Talk:Titanium: Difference between revisions
→Semi-protected edit request on 19 June 2014: new section |
|||
Line 746: | Line 746: | ||
From your friendly hard working bot.—[[User:Cyberbot II|<span style="color:green;font-family:Neuropol">cyberbot II]] [[User talk:Cyberbot II|<sup style="color:green;font-family:arnprior">Notify]]<sub style="margin-left:-6.1ex;color:green;font-family:arnprior">Online</sub> 13:22, 3 April 2014 (UTC) |
From your friendly hard working bot.—[[User:Cyberbot II|<span style="color:green;font-family:Neuropol">cyberbot II]] [[User talk:Cyberbot II|<sup style="color:green;font-family:arnprior">Notify]]<sub style="margin-left:-6.1ex;color:green;font-family:arnprior">Online</sub> 13:22, 3 April 2014 (UTC) |
||
== Semi-protected edit request on 19 June 2014 == |
|||
{{edit semi-protected|Titanium|answered=no}} |
|||
<!-- Begin request --> |
|||
The statement that Ti is "chemically and physically" similar to Zr is a huge overstatement and quite misleading, especially given that another element in the same column, Hf, is indeed VERY similar to Zr. |
|||
Physically Ti is much lighter, and I believe considerably less soft than Zr. Even the "physical" properties that should relate to the number of electrons (thus "should" be similar), such as the ability to alloy with other metals, differ due to different atomic sizes (e.g. bcc Ti is fully miscible with Ta, bcc Zr is immiscible even at 1500C). |
|||
As to the chemical properties, other than the same preferred valence, the properties differ drastically. Ti can show different valence, Zr tends to be 4-valent. For example, there are plenty of suboxides of Ti other than TiO2 (Ti2O, TiO and lots of Magnelli phases e.g. Ti2O3, Ti3O5 etc), whereas Zr has only ZrO2 (not counting Zr3O which is chemically an ordered solution of interstitial O in metallic Ti rather than a true oxide). |
|||
Even for compounds with the same composition such as TiO2 vs. ZrO2, the crystal structures are drastically different -- at normal pressures both can be found in 3 different crystal structures NONE of which coincide: TiO2 has rutile, anatase and brookite structures and ZrO2 has cubic fluorite and two distorted (tetragonal and monoclinic) fluorite-based structures. |
|||
Suggest softening/clarifying the statement in the introduction and adding further clarification (along the details above) to the corresponding statements in the chemical properties section. |
|||
<!-- End request --> |
|||
[[Special:Contributions/12.104.156.25|12.104.156.25]] ([[User talk:12.104.156.25|talk]]) 17:53, 19 June 2014 (UTC) |
Revision as of 17:53, 19 June 2014
Titanium is a featured article; it (or a previous version of it) has been identified as one of the best articles produced by the Wikipedia community. Even so, if you can update or improve it, please do so. | ||||||||||||||||
Titanium is part of the Group 4 elements series, a good topic. This is identified as among the best series of articles produced by the Wikipedia community. If you can update or improve it, please do so. | ||||||||||||||||
This article appeared on Wikipedia's Main Page as Today's featured article on April 16, 2004. | ||||||||||||||||
| ||||||||||||||||
Current status: Featured article |
Spoken Wikipedia | ||||
|
Elements FA‑class Top‑importance | ||||||||||
|
Article changed over to new Wikipedia:WikiProject Elements format by maveric149. Elementbox converted 14:25, 2 July 2005 by Femto (previous revision was that of 20:31, 21 June 2005).
Information Sources
Some of the text in this entry was rewritten from Los Alamos National Laboratory - Titanium. Additional text was taken directly from USGS Titanium Statistics and Information, from the Elements database 20001107 (via dict.org), Webster's Revised Unabridged Dictionary (1913) (via dict.org) and WordNet (r) 1.7 (via dict.org). Data for the table were obtained from the sources listed on the subject page and Wikipedia:WikiProject Elements but were reformatted and converted into SI units.
Suggestions for changes
Please change the "Aerospace and marine" section, especially the plane's content of Titanium. For example: Boeing 787 total weight is less than amount of Titanium listed in this article (100 metric tons vs 145). —Preceding unsigned comment added by 76.88.207.197 (talk) 16:50, 4 February 2009 (UTC)
The very last reference source on this entry is called the Book of Titanium and is shown to be written by Ehsan "Racist" Ghandhari. I've never heard of someone with the nickname "Racist." I see this article has been stolen and used on tutorgig.com with the same bizarre reference. These are the only two sites on the internet that use the Ehsan "Racist" Ghandhari name. Other sources refer to him as just Ehsan Ghandhari. I think the page was vandalized.
"It is paramagnetic (weakly attracted to magnets)" Further near the bottom it is then stated that it is "not ferromagnetic". Is that a contradiction? Brickc1 (talk) 18:44, 16 June 2008 (UTC)
"Titanium metal is not found unbound to other elements in nature"
- Should this not read "..is not found unbound from other elements..." ?
"The relatively high melting point of this element makes it useful as a refractory metal."
- Is it a refractory metal or not? It is not listed as being one on the page refractory metal - should it be, or is this page incorrect? or is there an ambiguity in the term refractory metal?
I too think the reference as a refractory metal is misleading. A more accurate statement is that "it retains it strength better than most metals at elevated temperatures, making it useful for its most extensive application: jet engine components and aerospace heat shields." Watiguy 16:32, 21 December 2006 (UTC)
titanium is extensively used in dental implants which are made possible by its very existence
"The metal, which burns when heated in air, is also the only element that can burn in pure nitrogen gas." This can't be right. The very definition of burning (according to Combustion) is that something reacts with oxygen. arj 10:48, 16 Apr 2004 (UTC)
- Oxygen is just the most common. --mav 06:46, 25 Jan 2005 (UTC)
Umm...a different objection, I think magnesium also burns in a nitrogen atmosphere
- Hm. You are right. Fixed. The trouble is that this factoid is repeated in two of the sources listed as references on this page. --mav
Is titanium a refractory metal? the refractory metals article lists five, all of which seem to be much harder and resistant to heat than titanium. The article says that titanium is 40% as dense as steel and 45% lighter than steel (i.e. 55% as dense).
I removed the dubious assertion that Titanium was used in the shells of U.S. Airforce(sic) stealth bombers used in World War II.
- Hey, I missed that! Not only is it unlikely to be used in projectiles, but there sure weren't any stealth bombers in WWII, either. I guess this was an example of "stealth vandalism." =Axlq 16:16, 6 October 2006 (UTC)
The Other uses section is unfocused. Some points could be moved into the above Applications section or the the two sections could be combined and split up into several smaller sections based on topic, i.e. Military Applications, Recreation Applications and so on.
