Agnolín et al. (2024) revise the anatomy of the pelvic girdle of Lagerpeton chanarensis, reinterpreting it as likely to have a sprawling gait.[117]
General research
- A study on the evolution of locomotion in archosauromorph reptiles is published by Shipley et al. (2024), who interpret their findings as indicative of greater range in limb form and locomotor modes of dinosaurs compared to other archosauromorph groups, and argue that the ability to adopt a wider variety of limb forms and modes might have given dinosaurs a competitive advantage over pseudosuchians.[118]
- A study on the body size evolution of non-avian dinosaurs and Mesozoic birds is published by Wilson et al. (2024), who find no evidence that Bergmann's rule applied to the studied taxa.[119]
- Knoll, Ishikawa & Kawabe (2024) present a new method which can be used to determine the brain volume of extinct archosaurs on the basis their endocranial cavity volume.[120]
References
- ^ Martins, K. C.; Queiroz, M. V.; Ruiz, J. V.; Langer, M. C.; Montefeltro, F. C. (2024). "A new Baurusuchidae (Notosuchia, Crocodyliformes) from the Adamantina Formation (Bauru Group, Upper Cretaceous), with a revised phylogenetic analysis of Baurusuchia". Cretaceous Research. 153. 105680. Bibcode:2024CrRes.15305680M. doi:10.1016/j.cretres.2023.105680. S2CID 261182849.
- ^ Narváez, I.; de Celis, A.; Escaso, F.; Martín de Jesús, S.; Pérez-García, A.; Ortega, F. (2024). "A new Crocodyloidea from the middle Eocene of Zamora (Duero Basin, Spain)". The Anatomical Record. doi:10.1002/ar.25422. PMID 38444286.
- ^ Reyes, W. A.; Martz, J. W.; Small, B. J. (2024). "Garzapelta muelleri gen. et sp. nov., a new aetosaur (Archosauria: Pseudosuchia) from the Late Triassic (middle Norian) middle Cooper Canyon Formation, Dockum Group, Texas, USA, and its implications on our understanding of the morphological disparity of the aetosaurian dorsal carapace". The Anatomical Record: e25379. doi:10.1002/ar.25379. PMID 38206046. S2CID 266931123.
- ^ López-Rojas, V.; Mateus, S.; Marinheiro, J.; Mateus, O.; Puértolas-Pascual, E. (2024). "A new goniopholidid crocodylomorph from the Late Jurassic of Portugal". Palaeontologia Electronica. 27 (1). 27.1.5a. doi:10.26879/1316.
- ^ Desojo, J. B.; Rauhut, O. W. M. (2024). "Reassessment of the enigmatic "Prestosuchus" loricatus (Archosauria: Pseudosuchia) from the Middle-Late Triassic of southern Brazil". The Anatomical Record. doi:10.1002/ar.25401. PMID 38344898.
- ^ Pochat-Cottilloux, Yohan; Lauprasert, Komsorn; Chanthasit, Phornphen; Manitkoon, Sita; Adrien, Jérôme; Lachambre, Joël; Amiot, Romain; Martin, Jeremy E. (2024-01-09). "New Cretaceous neosuchians (Crocodylomorpha) from Thailand bridge the evolutionary history of atoposaurids and paralligatorids". Zoological Journal of the Linnean Society. In press: 1–27. doi:10.1093/zoolinnean/zlad195.
- ^ Desojo, J. B.; von Baczko, M. B.; Ezcurra, M. D.; Fiorelli, L. E.; Martinelli, A. G.; Bona, P.; Trotteyn, M. J.; Lacerda, M. (2024). "Cranial osteology and paleoneurology of Tarjadia ruthae: An erpetosuchid pseudosuchian from the Triassic Chañares Formation (late Ladinian-?early Carnian) of Argentina". The Anatomical Record. doi:10.1002/ar.25382. PMID 38263705. S2CID 267198765.
- ^ Nesbitt, S. J.; Chatterjee, S. (2024). "The osteology of Shuvosaurus inexpectatus, a shuvosaurid pseudosuchian from the Upper Triassic Post Quarry, Dockum Group of Texas, USA". The Anatomical Record. doi:10.1002/ar.25376. hdl:10919/117738. PMID 38258540.
- ^ Mastrantonio, B. M.; Lacerda, M. B.; de Farias, B. D. M.; Pretto, F. A.; Rezende, L. O.; Desojo, J. B.; Schultz, C. L. (2024). "Postcranial anatomy of Prestosuchus chiniquensis (Archosauria: Loricata) from the Triassic of Brazil". The Anatomical Record. doi:10.1002/ar.25383. PMID 38299218. S2CID 267362910.
- ^ Young, M. T.; Wilberg, E. W.; Johnson, M. M.; Herrera, Y.; Brandalise de Andrade, M.; Brignon, A.; Sachs, S.; Abel, P.; Foffa, D.; Fernández, M. S.; Vignaud, P.; Cowgill, T.; Brusatte, S. L. (2024). "The history, systematics, and nomenclature of Thalattosuchia (Archosauria: Crocodylomorpha)". Zoological Journal of the Linnean Society. 200 (2): 547–617. doi:10.1093/zoolinnean/zlad165.
- ^ Bhuttarach, S.; Deesri, U.; Warapeang, P.; Taesuk, N.; Lauprasert, K. (2024). "Morphology of teleosaurid osteoderms from the Phu Kradung Formation of Thailand". Annales de Paléontologie. 109 (4). 102653. doi:10.1016/j.annpal.2023.102653. S2CID 267691380.
