Jump to content

Human-powered aircraft: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Line 76: Line 76:
The eventual aim is to achieve [[Olympic Games|Olympic]] recognition as a sport.
The eventual aim is to achieve [[Olympic Games|Olympic]] recognition as a sport.


{As of|2012}}, there are at least four attempts underway to claim the £100,000 Kremer Sport prize.
{{As of|2012}}, there are at least four attempts underway to claim the £100,000 Kremer Sport prize.
* A team from [[Virginia Polytechnic Institute]] has been designing an aircraft as part of their AE4065/6 class; attempts to assemble a wing structure had resulted in critical failure.{{outdated}}
* A team from [[Virginia Polytechnic Institute]] has been designing an aircraft as part of their AE4065/6 class; attempts to assemble a wing structure had resulted in critical failure.{{outdated}}
* A team from the [[Pennsylvania State University]] is designing and constructing the [[PSU Zephyrus]] as part of their [[AERSP 404H]] class.{{outdated}}
* A team from the [[Pennsylvania State University]] is designing and constructing the [[PSU Zephyrus]] as part of their [[AERSP 404H]] class.{{outdated}}

Revision as of 03:46, 12 July 2013

MIT Daedalus human powered aircraft

A human-powered aircraft (HPA) is an aircraft belonging to the human-powered vehicles. It is powered by direct human energy and the force of gravity; the thrust provided by the human may be the only source; however, a hang glider that is partially powered by pilot power is a human-powered aircraft where the flight path can be enhanced more than if the hang glider had not been assisted by human power. Likewise, HPA experience assist from thermals or rising air currents. Pure HPA do not use hybrid flows of energy (solar energy, wound rubber band, fuel cell, etc.) for thrust. In nil wind, a flatland-long-gliding aircraft is a form of HPA where the thrust in the nil wind is provided by the running of the pilot; when the pilot loses touch with the ground, his or her thrust ceases to add energy to the flight system and a glide begins; the pilot may or may not add energy after the pilot stops touching the ground. Humans who tow up a manned kite form one type of human-powered aircraft.

Early attempts at human-powered flight were unsuccessful because of the difficulty of achieving the high power-to-weight ratio. Prototypes often used ornithopter principles which were not only too heavy to meet this requirement but aerodynamically unsatisfactory.

As of 2008, human-powered aircraft have been successfully flown over considerable distances. However, they are primarily constructed as engineering challenges rather than for any kind of recreational or utilitarian purpose.

The Royal Aeronautical Society Human Powered Flight Group

The Royal Aeronautical Society's 'Man Powered Aircraft Group' was formed in 1959 by the members of the Man Powered Group of the College of Aeronautics at Cranfield when they were invited to join the Society. Its title was changed from 'Man' to 'Human' in 1988 because of the many successful flights made by female pilots.

Under the auspices of the Society, in 1959 the industrialist Henry Kremer offered the first Kremer Prizes of £5,000 for the first human-powered aircraft to fly a figure-of-eight course round two markers half-a-mile apart.

First attempts

An early human-powered aircraft was the Gerhardt Cycleplane, developed by W. Frederick Gerhardt at McCook Field in Dayton, Ohio in 1923. The aircraft had seven wings stacked nearly 15 feet (4.6 m) high. The pilot pedaled a bicycle gear that turned the propeller. In early tests the aircraft was towed into the air by an automobile, and released. With Gerhardt as the pilot, the Cycleplane was able to maintain stable, level flight for short durations.[1] Its only human-powered takeoff was a short hop of 20 feet (6.1 m) with the craft rising 2 feet (0.61 m)*.[2]

Zaschka Human-Power Aircraft, Berlin 1934

In 1934, Engelbert Zaschka from Germany completed a large human-powered aircraft, the Zaschka Human-Power Aircraft. On 11 July 1934, the Zaschka-HPA flew about 20 meters on the Berlin Tempelhof Airport; the HPA took off without assisted takeoff.[3][4]