PZP DEC. 14: I WORK IN THIS INDUSTRY. TITANIUM IS NOT CONSIDERED A "REFRACTORY" METAL, BUT BECAUSE IT TENDS TO RETAIN HEAT (POOR THERMAL CONDUCTIVITY), THIS PROPERTY IS EXPLOITED FOR ITS POTENTIAL: HEAT SHIELDS, HELICOPTER EXHAUSTS.
IT DOES BURN IN CARBON DIOXIDE, NITROGEN AND WATER. OXIDATION IS COMBUSTION, BUT NOT ALL COMBUSTION IS OXIDATION.
IT IS ENTIRELY POSSIBLE TO USE TITANIUM FOR PROJECTILE SHELLS. TO MY PERSONAL KNOWLEDGE IT HAS BEEN DONE EXPERIMENTALLY, ALTHOUGH I CANNOT VOUCH FOR PRODUCTION. THE LIMITING FACTOR IS EXPENSE ONLY.
FCC-Cambridge extraction method
The FCC Cambridge method also is applicable to other hard to extract transitional metals, such as platinum. I think that this method deserves its own article.Raivein 03:09, Mar 20, 2005 (UTC)
I think this reference should be downplayed or removed altogether. Right now there are several experimental new processes, of which the Cambridge process is only one. The total production of these processes is measured in grams. The project cited has come to an end as far as I know, and the process developers have moved onto other higher value metals such as Rhenium. At this time the most promising new process is the Armstrong process, which is moving into low scale production. Watiguy 16:55, 21 December 2006 (UTC)
Comparison to Steel
One of the intro sentence reads "[Titanium] is as strong as steel but less than half its weight"
This is not true. I have changed the sentence accordingly.
Still very unsatisfactory and inaccurate
This edit request has been answered. Set the |answered= or |ans= parameter to no to reactivate your request. |
At present the comparison to steel reads "The two most useful properties of the metal are corrosion resistance and .[5] In its unalloyed condition, titanium is as strong as some steels, but 45% lighter.[6] "
"weight" and "lightness" are not bulk properties of a material, but are characteristics of a particular sample of a material. When discussing the 'lightness' of a material, the concept of density should be used, and this comparison should therefore be made in terms of the ratio: strength/density. The specific density of steel is ~7.8, while that of Ti is 4.5. The tensile strength of steels varies greatly, over a range as large as 10:1 or possibly more. A yield-point tensile strength of 5000Gpa is not impossible, while that for Ti is given as 940GPa (http://en.wikipedia.org/wiki/Ultimate_tensile_strength), so the strength/density ratio for steel can be as large as 5000/7.8 = 641GPam^3/kg, while that of Ti is only 940/4.5 = 208, less than one third of that possible with alloy steel. I propose changing the text to read: "...the highest strength-to-density ratio of any metallic element." The 'Physical properties' section shopuld also be edited to replace references the concept of lightness to that of density. I would do this myself, but it does not seem to be possible, despite the invitation given above for readers to improve the item. ...AJS Done Dmelc9 (talk) 17:31, 31 January 2014 (UTC)
Contradiction?
"One of titanium's most notable characteristics is that it is as strong as steel but is only 60% its weight." " Titanium is as strong as steel, but 43% lighter;"
Am I missing something here?
Compromise?
Maybe change the 60% to 57% based on the two specific gravs 7.83 and 4.5 ???
Featured article review of January 30, 2006
- This review resulted in the passing of a new version of the article.
Here's the changes and here's the promoted version. Many changes, appear good overall. I don't like the list of "Other uses" and the "history" section seems rather brief. I recommend passing this review. Tuf-Kat 05:59, 30 December 2005 (UTC)
- Comment: Despite a large number of edits, the article has been remarkably stable for about a year. It doesn't look that way when you look at all the edits at once because the software gets confused and turns everything red, but if you break it down, you get [1],[2], and [3], none of which looks too drastic. I don't know enough about chemistry to gauge its accuracy, but assuming people that do have read it (and the large edit-count suggests that they have), I would expect the article to be pretty good. Dave (talk)
- Support pass As a WP1.0 chemist, I thought I should give this a review. The new version looks to be factually acccurate and well-balanced, and a good improvement over the original FA IMHO. Walkerma 18:47, 10 January 2006 (UTC)
titanium
titanium is made by luster, hardness, ductiliti, color other, and by 10 more stuff you need to know.
featured ?
The featured star at the article got lost somehow! Or was it removed my purpose?Stone 10:29, 14 February 2006 (UTC)
Then how do you put it back there? The problem still hasn't been fixed! --116.14.27.179 (talk) 02:56, 5 June 2009 (UTC)
Contradiction, misunderstanding (on my part) or unclear text
- Titanium is well known for its excellent corrosion resistance (almost as resistant as platinum),
and further down:
- This metal forms a passive but protective oxide coating (leading to corrosion-resistance)
So titanium itself seems to be quite reactive. It is titanium OXIDE which resists corrosion? Rather than saying titanium has excellent corrosion resistance, shouldn't the article be saying that titianium has poor corrosion resistance (but maybe explain that in practise the oxide coating prevents further corrosion from occuring)?
"Paints made with titanium dioxide are excellent reflectors of infrared radiation and are therefore used extensively by astronomers and in exterior paints." What? TKE 03:06, 16 March 2006 (UTC)
- I guess the exterior paint application is to reflect heat from the sun, thereby keeping the house cool. Not sure about the astronomy... maybe it protects satellites and other space vehicles from the sun? Mtford 20:13, 18 April 2006 (UTC)
- Not only that, but ironically enough titanium's ability to corrode, but only just a little bit, is actually what makes it extremely useful in engineering medical applications of the metal. The titanium oxide layer is what stimulates the bone growth enabling successful implantation of the material into human bones with almost no rejection. Anodizing the titanium oxide layer has been found to effect how well implants stick... so, this layer of corrosion is far from insignificant, and the way this stuff corrodes, including thickness of the layer, is very important in medicine. 149.169.207.142 19:34, 9 October 2007 (UTC)
JdH, ik zie dat je een link naar Anton Eduard van Arkel hebt toegevoegd aan de 'see also' list van titanium. Nu wil ik niet oneerbiedig klinken t.o.v. Anton Eduard van Arkel, maar .. waarom moet deze link in de See Also van Titanium? Gaat dit betekenen dat we (belangrijke) chemici die wel eens met titanium hebben gewerkt allemaal in de 'see also' gaan aantreffen (niet dat ik mezelf belangrijk genoeg acht, maar moet ik dan ook een link naar mezelf gaan toevoegen)? Ik bedoel, dat als AEvA iets écht belangrijks met titaan heeft gedaan, vind ik dat hij meer credits verdient dan in een see also list terecht te komen.
Zou je deze move kunnen uitleggen (ik denk dat de juiste plek de talk-page van titanium is)? Alvast bedankt, --Dirk Beetstra 15:57, 4 May 2006 (UTC).