- ^ Weryński, Ł.; Błażejowski, B.; Szczygielski, T.; Young, M. T. (2024). "The first occurrence of machimosaurid crocodylomorphs from the Oxfordian of south-central Poland provides new insights into the distribution of macrophagous teleosauroids". PeerJ. 12. e17153. doi:10.7717/peerj.17153. PMC 10981889.
- ^ Scheyer, T. M.; Johnson, M. M.; Bastiaans, D.; Miedema, F.; Maxwell, E. E.; Klug, C. (2024). "Oldest record of Machimosaurini (Thalattosuchia, Teleosauroidea): teeth and scavenging traces from the Middle Jurassic (Bajocian) of Switzerland". Royal Society Open Science. 11 (4). 240071. doi:10.1098/rsos.240071.
- ^ Hua, S.; Liston, J.; Tabouelle, J. (2024). "The Diet of Metriorhynchus (Thalattosuchia, Metriorhynchidae): Additional Discoveries and Paleoecological Implications". Fossil Studies. 2 (1): 66–76. doi:10.3390/fossils2010002.
- ^ Navarro, T. G.; Cerda, I. A.; Fernández Dumont, M. L.; Apesteguía, S.; Pol, D. (2024). "New data on the bone histology of Araripesuchus buitreraensis (Crocodylomorpha: Notosuchia) from the Late Cretaceous of Argentinean Patagonia". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2023.2301140. S2CID 266948988.
- ^ Borsoni, B. T.; Carvalho, I. S.; Marinho, T. S. (2024). "Armadillosuchus arrudai (Sphagesauridae, Crocodyliformes), Adamantina Formation (Turonian - Santonian), Bauru Basin, southeastern Brazil: Dental development aspects". Cretaceous Research. 158. 105838. Bibcode:2024CrRes.15805838D. doi:10.1016/j.cretres.2024.105838. S2CID 267077357.
- ^ dos Santos, D. M.; de Carvalho, J. C.; de Oliveira, C. E. M.; de Andrade, M. B.; Santucci, R. M. (2024). "Cranial and postcranial anatomy of a juvenile baurusuchid (Notosuchia, Crocodylomorpha) and the taxonomical implications of ontogeny". The Anatomical Record. doi:10.1002/ar.25419. PMID 38429867. S2CID 268121558.
- ^ Obuse, S.; Shibata, M. (2024). "New goniopholidid specimens from the Lower Cretaceous Kitadani Formation, Tetori Group, Japan". Annales de Paléontologie. 110 (1). 102661. doi:10.1016/j.annpal.2023.102661. S2CID 268190726.
- ^ Yates, A. M.; Stein, M. (2024). "A reinterpretation and taxonomic revision of Ultrastenos willisi Stein, Hand and Archer, 2016, a short-snouted mekosuchine crocodylian from the Oligocene of northern Australia". Palaeontologia Electronica. 27 (1). 27.1.a22. doi:10.26879/1355.
- ^ Conedera, D.; Pochat-Cottilloux, Y.; Rinder, N.; Adrien, J.; Martin, J. E. (2024). "An anatomical reappraisal of the dwarf crocodylian Arambourgia gaudryi from the Eocene of Quercy (France) using CT data and its implications for the phylogeny and paleoecology of basally branching alligatoroids". Journal of Vertebrate Paleontology. e2313612. doi:10.1080/02724634.2024.2313612.
- ^ Chabrol, N.; Jukar, A. M.; Patnaik, R.; Mannion, P. D. (2024). "Osteology of Crocodylus palaeindicus from the late Miocene–Pleistocene of South Asia and the phylogenetic relationships of crocodyloids". Journal of Systematic Palaeontology. 22 (1). 2313133. doi:10.1080/14772019.2024.2313133.
- ^ Alvarez Nogueira, R.; Rozadilla, S.; Agnolín, F. L.; Garcia Marsà, J. A.; Motta, M. J.; Novas, F. E. (2024). "A new ornithopod from the Upper Cretaceous (Huincul Formation) of northwestern Patagonia, Argentina. Implications on elasmarian postcranial anatomy". Cretaceous Research. 105874. doi:10.1016/j.cretres.2024.105874.
- ^ Xing, L.; Niu, K.; Mallon, J.; Miyashita, T. (2024). "A new armored dinosaur with double cheek horns from the early Late Cretaceous of southeastern China". Vertebrate Anatomy Morphology Paleontology. 11: 113–132. doi:10.18435/vamp29396.
- ^ Atkins-Weltman, K. L.; Simon, D. J.; Woodward, H. N.; Funston, G. F.; Snively, E. (2024). "A new oviraptorosaur (Dinosauria: Theropoda) from the end-Maastrichtian Hell Creek Formation of North America". PLOS ONE. 19 (1). e0294901. Bibcode:2024PLoSO..1994901A. doi:10.1371/journal.pone.0294901. PMC 10807829. PMID 38266012.
- ^ Han, F.; Yang, L.; Lou, F.; Sullivan, C.; Xu, X.; Qiu, W.; Liu, H.; Yu, J.; Wu, R.; Ke, Y.; Xu, M.; Hu, J.; Lu, P. (2024). "A new titanosaurian sauropod, Gandititan cavocaudatus gen. et sp. nov., from the Late Cretaceous of southern China". Journal of Systematic Palaeontology. 22 (1). 2293038. Bibcode:2024JSPal..2293038H. doi:10.1080/14772019.2023.2293038. S2CID 267107071.
- ^ Rotatori, F. M.; Ferrari, L.; Sequero, C.; Camilo, B.; Mateus, O.; Moreno-Azanza, M. (2024). "An unexpected early-diverging iguanodontian dinosaur (Ornithischia, Ornithopoda) from the Upper Jurassic of Portugal". Journal of Vertebrate Paleontology. e2310066. doi:10.1080/02724634.2024.2310066.