A craft called HV-1 Mufli (Muskelkraft-Flugzeug) built by Helmut Hässler and Franz Villinger (de) first flew on 30 August 1935: a distance of 235 metres at Halle an der Saale. 120 flights were made, the longest being 712 metres in 1937. However, it was launched using a tensioned cable and so was not strictly human-powered.[5]

In March 1937, a team of Enea Bossi (designer), Vittorio Bonomi (builder), and Emilio Casco (pilot) met a challenge by the Italian government for a flight of one kilometre using their Pedaliante. The aircraft apparently flew short distances fully under human power, but the distances were not significant enough to win the competition's prize. Furthermore, there has been much dispute as to whether it ever took off under the pedal-power of the pilot alone, in particular because there is no record of official observation of it having done so.[6] Some of the arguments for and against the validity of Bossi's claim to have done so are presented by Sherwin (1976).[7] At the time the fully human-powered flights were deemed to be a result of the pilot's significant strength and endurance; and ultimately not attainable by a typical human. As with the HV-1 Mufli, additional attempts were therefore made using a catapult system. By being catapulted to a height of 9 metres (30 ft), the aircraft met the distance requirement of 1-kilometre (0.62 mi) but was declined the prize due to the launch method.[8][9][10]

Human-powered aircraft display at the US National Air and Space Museum

First flights

The first officially authenticated take-off and landing of a man powered aircraft (one capable of powered take-offs, unlike a glider) was made on 9 November 1961 by Derek Piggott in Southampton University's Man Powered Aircraft (SUMPAC) at Lasham Airfield.[11] [12] The best flight out of 40 attempts was 650 metres.[13] The SUMPAC was substantially rebuilt by Imperial College with a new transmission system but was damaged beyond repair in November 1965.

The Hatfield Puffin first flew in 16 November 1961, one week after SUMPAC. The Hatfield Man Powered Aircraft Club was formed of employees of de Havilland Aircraft Company and had access to company support. Eventually its best distance was 908 metres. John Wimpenny landed in a state of physical exhaustion. His record stood for 10 years.

Puffin 2 was a new fuselage and wing around the transmission recovered from the original Puffin. It flew on 27 August 1965 and made several flights over a half-mile, including a climb to 5.2 metres. After Puffin 2 was damaged, it was handed over to Liverpool University who used it to build the Liverpuffin.

After this date several less successful aircraft flew, until 1972 when the Jupiter flew 1,070 metres and 1,239 metres in June 1972. In early 1977, a Japanese aircraft - Stork - completed three-quarters of the figure eight course before grounding a wingtip.

Kremer Prize successes by Gossamer Condor and Albatross

In 1973, Kremer increased his prize money tenfold to £50,000. At that time, the human-powered aircraft had flown only in straight (or nearly straight) line courses, and no-one had yet even attempted his more challenging figure-eight course, which required a fully controllable aircraft. He also opened the competition to all nationalities; previously it was restricted to British entries only.

On 23 August 1977, the Gossamer Condor 2 flew the first figure-eight, a distance of 2,172 metres winning the first Kremer prize. It was built by Dr Paul B. MacCready and piloted by amateur cyclist and hang-glider pilot Bryan Allen. Although slow, cruising at only 11 mph, it achieved that speed with only 0.35 hp.[14]

The second Kremer prize of £100,000 was won on June 12, 1979, again by Paul MacCready, when Bryan Allen flew MacCready's Gossamer Albatross from England to France: a straight distance of 35.82 km (22 miles 453 yards) in 2 hours, 49 minutes.

Kremer speed prize and later flights by MIT team

A week after the cross-Channel flight of Gossamer Albatross which used a propeller designed by the MIT team,[15] a student-led team at the Massachusetts Institute of Technology achieved first flight on their Chrysalis aircraft,[16] which demonstrated full controllability and was flown by 44 different pilots,[15] including female pilots who were the first to power a HPA.