- see H.A.M. Snelders, Arkel, Anton Eduard van (1893-1976), in Biografisch Woordenboek van Nederland. "Van belang zijn zijn voorbereidingsmethoden voor zeer zuiver wolfraam, titaan en zirkoon door dissociatie van de damp van hun halogeniden aan een gloeiende kerndraad (1923 e.v. met J.H. de Boer en J.D. Fast). Met deze 'methode-Van Arkel' was het mogelijk de eigenschappen van deze metalen zeer nauwkeurig te bepalen, hetgeen van groot belang was voor hun technische bereiding en toepassing. " JdH 16:05, 4 May 2006 (UTC)
- OK, dat rechtvaardigt een paragraaf in de 'History'-sectie. Bedankt voor de info! --Dirk Beetstra 16:34, 4 May 2006 (UTC)
- There is actually already a reference to the van Arkel deBoer process (sp) in the main artikel. I wasn't sure whether or not that is the same as the Crystal bar process or Iodide process; if it is then you may want to take the opportunity to clean this up. Thanks. JdH 16:43, 4 May 2006 (UTC)
Conductivity of titanium
What is the conductivity of titanium? --User:Angie Y.
- That depends whether you're asking about heat or electricity. In either case, the answer can be found here, indexed by alloy. For the pure metal, the values are 17 W/m-K and 5.54 e-5 ohm-cm, respectively. --Joel 17:03, 22 May 2006 (UTC)
On a similar note, the units measuring electrical resistivity are different here than in all the other metal pages I've looked up. This one apparently uses micro ohm-meters whereas the rest use nano ohm-meters. Someone might want to fix that (I would if I was sure about what I was doing; I'm not even sure I'm editing *this* page correctly) =p
- An appropriate prefix was chosen according to the number of significant digits (420 is ambiguous, 0.420 is not). Femto 18:04, 2 September 2006 (UTC)
Titanium where?
Where in Canada is titanium found? 65.94.159.67 22:59, 16 May 2006
- Shubenacadie River in Nova Scotia. JdH 13:03, 17 May 2006 (UTC)
- There are titanium-rich rocks at many locations in Quebec, in old precambrian rocks north of the Saint Lawrence River. For instance, the Tio open pit mine [4], which is located near Havre-Saint-Pierre. Search for the mineral ilmenite. In fact, the Tio mine is the largest solid deposit of ilmenite in the world. The ore is then transformed in Sorel-Tracy. Hugo Dufort 05:29, 23 November 2006 (UTC)
Ductility & forcing the cubic phase-want to add a section?
I recently discovered that many Ti-based alloys are doctored to favor the cubic phase over the hexagonal one, because hexagonal crystals don't allow as many slip systems for dislocations to move in, making them more brittle. This strikes me as similar to austenitic stainless steel, and someone who's interested in the subject could improve the article greatly by doing a little more research on which alloys, what's added for this purpose (I think it's Va, but I'm not sure), etc.--Joel 17:11, 22 May 2006 (UTC)
Backpackers
The article states:
Many backpackers use titanium equipment, including cookware, eating utensils, lanterns and tent stakes. Though slightly more expensive than traditional steel or aluminium alternatives, these titanium products can be significantly lighter without compromising strength. Some would argue, however, that the thermal properties of titanium cookware make it unsuitable for serious culinary applications.
The first and second sentences are correct and can be verified (though I can only offer direct testimony at this time). The third sentence, however, strikes me as unrelated, and perhaps even unsupported. So: (1) Even if the claim is true, of what relevance is it to "backpackers", who are probably not engaged in "serious culinary applications"? (2) If in fact backpackers are known for their "serious culinary applications", who has "argued" as much and where did they so argue? Exactly why do the "thermal properties" of titanium preclude their "serious" use in this area? mdf 20:27, 30 May 2006 (UTC) (someone who loves his $15 titanium spoon, even at home!)
- Lots of backpackers engage in culinary applications that given the circumstances are to be considered as serious. The scepticism towards titanium in this regard is that its themal conductivity is so low that pots tend to become very hot at the spot where the burner is, and cool otherwise. In addition to serious cooking, one of the situations when this becomes a significant problem is when melting snow. So I think the statement is quite correct, though your spoon is not affected by the criticism. However, I would object to the word "slightly" in the first sentence - a 1l titanium pot is about $30, an aluminum one about $5.Spakoj 21:59, 8 October 2006 (UTC)
- The bit about suitability in cookware deserved to be a bullet all on its own, so I split that out from the backpacker bullet. Hopefully my rewording will resolve the issue. =Axlq 04:46, 9 October 2006 (UTC)
- The modern meaning of "backpackers" does not generally mean "hikers" or "campers" any more.Eregli bob (talk) 08:19, 10 October 2012 (UTC)
Why is it so expensive
...being the 8th most abuntant element in the earths crust. Compared to aluminum at least an order of magnitude more expensive. I have no doubt those soviet subs made entirely of titanium and the cold war hoarding and monopolization of the metal by various governments has something to do with it. Grandthefthippo 19:58, 3 June 2006 (UTC)
- the article explains why it is expensive. i don't know all the facts, but the information presented seems like a reasonable explanation to me. titanium has a lot of great qualities, but it doesn't seem to me so great that hording it to inflate the price would be that much of an advantage.--Paraphelion 06:07, 4 June 2006 (UTC)
- Having good qualities has nothing to do with the price. Water has good qualities, therefore in your world of illogic it should be expensive? Titanium is more abundant than Iron, yet Iron is magnitudes cheaper, why is this? Why do you questionlessly accept this? —The preceding unsigned comment was added by 24.17.23.93 (talk) 06:40, 3 March 2007 (UTC).
- To re-state what's in the article, titanium is expensive because it takes a lot of energy to refine into sponge, and requires lots of special care to prevent it from oxidizing or nitriding while that sponge is processed into the final alloy & shape.
- Rather than suffering from the artificial inefficiencies of a monopoly, the industry is monstrously inelegant on the level of engineering and chemistry. That is to say, the current best practices in the industry are still relatively clumsy and wasteful. For details on this, look up the analogous processes for ironmaking vs. titanium refining, and then imagine building a forge that can maintain a purified argon environment without allowing in any nitrogen, moisture, or carbon dioxide.
- Can either Grandthefthippo or 24.17.23.93 share with us what more they would like to see on this topic? I'd be happy to either clarify the language, or hunt down some reputable sources to back up the claims in the article.--Joel 22:33, 3 March 2007 (UTC)
- Having good qualities has nothing to do with the price. Water has good qualities, therefore in your world of illogic it should be expensive? Titanium is more abundant than Iron, yet Iron is magnitudes cheaper, why is this? Why do you questionlessly accept this? —The preceding unsigned comment was added by 24.17.23.93 (talk) 06:40, 3 March 2007 (UTC).