- ^ Filippi, Leonardo S.; Juárez Valieri, Rubén D.; Gallina, Pablo A.; Méndez, Ariel H.; Gianechini, Federico A.; Garrido, Alberto C. (2024). "A rebbachisaurid-mimicking titanosaur and evidence of a Late Cretaceous faunal disturbance event in South-West Gondwana". Cretaceous Research. 154. Bibcode:2024CrRes.15405754F. doi:10.1016/j.cretres.2023.105754. ISSN 0195-6671. S2CID 264792693.
- ^ Ren, X.-X.; Wang, X.-R.; Ji, Y.-N.; Guo, Z.; Ji, Q. (2024). "The first mamenchisaurid from the Upper Jurassic Dongxing Formation of Guangxi, southernmost China". Historical Biology: An International Journal of Paleobiology: 1–14. doi:10.1080/08912963.2024.2309287. S2CID 267947729.
- ^ "Jingia".
- ^ Longrich, N. R.; Pereda-Suberbiola, X.; Bardet, N.; Jalil, N.-E. (2024). "A new small duckbilled dinosaur (Hadrosauridae: Lambeosaurinae) from Morocco and dinosaur diversity in the late Maastrichtian of North Africa". Scientific Reports. 14 (1). 3665. Bibcode:2024NatSR..14.3665L. doi:10.1038/s41598-024-53447-9. PMC 10864364. PMID 38351204.
- ^ Isasmendi, E.; Cuesta, E.; Díaz-Martínez, I.; Company, J.; Sáez-Benito, P.; Viera, L. I.; Torices, A.; Pereda-Suberbiola, P. (2024). "Increasing the theropod record of Europe: a new basal spinosaurid from the Enciso Group of the Cameros Basin (La Rioja, Spain). Evolutionary implications and palaeobiodiversity". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad193.
{{cite journal}}
:|last4=
has generic name (help) - ^ Lerzo, Lucas Nicolás; Gallina, Pablo Ariel; Canale, Juan Ignacio; Otero, Alejandro; Carballido, José Luis; Apesteguía, Sebastián; Makovicky, Peter Juraj (2024-01-03). "The last of the oldies: a basal rebbachisaurid (Sauropoda, Diplodocoidea) from the early Late Cretaceous (Cenomanian–Turonian) of Patagonia, Argentina". Historical Biology: 1–26. doi:10.1080/08912963.2023.2297914. ISSN 0891-2963. S2CID 266865502.
- ^ Zafaty, Omar; Oukassou, Mostafa; Riguetti, Facundo; Company, Julio; Bendrioua, Saad; Tabuce, Rodolphe; Charrière, André; Pereda-Suberbiola, Xabier (2024-03-29). "A new stegosaurian dinosaur (Ornithischia: Thyreophora) with a remarkable dermal armour from the Middle Jurassic of North Africa". Gondwana Research. doi:10.1016/j.gr.2024.03.009. ISSN 1342-937X.
{{cite journal}}
:|last4=
has generic name (help) - ^ Pérez-Moreno, A.; Salgado, L.; Carballido, J. L.; Otero, A.; Pol, D. (2024). "A new titanosaur from the La Colonia Formation (Campanian-Maastrichtian), Chubut Province, Argentina". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2024.2332997.
- ^ Dalman, S. G; Loewen, M. A.; Pyron, R. A.; Jasinski, S. E.; Malinzak, D. E.; Lucas, S. G.; Fiorillo, A. R.; Currie, P. J.; Longrich, N. R. (2024). "A giant tyrannosaur from the Campanian–Maastrichtian of southern North America and the evolution of tyrannosaurid gigantism". Scientific Reports. 13 (1). Article number 22124. doi:10.1038/s41598-023-47011-0. PMC 10784284. PMID 38212342.
- ^ Soto, M.; Carballido, J. L.; Langer, M. C.; Silva Junior, J. C. G.; Montenegro, F.; Perea, D. (2024). "Phylogenetic relationships of a new titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Uruguay". Cretaceous Research. 105894. doi:10.1016/j.cretres.2024.105894.
- ^ Longrich, Nicholas R.; Martill, David M.; Munt, Martin; Green, Mick; Penn, Mark; Smith, Shaun (2024). "Vectidromeus insularis, a new hypsilophodontid dinosaur from the Lower Cretaceous Wessex Formation of the Isle of Wight, England". Cretaceous Research. 154: 105707. Bibcode:2024CrRes.15405707L. doi:10.1016/j.cretres.2023.105707. ISSN 0195-6671. S2CID 261933503.
- ^ Jia, Lei; Li, Ning; Dong, Liyang; Shi, Jianru; Kang, Zhishuai; Wang, Suozhu; Xu, Shichao; You, Hailu (2024-01-31). "A new stegosaur from the late Early Cretaceous of Zuoyun, Shanxi Province, China". Historical Biology: 1–10. doi:10.1080/08912963.2024.2308214. ISSN 0891-2963. S2CID 267465456.
- ^ Aguilar-Pedrayes, I.; Gardner, J. D.; Organ, C. L. (2024). "The coevolution of rostral keratin and tooth distribution in dinosaurs". Proceedings of the Royal Society B: Biological Sciences. 291 (2015). 20231713. doi:10.1098/rspb.2023.1713. PMC 10792295. PMID 38229513.
- ^ Kunz, C; Sakamoto, M (2024). "Elevated evolutionary rates of biting biomechanics reveal patterns of extraordinary craniodental adaptations in some herbivorous dinosaurs". Paleontology. 67 (1): 12689. Bibcode:2024Palgy..6712689K. doi:10.1111/pala.12689.