On 1 May 1984, the third Kremer prize of £20,000 for speed went to the MIT design team for flying their Monarch-B[17] craft on a triangular 1.5 km course in under three minutes (for an average speed of 32 km/h): pilot Frank Scarabino. Further prizes of £5,000 are awarded to each subsequent entrant improving the speed by at least five percent.

Over the next four years, the MIT group continued to evolve their designs, with the Monarch and Monarch-B aircraft succeeded by three follow-on designs, the Light Eagle and two MIT Daedalus aircraft, the Daedalus-87 and Daedalus-88. The current distance record recognised by the FAI was achieved on 23 April 1988 from Iraklion on Crete to Santorini in the MIT Daedalus 88 piloted by Kanellos Kanellopoulos: a straight distance of 115.11 km (71.53 mi).[18]

Passenger aircraft

The first human-powered passenger flight occurred on 1 October 1984 when Holger Rochelt carried his sister Katrin in Musculair 1.

Current activity

Machines have been built and flown in Japan, Germany, Greece, Australia, New Zealand, South Africa, Austria, Canada, Singapore, the United States, and the United Kingdom, with their total number approaching a hundred.

With further funds from the late Henry Kremer, the Royal Aeronautical Society has announced four new prizes:[19]

  • £50,000 for the Kremer International Marathon Competition for a flight round a specified twenty six mile (marathon) distance course, in a time of under one hour;
  • £100,000 for the Kremer International Sporting Aircraft Competition for a sporting aeroplane able to operate in normal weather conditions, as encountered in the United Kingdom;
  • £1,000 for the Schools Competition;
  • £500 for The Robert Graham Competition for students for experimental research or engineering design.

The eventual aim is to achieve Olympic recognition as a sport.

As of 2012, there are at least four attempts underway to claim the £100,000 Kremer Sport prize.

  • A team from Virginia Polytechnic Institute has been designing an aircraft as part of their AE4065/6 class; attempts to assemble a wing structure had resulted in critical failure.
  • A team from the Pennsylvania State University is designing and constructing the PSU Zephyrus as part of their AERSP 404H class.
  • A team from the Aeronautics Department at Imperial College London is undertaking the premise of Human Powered Flight for one of their 3rd Year Group Design Projects, to investigate its feasibility in the sporting world.
  • A team of 10 mechanical engineering students from the University of Southampton is designing and constructing the SUHPA (pronounced "soo-pah").[20]

Airships

Inventors have built human-powered airships. By gaining lift through buoyancy instead of air flowing past an airfoil, much less effort is required to power the aircraft.[21][22][23]

Helicopters/rotorcraft

The University of Maryland sets an unofficial world altitude record of a human powered helicopter (HPH) of approximately 8 ft.

On 10 December 1989, the first human-powered helicopter, the California Polytechnic State University Da Vinci III, flew for 7.1 seconds and reached a height of 20 cm.

On 13 June 2013, a human-powered helicopter built by Aerovelo, an aeronautical engineering startup founded by Canadians Todd Reichert and Cameron Robertson, won the $250,000 prize with a flight fulfilling the requirements of the American Helicopter Society Igor I. Sikorsky Human Powered Helicopter Challenge established in 1980. The flight powered by Reichert in an indoor soccer stadium near Toronto lasted 64 seconds and reached a maximum altitude of 3.3 meters.[24]

The previous world record for human-powered helicopter was set by a craft named Yuri I, built by a team from the Nihon Aero Student Group (NASG). In 1994, it achieved a height of 20 cm for 19.46 seconds unassisted and unofficially reached 70 cm during a flight lasting 24 seconds. In 2012, this was unofficially beaten by engineering students at the University of Maryland with their Gamera II craft.[25]