- Look up the CSIRO of Australia. They have developed a titanium refinement method that is 50% cheaper than current methods.-Anonymous
Etymology
From the History section:
"Titanium (Latin Titans, Earth or the first sons of Gaia) [...] he named it for the Latin word for Earth (also the name for the Titans of Greek mythology)"
I am pretty certain "Titan(s)" is not Latin for "Earth" (and my dictionaries support me). In fact, it is not Latin at all, as far as I can see; the word "Titan" was taken directly from Greek mythology. According to the Wikipedia article Titan (mythology) the word has the original meaning "white earth, white clay, gypsum", ie a specific substance (or several) rather than "Earth" in general. Or did the "Earth" confusion here comes from a mixup with the mention of Gaia? Whichever it is, the word is not of Latin origin (although derived forms such as "Titanium" itself are).
On the website Webelements no mention of this original meaning is made; it is simply stated that the element was "Named after the "Titans", (the sons of the Earth goddess in Greek mythology)". This is corroborated by several other resources.
Any objections to me fixing this?
OMHalck 15:35, 17 July 2006 (UTC)
Soviet Citation?
I'd like to see this bit of information backed up:
"In 1950–1960s the Soviet Union attempted to corner the world titanium market as a tactic in the Cold War to prevent the American military from utilizing it."
The only place where I've seen the idea put forth that the Soviets had somehow finagled the worlds supply of Titanum during the cold war is in this article.
This document ( http://darwin.nap.edu/books/POD140/html ) written in the 1980's, providing a history of the US Defense complex's use of Titanium doesn't even mention the Soviets. It does mentions some shortages in processed Titanium due to demand reduction and rolling back of processing facilities.
I find it hard to believe that if nearly 50% of the world's supply is located in Canada and Australia, that the Soviets could even come close to making Titanium that scarce.
I do, however, believe that Lockheed would buy Titanium from the Russians for the SR-71 if they could get it cheaper than on the US market.
- I'm not the one who has written it and can't give a citation right now, but I clearly can say it is not something made up here. Titanium really was transmitted with large expenses through fronts in Europe. The problem is not just ore, but industries, which weren't massively built in the West. CP/M comm |Wikipedia Neutrality Project| 20:06, 2 September 2006 (UTC)
- Can anyone even provide a citation about transporting titanium across these fronts? It'd be nice to know a bit of history there. Granted, it in does make sense since the Soviets did have the first serious titanium industry and used the metal extensively in their space & defense programs. The document sited above states that the US began developing its own processing capabilities in the 50s, but a drop in the demand caused that industry to scale back, making titanium more scarce and costly in the west.
- To draw the conclusion from all this that the Soviets were attempting to "corner the market" here is a speculation. More likely the market was following the cheapest source. Since no citation has been provided over a period of months, I'd like to change this paragraph as follows-
- In 1950–1960s the Soviet Union led the world in the refinement, processing, and use of titanium. In Western Europe and the US, a fledging industry existed, primarily driven by fluctuating demand side market forces. As a result, the refined titanium supply in the west was unreliable until the late 60's.[5] During this period, the U.S. obtained a large share of it's refined Titanium clandestinely from the Soviet Union through front companies set up in Europe.[citation needed] Indeed, titanium for the highly successful U.S. SR-71 reconnaissance aircraft was acquired from the Soviet Union at the height of the Cold War.
- Let me know if this ruffles any feathers.Freelance pontif 02:45, 5 December 2006 (UTC)
I replaced this link that was removed for a few reasons. It explains why titanium is not the "perfect" blade material. This is a common misconception; look at many of the current marketing ploys that try to play on this for example. Also it is commonly thought of as a perfect material for swords by many people, which is also shown to be incorrect in this article. Aside from the content of this article, Swordforums is a highly respected forum in the swordmaking community. --Knife Knut 16:04, 7 September 2006 (UTC)
It might also be worth mentioning that while titanium is not an ideal blade material, it does see use in high end knives (such as the Chris Reeve Sebenza) as a grip material. Spyderco's Salt series of mariner's knives also feature titanium pocket clips.
Refractory metal?
Our Mission: Includes all technical aspects of the science of refractory metals and materials which are defined as those having melting points in excess of 1850K, with the exception of titanium.
Excerpt from the Refractory Metals Committee's mission statement.[6] ◄ИΞШSΜΛЯΞ► 13:18, 9 November 2006 (UTC)
refs
- Titanium - J Gambogi - Mining Engineering(Colorado)(USA), 1992 [7]
- Titanium Applications--a Critical Review Kramer, K-H Sixth World Conference on Titanium. I; Cannes; France; 6-9 June 1988. pp. 521-529. 1988
- The Production of Titanium, Zirconium and Hafnium Minkler, W W; Baroch, E F Metallurgical Treatises; Beijing; China; 13-22 Nov. 1981. pp. 171-189. 1981
- Titanium Sponge by Kroll Process Rao, C S Minerals and Metals Review. Vol. 17, no. 1, pp. 25-26. Jan. 1991
- ESR for Titanium: Yesterday, Today, Tomorrow - BE Paton, BI Medovar, MG Benz, RH Nafziger, LB … - … of 9th World Conference on Titanium, St. Petersburg, Russia …, 1999 [8]
- http://darwin.nap.edu/books/POD140/html
Boyer R. R. (1995). "Titanium for aerospace: Rationale and applications". Advanced Performance Materials. 2 (4): 349–368. doi:10.1007/BF00705316.
peer reviewer output
The following suggestions were generated by a semi-automatic javascript program, and might not be applicable for the article in question.
- Consider removing links that add little to the article or that have been repeated in close proximity to other links to the same article, as per WP:MOS-L and WP:CONTEXT.
- Per WP:MOS, avoid using words/phrases that indicate time periods relative to the current day. For example, recently might be terms that should be replaced with specific dates/times.[1]
- Per WP:MOSNUM, there should be a non-breaking space -
between a number and the unit of measurement. For example, instead of 18mm, use 18 mm, which when you are editing the page, should look like: 18 mm. - Please alphabetize the interlanguage links.
- There are a few occurrences of weasel words in this article- please observe WP:AWT. Certain phrases should specify exactly who supports, considers, believes, etc., such a view. For example,
- Please make the spelling of English words consistent with either American or British spelling, depending upon the subject of the article. Examples include: color (A) (British: colour), colour (B) (American: color), armour (B) (American: armor), aluminum (A) (British: aluminium), aluminium (B) (American: aluminum), center (A) (British: centre), recognize (A) (British: recognise), ization (A) (British: isation), orthopaedic (B) (American: orthopedic), aging (A) (British: ageing), gray (A) (British: grey), molt (A) (British: moult), sulfur (A) (British: sulphur).