- ^ Perillo, M.; Sander, P. M. (2024). "The dinosaurs that weren't: osteohistology supports giant ichthyosaur affinity of enigmatic large bone segments from the European Rhaetian". PeerJ. 12. e17060. doi:10.7717/peerj.17060.
- ^ Romilio, A.; Dick, R.; Skinner, H.; Millar, J. (2024). "Uncovering hidden footprints: revision of the Lower Jurassic (Sinemurian) Razorback Beds – home to Australia's earliest reported dinosaur trackway". Historical Biology: 1–8. doi:10.1080/08912963.2024.2320184.
- ^ Troiano, L. P.; dos Santos, H. B.; Aureliano, T.; Ghilardi, A. M. (2024). "A remarkable assemblage of petroglyphs and dinosaur footprints in Northeast Brazil". Scientific Reports. 14. 6528. doi:10.1038/s41598-024-56479-3. PMC 10948842. PMID 38499621.
- ^ Maidment, S.C.R. (2024). "Diversity through time and space in the Upper Jurassic Morrison Formation, western U.S.A.". Journal of Vertebrate Paleontology. e2326027. doi:10.1080/02724634.2024.2326027.
- ^ Kirkland, J.I.; Sertich, J.J.W.; Titus, A.L. (2024). "Dinosaur biostratigraphy of the Nonmarine Cretaceous of Utah". Geological Society, London, Special Publications. 545. doi:10.1144/SP545-2023-211.
- ^ Curry Rogers, K.; Martínez, R. N.; Colombi, C.; Rogers, R. R.; Alcober, O. (2024). "Osteohistological insight into the growth dynamics of early dinosaurs and their contemporaries". PLOS ONE. 19 (4). e0298242. doi:10.1371/journal.pone.0298242. PMC 10990230. PMID 38568908.
- ^ Mohabey, D. M.; Samant, B.; Vélez-Rosado, K. I.; Wilson Mantilla, J. A. (2024). "A review of small-bodied theropod dinosaurs from the Upper Cretaceous of India, with description of new cranial remains of a noasaurid (Theropoda: Abelisauria)". Journal of Vertebrate Paleontology. e2288088. doi:10.1080/02724634.2023.2288088.
- ^ Hendrickx, C.; Trapman, T. H.; Wills, S.; Holwerda, F. M.; Stein, K. H. W.; Rauhut, O. W. M.; Melzer, R. R.; Van Woensel, J.; Reumer, J. W. F. (2024). "A combined approach to identify isolated theropod teeth from the Cenomanian Kem Kem Group of Morocco: cladistic, discriminant, and machine learning analyses". Journal of Vertebrate Paleontology. e2311791. doi:10.1080/02724634.2024.2311791.
- ^ Pradelli, L. A.; Pol, D.; Ezcurra, M. D. (2024). "New dinosaur remains increase theropod diversity in the Cañadón Asfalto Formation (Lower Jurassic), Chubut Province, Argentina". Journal of Systematic Palaeontology. 22 (1). 2318262. doi:10.1080/14772019.2024.2318262.
- ^ Delcourt, R.; Brilhante, N. S.; Pires-Domingues, R. A.; Hendrickx, C.; Grillo, O. N.; Augusta, B. G.; Maciel, B. S.; Ghilardi, A. M.; Ricardi-Branco, F. (2024). "Biogeography of theropod dinosaurs during the Late Cretaceous: evidence from central South America". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad184.
- ^ Aureliano, T.; Ghilardi, A. M.; Fonseca, P. H. M.; Martinelli, A. G.; Marinho, T. S. (2024). "The evolution and diversification of growth strategies in abelisauroid theropods". Journal of Vertebrate Paleontology. e2298395. doi:10.1080/02724634.2023.2298395.
- ^ Baiano, M. A.; Cerda, I. A.; Bertozzo, F.; Pol, D. (2024). "New information on paleopathologies in non-avian theropod dinosaurs: a case study on South American abelisaurids". BMC Ecology and Evolution. 24 (1). 6. Bibcode:2024BMCEE..24....6B. doi:10.1186/s12862-023-02187-x. PMC 10829224. PMID 38291378.
- ^ Montealegre, A.; Castillo-Visa, O.; Sellés, A. (2024). "New theropod remains from the late Barremian (Early Cretaceous) of Eastern Iberian Peninsula". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2024.2308220. S2CID 267374161.
- ^ Yun, Chan-gyu (2024). "Spinosaurs as phytosaur mimics: a case of convergent evolution between two extinct archosauriform clades". Acta Palaeontologica Romaniae. 20 (1): 17–29. doi:10.35463/j.apr.2024.01.02.
- ^ Fabbri, Matteo; Navalón, Guillermo; Benson, Roger B. J.; Pol, Diego; O’Connor, Jingmai; Bhullar, Bhart-Anjan S.; Erickson, Gregory M.; Norell, Mark A.; Orkney, Andrew; Lamanna, Matthew C.; Zouhri, Samir; Becker, Justine; Emke, Amanda; Dal Sasso, Cristiano; Bindellini, Gabriele; Maganuco, Simone; Auditore, Marco; Ibrahim, Nizar (2022-03-31). "Subaqueous foraging among carnivorous dinosaurs". Nature. 603 (7903): 852–857. Bibcode:2022Natur.603..852F. doi:10.1038/s41586-022-04528-0. ISSN 0028-0836. PMID 35322229. S2CID 247630374.