Ornithopters

On August 2, 2010, Todd Reichert of the University of Toronto Institute for Aerospace Studies piloted a human-powered ornithopter named Snowbird. The 32 metres (105 ft 0 in) wingspan 42 kilograms (93 lb) aircraft was constructed from carbon fibre, balsa, and foam. The pilot sat in a small cockpit suspended below the wings and pumped a bar with his feet to operate a system of wires that flapped the wings up and down. Towed by a car until airborne, it then sustained flight for almost 20 seconds. It flew 145 meters with an average speed of 25.6 km/h (7.1 m/s)[26] Similar tow-launched flights were made in the past, but improved data collection verified that the ornithopter was capable of self-powered flight once aloft.[27][28][29]

See also

References

  1. ^ Cornelisse (2002) [page needed]
  2. ^ "World's First Aerial Bicycle Flies". Popular Science: 41. 1923. ISSN 0161-7370. {{cite journal}}: Unknown parameter |month= ignored (help)
  3. ^ Smithsonian National Air and Space Museum Washington: Zaschka Human-Power Aircraft (1934)
  4. ^ Lange, Bruno (1970). Das Buch der deutschen Luftfahrttechnik. Verlag Dieter Hoffmann, p. 361.
  5. ^ "Airplane Flown by Man Power is Peddled Like Bicycle" Popular Mechanics, December 1935 bottom pg. 855
  6. ^ Chris Roper B. Muscle Assisted Flights Before 1939. Human Powered Flying. Accessed 2008-08-14
  7. ^ Sherwin, Keith (1976). To Fly Like a Bird. Bailey Brothers & Swinfen. ISBN 561 00283 5. {{cite book}}: Check |isbn= value: length (help)
  8. ^ Pedaliante
  9. ^ Man-Powered Flight - Achievements to Date With a New Suggestion
  10. ^ "Transport: Icarus to Bossi". Time. 8 February 1937.
  11. ^ "The Guardian Celebrating 50 years of human-powered flight". 9 November 2011. Retrieved 9 November 2011.
  12. ^ 1962 video document on the subject, filmed by British Pathé
  13. ^ Human Powered Flying by Chris Roper - Accessed 2008-08-14
  14. ^ Flight International 1977 p1254
  15. ^ a b The Gossamers and Other Planes, Royal Aeronautical Society Human Powered Aircraft Group (accessed Nov. 13 2012)
  16. ^ Chrysalis Human-Powered Airplane: It Flew the First Time Out, Royal Aeronautical Society Human Powered Aircraft Group (accessed Nov. 13 2012)
  17. ^ Geoffrey A. Landis, Human Powered Aircraft - Monarch Crew (accessed Nov. 13 2012)
  18. ^ Gary Dorsey (1990), The Fullness of Wings: The Making Of A New Daedalus, ISBN 0-670-82444-5
  19. ^ Royal Aeronautical Society Site
  20. ^ SUHPA Official Website
  21. ^ Man-powered airship
  22. ^ Another human-powered airship
  23. ^ DIY human-powered balloon
  24. ^ Popular Mechanics http://www.popularmechanics.com/technology/aviation/diy-flying/finally-a-human-powered-helicopter-wins-the-250000-sikorsky-prize-15682369. {{cite web}}: Missing or empty |title= (help)
  25. ^ Human-powered helicopter breaks world record, New Scientist, June 20, 2012
  26. ^ Human-Powered Ornithoper Flight in Flapping Wings: The Ornithopter Zone Newsletter, Fall 2010.
  27. ^ Human-Powered Ornithopter Project
  28. ^ UTIAS Snowbird 1
  29. ^ UTIAS Snowbird 2
Bibliography
  • Cornelisse, Diana G. Splendid Vision, Unswerving Purpose: Developing Air Power for the United States Air Force During the First Century of Powered Flight. Wright-Patterson Air Force Base, Ohio: U.S. Air Force Publications, 2002. ISBN 0-16-067599-5.
  • "Man powered flight advances" FLIGHT International, 16 March 1985
  • Dr K Sherwin "Man-powered flying as a sport" FLIGHT International, 23 December 1971
  • "America's man powered winner" FLIGHT International, 29 October 1977