- Watch for redundancies that make the article too wordy instead of being crisp and concise. (You may wish to try Tony1's redundancy exercises.)
- While additive terms like “also”, “in addition”, “additionally”, “moreover”, and “furthermore” may sometimes be useful, overusing them when they aren't necessary can instead detract from the brilliancy of the article. This article has 26 additive terms, a bit too much.
- As done in WP:FOOTNOTE, footnotes usually are located right after a punctuation mark (as recommended by the CMS, but not mandatory), such that there is no space inbetween. For example, the sun is larger than the moon [2]. is usually written as the sun is larger than the moon.[2]
- Please provide citations for all of the
{{fact}}
s. - Please ensure that the article has gone through a thorough copyediting so that it exemplifies some of Wikipedia's best work. See also User:Tony1/How to satisfy Criterion 1a.
You may wish to browse through User:AndyZ/Suggestions for further ideas. Thanks, Wim van Dorst (Talk) 17:12, 20 November 2006 (UTC)
in the human body?
"Titanium is also found in coal ash, plants, and even the human body (while harmless, it is not believed to be an essential element)."--Where exactly is it found? In blood, bones, something specific, or just floating around there in general? Thanks. Lizzysama 01:49, 25 November 2006 (UTC)
- This is an interesting question. First, let's review the reasons why titanium is being used for cosmetic and prothetic applications (artificial bones, implants, piercings, jewelry): titanium causes no biological response by the immune system, it is not degraded by the body's environment, and it has both low density and high strength. The beauty of it lies in the extreme reactivity of titanium: "Titanium is so incredibly reactive that upon exposure to air or water it almost instantly forms a very tightly bound oxide layer, which prevents further corrosion." Now about titanium's "location" in the body: I have found one article that states that: "There is a detectable amount of titanium in the human body and it has been hestimated that we take in about 0.8 mg/day, but most passes through us without being adsorbed." Thus, it can be inferred that since titanium does not react with any of the body's tissues or structures, it simply floats around in the bloodstream (probably as free molecules of titanium dioxyde TiO2), until it is disposed of (probably through the kidneys). Hugo Dufort 02:49, 26 November 2006 (UTC)
- Can you cite the article on Ti's location in the body, and of it's (as currently known) non-reactivity? I'm a sticker for PubMed (and I find I *like* biochemistry) And citations make it possible for this to be integrated into the main article. As for the statement " titanium does not react with any of the body's tissues or structures" - I'd wonder about that. We don't *know* about probably 80-90% of the body's structures and reactions.. To take a controversial example, we didn't think that fluorine (in fluoride form) interacted much with the body in negative ways other than dental and skeletal fluorosis (but only at high concentrations). Now there is (possibly true) evidence that both types of fluorosis incidence is much higher than previously though, can (possibly) cause increase hip fractures, and at least in vitro evidence (unless the reports on this are lying) that fluoride compound (specifically alumino-fluoride complexes) will interfere with G-protein signaling, as well as cause chromosomal damage. And of course fluoride, being a halogen, can displace iodine in thyroid hormones, and possibly interact with the TSH receptor. If this is true, fluoride classifies as an endocrine disruptor, and thus is currently (theoretically) under FDA/EPA jurisdiction since the flurry of legislation regarding endocrine-disruptors since the 1996 publication of Colburn's, Our Stolen Future and Krimsky's later Hormonal Chaos) So I'm not at all sure we can say for *certain* that specific things do not interact with the human body. Please forgive MY lack of PubMed references. All the articles listed can be found on the paper "50 reasons to oppose water fluoridation" at fluoridealert.com. I have no idea whether they are "serious" researches, or whether they have been peer-reviewed or replicated (my suspicion is no, simply because of the area of research) —Preceding unsigned comment added by 70.178.107.136 (talk) 14:14, 12 February 2008 (UTC)
- Thanks so much! =) Lizzysama 20:29, 26 November 2006 (UTC)
Taurus Handguns
Several models use titanium in the frame, both semi-automatics and revolvers. The revolvers are known as "Total Titanium", but this is not exactly true. The hammer, trigger, and many other parts are made of steel due to their lower number on the Rockwell Hardness scale, and a titanium barrel will not hold rifling.
I'm wondering where a good place to put this would be. —The preceding unsigned comment was added by 205.132.248.3 (talk) 21:07, 7 December 2006 (UTC).
Elemental Titanium vs Titanium dioxide vs titanium metal
I'm just thinking out loud here about the scope of this article and to put out the idea of re-structuring it in view of the available sub-categories.
We begin with the presentation of elemental titanium, its isotopes and properties, all of which is in the realm of chemistry. The bulk of titanium extracted goes into TiO2 (pigments): this is already a separate article its own. The other category would be titanium metal and all information related thereto.
Perhaps it should be separated into 2 articles, or made into a 2 part article: 1) elemental titanium 2) titanium metal and its alloys
IMHO, the article is less focused than it could be.
pzzp 16:12 EST, 15 december 2006
- I think there should be seperation article on Titanium Alloys. This article would contain a list of the common alloys and there commercial application. War (talk) 18:21, 12 February 2008 (UTC)
"commercial" references
I am not convinced that the mention of names of companies engaged in the production of titanium sponge and melting of ingot is not useful in the article. IMHO the inclusion of the list does not constitute advertising or commercial activity, not least due to the interesting fact that the list is EXHAUSTIVE (source was cited); moreover, the club of players in this market has barely changed since the beginnings of titanium manufacture. In fact the economics of titanium metal (and several other exotics like tantalum and zirconium) are influenced by the fact that so few firms are involved in its processing and manufacture. I think that in order to have a well rounded understanding of these metals, their sources and applications, the reader is well served by being made aware of the economics of the thing. For anyone working in the metals industries (as I do), knowing who processes the materials, where they are located and how they're doing is as important as who uses them. If you're going to be religious about policy, then mention should also be deleted of Airbus, Titanium Metals Corporation, Boeing and Tiomin, all companies mentioned in other areas of the article. Note also that we're not talking consumer goods here; these kinds of companies don't advertise since they sell business-to-business only, and don't need to.
I'd like to solicit other opinions on this issue.
Manufacture and fabrication: I will add citations when I have time.