- ^ Myhrvold, Nathan P.; Baumgart, Stephanie L.; Vidal, Daniel; Fish, Frank E.; Henderson, Donald M.; Saitta, Evan T.; Sereno, Paul C. (2024-03-06). "Diving dinosaurs? Caveats on the use of bone compactness and pFDA for inferring lifestyle". PLOS ONE. 19 (3): e0298957. doi:10.1371/journal.pone.0298957. ISSN 1932-6203. PMC 10917332. PMID 38446841.
- ^ Słowiak, J.; Brusatte, S. L.; Szczygielski, T. (2024). "Reassessment of the enigmatic Late Cretaceous theropod dinosaur, Bagaraatan ostromi". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad169.
- ^ Longrich, Nicholas R.; Saitta, Evan T. (2024-03-01). "Taxonomic Status of Nanotyrannus lancensis (Dinosauria: Tyrannosauroidea)—A Distinct Taxon of Small-Bodied Tyrannosaur". Fossil Studies. 2 (1): 1–65. doi:10.3390/fossils2010001. eISSN 2813-6284.
- ^ Smith, D. K.; Gillette, D. D. (2024). "Osteology of the derived therizinosaur Nothronychus with evidence for convergence in dinosaurian evolution". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad148.
- ^ Park, J.; Son, M.; Park, J.; Bang, S. Y.; Ha, J.; Moon, H.; Lee, Y.-N.; Lee, S.; Jablonski, P. G. (2024). "Escape behaviors in prey and the evolution of pennaceous plumage in dinosaurs". Scientific Reports. 14 (1). 549. Bibcode:2024NatSR..14..549P. doi:10.1038/s41598-023-50225-x. PMC 10811223. PMID 38272887.
- ^ Kiat, Yosef; O’Connor, Jingmai K. (2024). "Functional constraints on the number and shape of flight feathers". Proceedings of the National Academy of Sciences. 121 (8): e2306639121. doi:10.1073/pnas.2306639121. PMC 10895369. PMID 38346196. S2CID 267634048.
{{cite journal}}
: CS1 maint: PMC embargo expired (link) - ^ Wu, Q.; O'Connor, J. K.; Wang, S.; Zhou, Z. (2024). "Transformation of the pectoral girdle in pennaraptorans: critical steps in the formation of the modern avian shoulder joint". PeerJ. 12. e16960. doi:10.7717/peerj.16960. PMC 10909347. PMID 38436017.
- ^ Meade, L. E.; Pittman, M.; Balanoff, A.; Lautenschlager, S. (2024). "Cranial functional specialisation for strength precedes morphological evolution in Oviraptorosauria". Communications Biology. 7. 436. doi:10.1038/s42003-024-06137-1.
- ^ Funston, G. F.; Williamson, T. E.; Brusatte, S. L. (2024). "A caenagnathid tibia (Theropoda: Oviraptorosauria) from the upper Campanian Kirtland Formation of New Mexico". Cretaceous Research. 158. 105856. doi:10.1016/j.cretres.2024.105856. S2CID 267601272.
- ^ Funston, G. F. (2024). "Osteology of the two-fingered oviraptorid Oksoko avarsan (Theropoda: Oviraptorosauria)". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae011.
- ^ Gianechini, F. A.; Colli, L.; Makovicky, P. J. (2024). "Pelvic and hindlimb muscular reconstruction of the paravian theropod Buitreraptor gonzalezorum and its palaeobiological implications". Historical Biology: An International Journal of Paleobiology: 1–27. doi:10.1080/08912963.2023.2301674. S2CID 266994137.
- ^ Manafzadeh, Armita R.; Gatesy, Stephen M.; Bhullar, Bhart-Anjan S. (2024). "Articular surface interactions distinguish dinosaurian locomotor joint poses". Nature Communications. 15 (1). 854. Bibcode:2024NatCo..15..854M. doi:10.1038/s41467-024-44832-z. PMC 10873393. PMID 38365765.
- ^ Yu, C.; Watanabe, A.; Qin, Z.; King, J. L.; Witmer, L. M.; Ma, Q.; Xu, X. (2024). "Avialan-like brain morphology in Sinovenator (Troodontidae, Theropoda)". Communications Biology. 7 (1). 168. doi:10.1038/s42003-024-05832-3. PMC 10858883. PMID 38341492.
- ^ Regalado Fernández, O. R. (2024). "Variability of vertebral laminae in eight specimens of Plateosaurus (Saurischia, Sauropodomorpha)". Revue de Paléobiologie, Genève. 43 (1): 85–100.
- ^ Wang, Y.-M.; Zhao, Q.; You, H.-L. (2024). "Reassessment of 'Gyposaurus' sinensis Young, 1941 (Dinosauria: Sauropodomorpha) from the Early Jurassic Lufeng Basin, Yunnan Province, China". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae032.
- ^ Vidal, D. (2024). "Virtual sauropods: A revolution in the study of long-necked dinosaurs". Metode Science Studies Journal. 14: 77–83. doi:10.7203/metode.14.24689.
- ^ Agustí, J.; Alcalá, L.; Santos-Cubedo, A. (2024). "Did large foraging migrations favor the enormous body size of giant sauropods? The case of Turiasaurus". Spanish Journal of Palaeontology. doi:10.7203/sjp.28176.
- ^ King, J. L.; McHugh, J. B.; Wedel, M. J.; Curtice, B. (2024). "A previously unreported form of dorsal rib pneumaticity in Apatosaurus (Dinosauria: Sauropoda) and implications for pneumatic variation among diplodocid dorsal ribs". Journal of Vertebrate Paleontology. e2316665. doi:10.1080/02724634.2024.2316665.
- ^ Windholz, G. J.; Porfiri, J. D.; Dos Santos, D.; Bellardini, F.; Wedel, M. J. (2024). "A well-preserved vertebra provides new insights into rebbachisaurid sauropod caudal anatomical and pneumatic features". Acta Palaeontologica Polonica. 69 (1): 39–47. doi:10.4202/app.01104.2023.
- ^ Beeston, S. L.; Poropat, S. F.; Mannion, P. D.; Pentland, A. H.; Enchelmaier, M. J.; Sloan, T.; Elliott, D. A. (2024). "Reappraisal of sauropod dinosaur diversity in the Upper Cretaceous Winton Formation of Queensland, Australia, through 3D digitisation and description of new specimens". PeerJ. 12. e17180. doi:10.7717/peerj.17180.
- ^ Filippi, L. S.; Bellardini, F.; Carballido, J. L.; Pérez-Moreno, A.; Garrido, A. C. (2024). "Sauropod diversity (Dinosauria: Sauropoda) of Cerro Overo – La Invernada (Bajo de la Carpa Formation, Santonian), northeastern Neuquén Basin, and paleoecological implications for Upper Cretaceous sauropod faunas". Publicación Electrónica de la Asociación Paleontológica Argentina. 24 (1): 71–96. doi:10.5710/PEAPA.24.02.2024.484.
- ^ Calvo, J.O (2024). "What is the most giant sauropod from Argentina? Diversity of large titanosaurs from Patagonia". Metode Science Studies Journal. 14 (14): 65–75. doi:10.7203/metode.14.24556.
- ^ Wills, S.; Underwood, C. J.; Barrett, P. M. (2024). "A hidden diversity of ornithischian dinosaurs: U.K. Middle Jurassic microvertebrate faunas shed light on a poorly represented period". Journal of Vertebrate Paleontology. e2323646. doi:10.1080/02724634.2024.2323646.
- ^ Satchell, K.G. (2024). "A re-evaluation of Scelidosaurus remains from Ireland and the importance of apomorphy-based identifications". Proceedings of the Geologists' Association. doi:10.1016/j.pgeola.2024.03.002.
- ^ Li, N.; Li, D.; Peng, G.; You, H. (2024). "The first stegosaurian dinosaur from Gansu Province, China". Cretaceous Research. 158. 105852. Bibcode:2024CrRes.15805852L. doi:10.1016/j.cretres.2024.105852. S2CID 267286799.
- ^ Cross, E.C; Arbour, V.M (2024). "An ankylosaur femur from the mid-Cretaceous of the Peace Region of northeastern British Columbia". Canadian Journal of Earth Sciences. doi:10.1139/cjes-2023-0118. S2CID 267961368.
- ^ Santos-Cubedo, A. (2024). "The dinosaurs of the Maestrat Basin: Evolution of hadrosauriforms in the eastern Iberian Peninsula". Metode Science Studies Journal. 14: 57–63. doi:10.7203/metode.14.24534.
- ^ Escanero-Aguilar, D.; Torcida Fernández-Baldor, F.; Pereda-Suberbiola, X.; Huerta, P. (2024). "Skull material of an Early Cretaceous hadrosauriform dinosaur (Ornithopoda) from Salas de los Infantes (Burgos, Spain)". Journal of Iberian Geology. doi:10.1007/s41513-023-00227-5.
- ^ Nikolov, Vladimir; Dochev, Docho; Brusatte, Stephen L. (2024-01-01). "The ontogenetic status of a small hadrosauroid dinosaur from the uppermost Cretaceous of Bulgaria, and implications for the paleobiogeography and assembly of European island faunas". Cretaceous Research. 157 (In press). 105819. Bibcode:2024CrRes.15705819N. doi:10.1016/j.cretres.2023.105819. S2CID 266738171.
- ^ Mark J. Powers; Matthew M. Rhodes; Aaron D. Dyer; Steven E. Mendonca; Ryan Wilkinson; Michael Naylor Hudgins; Matthew J. Pruden; Philip J. Currie; Gregory F. Funston (2024). "The first hadrosaurid trackway from the Horseshoe Canyon Formation (Campanian/Maastrichtian) of Alberta, Canada". Ichnos: 1–28. doi:10.1080/10420940.2024.2307069. S2CID 267489605.
- ^ Podlesnov, A. V.; Averianov, A. O.; Burukhin, A. A.; Feofanova, O. A.; Vladimirova, O. N. (2024). "New Data on Skull Morphology of Psittacosaurus sibiricus (Dinosauria: Ceratopsia) Using Micro-Computed Tomography". Paleontological Journal. 57 (10): 1128–1187. doi:10.1134/S0031030123100040. S2CID 267537898.
- ^ Sakagami, R.; Kawabe, S.; Hattori, S.; Zheng, W.; Jin, X. (2024). "Endocranial anatomy of the ceratopsian dinosaur Psittacosaurus lujiatunensis and its bearing on sensory and locomotor abilities" (PDF). Memoir of the Fukui Prefectural Dinosaur Museum. 22: 1–12.
- ^ Tennyson, A. J. D.; Salvador, R. B.; Tomotani, B. M.; Marx, F. G. (2024). "A New Diving Pliocene Ardenna Shearwater (Aves: Procellariidae) from New Zealand". Taxonomy. 4 (2): 237–249. doi:10.3390/taxonomy4020012.
- ^ a b c Mayr, G.; Kitchener, A.C. (2024). "New fossils of Eocypselus and Primapus from the British London Clay reveal a high taxonomic and ecological diversity of early Eocene swift-like apodiform birds". Ibis (advance online publication). doi:10.1111/ibi.13323.