Pzzp 18:16, 18 December 2006 (UTC)pzzp DEC 18, 2006
Ŷwat up yo people hehehehe peace yoBold textItalic textwat up yo people be tight on heer well peace my peoples peace
More medical applications
I was taking two acetaminophen caplets earlier today, and I happened to read the ingredients. Guess what, titanium dioxide was in the list of non-medicinal ingredients! -- Hugo Dufort 03:58, 21 December 2006 (UTC)
- Not surprising; TiO2 is a whitening agent and non-toxic. That TiO2 is used as a white pigment is already mentioned. The use you describe is not really a medical application per se since it has no effect either good or bad other than making the pills look nice. Would be neat to mention though, if a cite can be found for it (the label you mention does not count :). --mav 01:36, 22 December 2006 (UTC)
I think the most common applicaton of titanium in medicine is in mesh for hernia repairs. I think this illustrate the non rejection properties better because the human muscle grows through the mesh.
alloying with aluminum and "aircraft grade"
Removed statement by Highlandspring in this regard - sorry. Alloying titanium with other elemets is adequately covered in other sections; no need to get so specific, otherwise the article will never end if we discuss properties of all alloys. There are a number of alloys used in aircraft (6-6-2, 6-2-4-2, 6-2-4-6, 8-1-1, the list goes on); 6-4, or more properly 6AL-4V (Grade 5 per ASTM industrial specification) is not the only one. Unfortunately, the moniker "aircraft grade" is loose marketing verbiage used by ring and jewelry makers to impress the public. It is not used in the metallurgical / engineering community and does not belong in reference works.
6AL-4V may deserve special mention only insofar as it is, by a large margin, the most widely used alloy in aircraft production; it is consequently more readily available for non-aircraft applications.
Non-metallics
The below text was removed from the article for two main reasons:
- The whole section only has a single cite
- This is about the production/fabrication of titanium dioxide, NOT about titanium itself. At most, a single paragraph should be devoted to the fabrication of TiO2 in this article. Anything more detailed needs to be at titanium dioxide.
-- mav 17:58, 23 February 2007 (UTC)
Manufacture of titanium dioxide pigment is a combination of two separate processes: base pigment particle production and surface treatment, drying and milling (collectively known as 'finishing').
The sulfate process was the first commercial process for the manufacture of TiO2, originally using ilmenite as a raw material. Initially, the ore is dried, ground, and classified to ensure proper sulfation by agitation with concentrated sulfuric acid in a batch or continuous exothermic digestion reaction. The resultant dry, green-brown cake consisting of metal sulfates is dissolved in water or weak acid, and the solution treated to ensure that only ferrous-state iron is present. The solution temperature is reduced to avoid premature hydrolysis and clarified by settling and chemical flocculation. The clear solution is further cooled to crystallize coarse ferrous sulfate heptahydrate (known as "copperas"), FeS04.7H20 to separate it from the process.
The insoluble "mud" is washed to recover the titanyl sulfate liquor, and filtered to remove final insoluble impurities. The solution is evaporated to a precise composition and hydrolyzed to produce a suspension ("pulp") consisting mainly of clusters of colloidal hydrous titanium oxide.
Precipitation is controlled to achieve the necessary particle size, employing a seeding or nucleating technique; the pulp is then separated from the mother liquor and washed to remove residual traces of metallic impurities, using chelating agents if necessary. The washed pulp is treated with chemicals which adjust the physical texture and act as catalysts in the calcination step. This process can produce either anatase or rutile crystal forms depending on additives used prior to calcination.
For the chloride process the feedstock is a mineral rutile or synthetic beneficiates containing over 90 percent TiO2. An appropriate ore blend is mixed with a source of carbon and the two are reacted in a fluidized bed with chlorine at approximately 900°C. The reaction yields titanium tetrachloride, TiCl4, and the chlorides of all the impurities present. The reaction is exothermic, and accurate temperature control is essential. The mixed chlorides are cooled and the low-volatile chloride impurities (e.g. iron, manganese and chromium) are separated by condensation and removed from the gas stream with any un-reacted solid starting materials.
The TiCl4 vapor is condensed, followed by fractional distillation to produce an highly pure, colorless, mobile liquid TiCl4 intermediate product, freezing at -24°C and boiling at 136°C. Much of the success of the chloride process lies in this stable intermediate which can be purified, tested, stored, reprocessed as necessary; and handled as a liquid or vapor. Being a vapor-phase distillation process, trace contaminants (potentially discoloring) can be eliminated to optimize pigment color purity. The second critical stage in the chloride process is oxidation of the TiCl4 to TiO2 pigment particles. Pure titanium tetrachloride is reacted with oxygen in an exothermic reaction to form titanium dioxide and liberate chlorine, which is recycled to the chlorination stage. The high temperature ensures that only the rutile crystal form is produced. After cooling, the gas stream passes through a separator to collect the pigment particles, and treated to remove adsorbed chlorine from the pigment.
In both processes, the raw pigment may either be dried, milled, packed and, especially for rutile pigments, surface-treated to produce a range of special products for various applications. The end-product is either sold as a dry pigment or converted to a slurry for the manufacture of water-based paints. [2]
References
Nano Big Bang
There should be a paragraph on nano-technology aspects. It is reported that US, russian and israeli labs have created nanotechnologically modified titanium-sulphate, which is the toughest ever material, with 250-350 metric tons per sq. millimeter load not hurting it at all. Supposedly this will be used for a new generation armour, including virtually invulnerable tanks and ballistic vests that bounce .50 heavy machine gun ammo easily. The only thing to fix is the manufacturing cost that prohibits mass production Ti-S as of now. —The preceding unsigned comment was added by 193.226.227.153 (talk) 19:40, 24 February 2007 (UTC).
Titanium Steel
Where does "titanium steel" fit? It doesn't have an article, but I was unsure if it was much the same thing as titanium in itself, or if it was something different. Either way, you type "titanium steel" in the search and it leads no where. Colonel Marksman 00:53, 8 March 2007 (UTC)
There is no such thing as "titanium steel". Titanium is titanium, and steel is steel. Steels can be alloyed with small amounts of titanium to stabilize their intergranular boundaries, or to inhibit carbide precipitation in heat affected zones without sacrificing tensile strength. Pzzp 20:22, 12 March 2007 (UTC)
I thought steel is a alloy of iron and carbon, thus titanium steel would be titanium and carbon, if possible. The snare 18:02, 12 May 2007 (UTC)
- I don't think this would work the same. Titanium has a hexagonal crystalline structure, whereas Iron has a cubic structure (BCC or FCC). I don't think Carbon would fill the interstices the same way with Titanium. Dachande (talk) 18:22, 7 July 2008 (UTC)
- No, titanium steels are steels (which are strictly iron-based alloys) with a small percentage of titanium added as a carbide former. The high-performance maraging steels use a little bit of titanium as one of their strengthening mechanisms (as titanium carbides). — Preceding unsigned comment added by 192.91.171.34 (talk) 17:31, 19 June 2014 (UTC)
high temperature
Titanium is not known as a high-temperature resisting material, and certainly not in any aerospace application (that service is spec'd with nickel and chromium-nickel alloys) It begins to soften at 900 degF. The thermal property of interest is that it is a poor thermal condutor: means it retains the heat. Pzzp 20:22, 12 March 2007 (UTC)
- This is right. So the phrase "In engine applications, titanium is used for rotors, turbine blades, hydraulic system components and nacelles". Titanium can't be used for turbine blades, only for compressor blades. I will rectify this. Racingjs 15:37, 13 April 2007 (UTC)
- Um, it is specifically used for it's temperature tolerance though, it's able to take several hundred degrees higher temperatures than aluminum (which has historically been used ubiquitously in aircraft); and its strength/weight ration is about the same as aluminum (depending largely on which alloys are employed).WolfKeeper 17:41, 13 April 2007 (UTC)
Extraordinary?
From the Aerospace and Marine section:
"Because of its high tensile strength, light weight, extraordinary corrosion resistance..."
This dosen't sound serious. Titanium has a very good corrosion resistance, especially for a structural metal, but there is nothing "extraordinary" about it. I believe "extraordinary" should be changed for "very good" or "very high". Racingjs 19:07, 20 April 2007 (UTC)
i agree terms like "Extraordinary" when talking about resistance to corrosion should be reserved for gold and platinum. — Preceding unsigned comment added by LTEK4NZ (talk • contribs) 15:43, 21 June 2011 (UTC)
stuff
While you will save weight cumulatively by using titanium fasteners, exhaust, etc. it is easy to sometimes lose sight of the trees for the forest... I think it is important to emphasize that often saving weight with individual components can have interesting results. With automotive applications, using Ti for valvetrain components for instance, does much more than shave a few pounds off an automobile. Valves have a tendency to float with increasing rpms despite the springs, and the primary reason for Ti as a valve is to reduce the inertia you get with a steel valve. Substituting Ti for steel can gain enough advantage to justify the expense beyond the couple of pounds you save...
Origins of the name
I was reading this article, and wondering "how" the name got adopted. Did the other people who discovered the element have a name for it? Was there some adoption by the 18th century equivalent of today's chemical societies? I don't know if this can be determined, but I figured it was worth asking about. FrozenPurpleCube 03:48, 20 May 2007 (UTC)
- See 'Manuscript sources for the early history of titanium' below. Cornovia 22:11, 11 October 2007 (UTC)
Applications
It's really debatable to claim that titanium alloys have high tensile strength, they're generally lower than even relatively pedestrian steel alloys for a given size, and often lower than aluminium alloys for a given weight. It's the combination of high tensile strength for given density, corrosion resistance, and the ability to withstand relatively high temperatures without creeping that make ti alloys valuable in aerospace applications. I've edited the section to reflect that.Quadbox 14:01, 28 May 2007 (UTC)
Vandalized?
Someone added Chewbacca and Vader as the inventor. Would someone who knows the details of the inventor/discoverer be kind enough to put the correct info in. Thanks! I don't know how to flag that this entry (Titanium) needs edits. —Preceding unsigned comment added by 76.204.24.21 (talk) 02:13, 29 September 2007 (UTC)
Manuscript sources for the early history of Titanium
The Royal Institution of Cornwall holds several letters from William Gregor to Philip Rashleigh and which I was able to study whilst cataloguing other Rashleigh documents held there. The following will give some insight into the early years.
Letter, William Gregor to Philip Rashleigh, 27 Jun 1794 (RIC, RASH/1/66)
"According to your desire I send you my account of the Menackanite. It was first published in German. The German Translator has, I find, in some places mistaken my meaning, & the French translator of that Paper has committed a still greater number of blunders - I cannot expect you to wade thro the tedious minutiae of my experiments. As this sand was a new substance, detail was necessary. I have therefore drawn up a brief general account of some of the leading properties which mark the character of the calx contained in the black sand - I send you also a small quantity of the calx itself free from Iron. I have seen no account the Menackanite except a short analysis by Mr Schmeiffer. He differs from me very considerably with respect to the proportion of the calx to the Iron....."
Letter, William Gregor to Philip Rashleigh, 18 August 1794 (RIC, RASH/1/54).
"...I was at Menackan last week, & saw the place where the black sand was raised. Unfortunately I could not meet with a stream tinner in the whole parish, so that I could not gain as much information as I wished, but I have reason to think that this curious mineral is to be found in large quantities in the bed of the little river and on its banks thro' the greater part of its course, and even close to the sea where it empties itself."
Letter, William Gregor to Philip Rashleigh, 30 August 1794 (RIC, RASH/1/55).
"...I am much obliged to you for your offer of some Menackanite, but I have lately had a bag of it, which recruits my stock. When I am settled at Creed I shall resume my experiments on it with a view to finding some use for it..."
Letter, William Gregor to Philip Rashleigh, 7 Aug 1800 (RIC, RASH/1/67)
"I am glad to find that his experiments on Menackanite coincide very nearly with mine....He finds it to be the same calx as he had lately discovered in the Red Schoerl and called Titanite. He denominates the black sand of Menakan Titaneisen or Titanosiderum."
Cornovia 22:11, 11 October 2007 (UTC)
IPA problem
The phonemic pronunciation stated at the start of the article is incorrect. It could be /tɪˈteɪniəm/ or /taɪˈteɪniəm/, but not as it is given, /tʌɪˈteɪniəm/. /ʌɪ/ is not even a valid phoneme sequence in English. How would you say it? 'tuh-i-tain-ium'? I'd change it but the page is locked. —Preceding unsigned comment added by 81.158.82.38 (talk) 23:42, 26 October 2007 (UTC)
Well, [tʌɪˈteɪniəm] is the pronunciation of "titanium" as spoken by a speaker with Canadian raising--e.g. that is how speakers in Canada and parts of the Northern and Northwestern US pronounce it. Some Irish and Scottish dialects have it as well. Neither British Received Pronunciation, nor conservative varieties of General American English have it. The rule is: /aɪ/ -> [ʌɪ] before voiceless consonants such as p,t,k,f,theta,s, etc. In most dialects with Canadian raising, "writer" and "rider" can be distinguished solely by the nucleus of the diphthong. Raising of /aI/ is usually not noticed by people that lack Canadian raising. Dialects with raising of both /aI/ and /aU/ usually are noticed a lot more--e.g. people without /aU/ raising misinterpret words like "out" [VU?]or "about", when pronounced by someone with Canadian raising, sometimes even mishearing them as "ote" or even "oot" However, even in dialects with Canadian raising, where the phonetic transcription of [t_hʌɪˈteɪniəm] is correct, phonemically speaking, it is still /taɪˈteɪniəm/, rather than */tʌɪˈteɪniəm/ (which the article has), because /aI/ is *always* [ʌɪ] before voiceless consonants, just like initial /t/ is always aspirated-- [t_h]. Thus, I am going to correct the IPA in this article to read /taɪˈteɪniəm/. Robyn Wright 21:32, 28 October 2007 (UTC)
Interesting comments. I had not considered the Canadian dialect; thank you for the info. —Preceding unsigned comment added by 81.158.82.38 (talk) 23:35, 31 October 2007 (UTC)
See the article Canadian English for more information. Robyn Wright 02:14, 3 November 2007 (UTC)
The British pronunciation should actually be tit-ayneeyum, rather than ty-tayneeyum, although the majority of British people have adopted the American pronunciation. I wish I could cite this, but it's hard to cite diphtongs. —Preceding unsigned comment added by 90.197.21.34 (talk) 16:09, 30 March 2008 (UTC)
- Well I know an elderly english metallurgist who says "tit-aynium", but the young ones say "tie-tanium".Eregli bob (talk) 08:27, 10 October 2012 (UTC)
The above writer is correct about the pronunciation but I disagree that most British people have adopted the American way. Here's a citation: http://www.howjsay.com/index.php?word=titanium&submit=Submit There should be the British pronunciation at the top as an alternative. —Preceding unsigned comment added by 82.69.2.43 (talk) 01:24, 14 September 2008 (UTC)
Appearance
Is it correct to describe titanium as silvery white metallic? All titanium I have seen has been more-or-less greyish in appearance. Even when polished it is not silvery white, but retains a hint of brownish grey colour. I would also question the value of describing the appearance of any metal as 'metallic'. Can anyone suggest a metal that doesn't look metallic? CarbonUnit2 (talk) 21:01, 18 November 2007 (UTC)
- The color of titanium is nowhere close to silvery white. I myself would describe it as grayish and will change the article accordingly. If someone finds a better description, please correct it. Warut (talk) 22:04, 18 November 2007 (UTC)
- Some metals can have nonmetallic appearance, especially when finely divided. Take for example palladium black or colloidal gold. Bismuth, generally considered a metal, sometimes has a funny-looking appearance that might be described as metallic or not, depending on the point of view. --Itub (talk) 10:34, 19 November 2007 (UTC)
Caution
I'd like to remind persons who consider an edit not to modify or embellish factual information which has a cited reference, unless you have checked the source material and find it changed. pzzp —Preceding comment was added at 22:11, 2 January 2008 (UTC)
Application on A380 wrong number?