- ^ Wang, Xiaoli; Clark, Alexander D.; O'Connor, Jingmai K.; Zhang, Xiangyu; Wang, Xing; Zheng, Xiaoting; Zhou, Zhonghe (2024-02-27). "First Edentulous Enantiornithine (Aves: Ornithothoraces) from the Lower Cretaceous Jehol Avifauna". Cretaceous Research. 159 (in press): 105867. doi:10.1016/j.cretres.2024.105867. ISSN 0195-6671. S2CID 268103010.
- ^ a b c Mayr, G.; Kitchener, A. C. (2024). "The Picocoraciades (hoopoes, rollers, woodpeckers, and allies) from the early Eocene London Clay of Walton-on-the-Naze". PalZ. doi:10.1007/s12542-024-00687-9.
- ^ De Mendoza, Ricardo Santiago; Degrange, Federico Javier; Tambussi, Claudia Patricia (2024). "An assessment of the anseriform affinities of "Telmabates" howardae". Journal of South American Earth Sciences. 135. 104786. Bibcode:2024JSAES.13504786D. doi:10.1016/j.jsames.2024.104786. S2CID 267159455.
- ^ Balanoff, Amy; Ferrer, Elizabeth; Saleh, Lemise; Gignac, Paul M.; Gold, M. Eugenia L.; Marugán-Lobón, Jesús; Norell, Mark; Ouellette, David; Salerno, Michael; Watanabe, Akinobu; Wei, Shouyi; Bever, Gabriel; Vaska, Paul (2024). "Quantitative functional imaging of the pigeon brain: implications for the evolution of avian powered flight". Proceedings of the Royal Society B: Biological Sciences. 291 (2015). doi:10.1098/rspb.2023.2172. PMC 10827418. PMID 38290541.
- ^ Zhou, Zhonghe; Wang, Min (2024). "Cretaceous fossil birds from China". Geological Society, London, Special Publications. 544 (1). doi:10.1144/SP544-2023-129. S2CID 267184802.
- ^ Zhou, Y.; Pan, Y.; Wang, M.; Wang, X.; Zheng, X.; Zhou, Z. (2024). "Fossil evidence sheds light on sexual selection during the early evolution of birds". Proceedings of the National Academy of Sciences of the United States of America. 121 (3). e2309825120. Bibcode:2024PNAS..12109825Z. doi:10.1073/pnas.2309825120. PMC 10801838. PMID 38190528. S2CID 266871669.
{{cite journal}}
: CS1 maint: PMC embargo expired (link) - ^ Liu, B.-Y.; Stidham, T. A.; Wang, X.-P.; Li, Z.-H.; Zhou, Z.-H. (2024). "Morphometric analysis of the cervical vertebral series in extant birds with implications for Mesozoic avialan feeding ecology". Vertebrata PalAsiatica: 1. doi:10.19615/j.cnki.2096-9899.240305.
- ^ Kundrát, M.; Horváth, D.; Wang, Z.; Wang, X. (2024). "Developmental distribution of osteocyte lacunae in the limb bone cortex of Musivavis amabilis with a review of bone microstructure adaptations in Enantiornithes". Cretaceous Research. 158. 105839. Bibcode:2024CrRes.15805839K. doi:10.1016/j.cretres.2024.105839. S2CID 267250890.
- ^ Brocklehurst, N.; Field, D. J. (2024). "Tip dating and Bayes factors provide insight into the divergences of crown bird clades across the end-Cretaceous mass extinction". Proceedings of the Royal Society B: Biological Sciences. 291 (2016). 20232618. doi:10.1098/rspb.2023.2618. PMC 10865003. PMID 38351798.
- ^ Wu, Qian; Pan, Yan-Hong; Li, Zhi-Heng; Zhou, Zhong-He; Bailleul, Alida M. (2024). "First histochemical examination of a Miocene ostrich eggshell with the oldest mineral-bound peptides". Vertebrata Palasiatica. doi:10.19615/j.cnki.2096-9899.240329.
- ^ Schroeter, E (2024). "Characterization of Diagenetiforms in an Expanded Proteome of the Extinct Moa (Dinornithidae): Identifying Biological, Diagenetic, Experimental Artifact, and Mislabeled Modifications in Degraded Tissues". Minerals. 14 (2): 137. Bibcode:2024Mine...14..137S. doi:10.3390/min14020137.
- ^ Brownstein, C. D. (2024). "A juvenile bird with possible crown-group affinities from a dinosaur-rich Cretaceous ecosystem in North America". BMC Ecology and Evolution. 24 (1). 20. Bibcode:2024BMCEE..24...20B. doi:10.1186/s12862-024-02210-9. PMC 10858573. PMID 38336630.
- ^ Wu, S.; Rheindt, F. E.; Zhang, J.; Wang, J.; Zhang, L.; Quan, C.; Li, Z.; Wang, M.; Wu, F.; Qu, Y.; Edwards, S. V.; Zhou, Z.; Liu, L. (2024). "Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous". Proceedings of the National Academy of Sciences of the United States of America. 121 (8). e2319696121. doi:10.1073/pnas.2319696121. PMC 10895254. PMID 38346181.
- ^ Zelenkov, N. V. (2024). "Unexpected Find of a Buttonquail (Aves: Charadriiformes: Turnicidae) in the Lower Pleistocene of Crimea". Doklady Biological Sciences. 513 (1 supplement): S1–S4. doi:10.1134/S0012496623600148. PMID 38190042. S2CID 266843308.
- ^ Cerda, I. A.; Tambussi, C. P.; Degrange, F. J. (2014). "Unexpected microanatomical variation among Eocene Antarctic stem penguins (Aves: Sphenisciformes)". Historical Biology: An International Journal of Paleobiology. 27 (5): 549–557. doi:10.1080/08912963.2014.896907. hdl:11336/41915.
- ^ Ksepka, D. T.; Werning, S.; Sclafani, M.; Boles, Z. M. (2015). "Bone histology in extant and fossil penguins (Aves: Sphenisciformes)". Journal of Anatomy. 227 (5): 611–630. doi:10.1111/joa.12367. PMC 4609197. PMID 26360700.
- ^ Canoville, A.; Robin, J.-P.; de Buffrénil, V. (2024). "Ontogenetic development of limb bone microstructure in the king penguin, Aptenodytes patagonicus (Miller, 1778), with considerations for palaeoecological inferences in Sphenisciformes". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae002.
- ^ McComish, Bennet J; Charleston, Michael A; Parks, Matthew; Baroni, Carlo; Salvatore, Maria Cristina; Li, Ruiqiang; Zhang, Guojie; Millar, Craig D; Holland, Barbara R; Lambert, David M (2024). "Ancient and Modern Genomes Reveal Microsatellites Maintain a Dynamic Equilibrium Through Deep Time". Genome Biology and Evolution. 16 (3). doi:10.1093/gbe/evae017. PMC 10972684.
- ^ Leoni, R; Alves-Silva, L; da Costa, J; de Araujo-Junior, H; Dantas, M (2024). "First fossil record of a Turkey vulture (Cathartes aura) in northeast of Brazil: Taxonomy, ichnology, and taphonomic history". South American Earth Sciences. 136. Bibcode:2024JSAES.13604831L. doi:10.1016/j.jsames.2024.104831. S2CID 267602385.
- ^ Acosta Hospitaleche, C.; Jones, W. (2024). "Were terror birds the apex continental predators of Antarctica? New findings in the early Eocene of Seymour Island". Palaeontologia Electronica. 27 (1). 27.1.a13. doi:10.26879/1340.
- ^ Acosta Hospitaleche, C.; Jones, W. (2024). "Insights on the oldest terror bird (Aves, Phorusrhacidae) from the Eocene of Argentina". Historical Biology: An International Journal of Paleobiology: 1–9. doi:10.1080/08912963.2024.2304592. S2CID 267475903.
- ^ Zelenkov, N. V. (2024). "Cuban Macaw Ara tricolor in the Upper Pleistocene of Western Cuba". Doklady Biological Sciences. doi:10.1134/S0012496624700947.
- ^ Martin-Silverstone, Elizabeth; Unwin, David M.; Cuff, Andrew R.; Brown, Emily E.; Allington-Jones, Lu; Barrett, Paul M. (2024-02-05). "A new pterosaur from the Middle Jurassic of Skye, Scotland and the early diversification of flying reptiles". Journal of Vertebrate Paleontology. doi:10.1080/02724634.2023.2298741. ISSN 0272-4634.
- ^ Buchmann, R.; Rodrigues, T. (2024). "Arthrological reconstructions of the pterosaur neck and their implications for the cervical position at rest". PeerJ. 12. e16884. doi:10.7717/peerj.16884. PMC 10893864. PMID 38406270.
- ^ Yun, Chan-Gyu (2024). "Geometric morphometric approach to establish phylogenetic affinities of enigmatic pterosaur specimens from the Lower Cretaceous of South Korea". Acta Palaeontologica Romaniae. 20 (1): 77–86. doi:10.35463/j.apr.2024.01.06.
- ^ So, K. S.; Kim, P. H.; Won, C. G. (2024). "First Articulated Rhamphorhynchoid Pterosaur from the Early Cretaceous of the Democratic People's Republic of Korea". Paleontological Journal. 57 (1 supplement): S90–S94. doi:10.1134/S003103012360018X.
- ^ Ciaffi, A.; Bellardini, F. (2024). "Pterosaur teeth from the Southern Neuquén Basin (Patagonia, Argentina): New insights on the reconstruction of ornithocheiriform dental anatomy". Acta Palaeontologica Polonica. 69 (1): 73–86. doi:10.4202/app.01122.2023.
- ^ Agnolín, F. L.; Novas, F. E.; Ezcurra, M. D.; Miner, S.; Müller, R. T. (2024). "Comments on the pelvic girdle anatomy of Lagerpeton chanarensis Romer, 1971 (Archosauria) and its implications on the posture and gait of early pterosauromorphs". The Anatomical Record. doi:10.1002/ar.25389. PMID 38263641. S2CID 267197820.
- ^ Shipley, A. E.; Elsler, A.; Singh, S. A.; Stubbs, T. L.; Benton, M. J. (2024). "Locomotion and the early Mesozoic success of Archosauromorpha". Royal Society Open Science. 11 (2). 231495. Bibcode:2024RSOS...1131495S. doi:10.1098/rsos.231495. PMC 10846959. PMID 38328568.
- ^ Wilson, L. N.; Gardner, J. D.; Wilson, J. P.; Farnsworth, A.; Perry, Z. R.; Druckenmiller, P. S.; Erickson, G. M.; Organ, C. L. (2024). "Global latitudinal gradients and the evolution of body size in dinosaurs and mammals". Nature Communications. 15. 2864. doi:10.1038/s41467-024-46843-2. PMC 10997647. PMID 38580657.
- ^ Knoll, F.; Ishikawa, A.; Kawabe, S. (2024). "A proxy for brain-to-endocranial cavity index in non-neornithean dinosaurs and other extinct archosaurs". Journal of Comparative Neurology. 532 (3). e25597. doi:10.1002/cne.25597. PMID 38588163.