Under Application/Aerospace and Marine it says in the text and under the picture of the A380 there would be 26 tons of Ti in the four engines. This seems to me to high. The entire Engine (GP7200) is listed in the type certificate from EASA as 6718 kg total mass. That would mean that the entire engine is made of Ti if the 4 engines would make up 26 tons. From experience I would maybe set half of an engine as being Ti. The RR alternative engine is even lighter than the GP7200, so the number has to be wrong —Preceding unsigned comment added by 88.217.5.216 (talk) 15:37, 20 July 2008 (UTC)
Boeing (including both the airframes and engines)
- B787 – 134 metric tons -----
- B777 – 59 metric tons ----- 58
- B747 – 45 metric tons ----- 43
- B737 – 18 metric tons ----- 18
Airbus (including both the airframes and engines)
- A380 – 120 metric tons plus 26 for the engines ----- 77 including 11 t in engines
- A350 – 65 metric tons plus 9 for the engines -----
- A340 – 32 metric tons ----- 24
- A330 – 18 metric tons -----
- A320 – 12 metric tons ----- 12
So at least one of the sources is wrong. --Stone (talk) 19:02, 13 February 2009 (UTC)
All these figures are titanium requirements, that is the quantity bought by the airframer (or engine company) to build the aircraft. It can be very different from the actual quantity of titanium present in the end product : the scrap produced to manufacture an aerospace component can sometimes represent 85% of the ingots sold by titanium producers like TIMET. This should be mentioned in the article or better yet, figures of the actual (or proportional) weight of titanium present on the aircrafts should be given instead of the total wheight of titanium used . -- 14:33, 12 march 2009
Titanium Sports Necklace - Science or Bunk?
I see baseball players wearing these bicycle chain looking necklaces under their jersey. They claim that their muscles stay loose and they report a general sense of well being. See this link: http://www.iht.com/articles/2005/06/23/sports/BASE.php. So is there any science to support this?Josvir (talk) 21:22, 20 August 2008 (UTC)
Applications in Photography
The applications section makes no reference to use of Titanium in photographic equipment. Leica once used some Titanium in their M6. Canon has recently introduced a digital camera named Ixux 960 IS that has the outer body made of Titanium. Sony has launched DSC W300 with a Titanium coated body. Syiem (talk) 11:02, 27 November 2008 (UTC)
delete not yet relevant info
Somebody added:
- A new deposit of Ilmenite and Rutile has been discovered in the state of Chiapas Mexico. This deposit is the highest grade hard rock titanium deposit in the world. This new deposit is very unique due to the high Ti content within the Ilmenite. The Ilmenite contains large crystals of Rutile.
the source is obviously blackfireexploration.com because the phrase This deposit is the highest grade hard rock titanium deposit in the world. is a 100% copy. The mine is not opperating and neither for the amount nor for the grade exists a reliable second source. So I delete it. --Stone (talk) 18:30, 13 February 2009 (UTC)
Other removed due to not being cited:
- The Parker Pen Company used titanium to form the T-1 fountain pen, later expanded to T-1 ball pens and rollerballs. The T-1 fountain pen was introduced in 1970 and the T-1 rollerball and ball pen in 1971. Production was stopped in 1972 due to the high cost of manufacturing titanium. Parker T-1's are prized for their collectibility by collectors.
- Hammer heads made of titanium were introduced in 1999. Their light weight allows for a longer handle which increases the velocity of the head and results in more energy being delivered to the nail, all while decreasing arm fatigue. Titanium also decreases the shock transferred to the user because a titanium head generates about 3% recoil compared to a steel head that generates about 27%.
- Even bulk titanium metal is susceptible to fire, when it is heated to its melting point. A number of titanium fires occur during breaking down devices containing titanium parts with cutting torches.
- Salts of titanium are often considered to be relatively harmless, but its chlorine compounds, such as TiCl2, TiCl3, and TiCl4, have presented several unusual hazards. The dichloride takes the form of pyrophoric black crystals, and the tetrachloride is a volatile fuming liquid. All of titanium's chlorides are corrosive.
Aqua Titanium and Health Benefits?
Is anyone familiar with Aqua Titanium and any health benefits similar to magnetic bracelets?
72.189.53.239 (talk) 22:25, 3 April 2009 (UTC)
- Since magnetic bracelets don't benefit anybody except the people who make and sell then, I suspect that Aqua Titanium is the same. --mav (talk) 00:35, 13 April 2009 (UTC)
- Not true. Suppose you were shipwrecked, clinging to a plank without a compass - which way to head? If you had a magnetic bracelet, a pin and a length of thread you could magnetise the pin, suspend it by the thread and hence find out which direction was magentic north. This could be very useful as you watched the sharks close in. Markb (talk) 13:49, 18 December 2009 (UTC)
- Or, suppose you agreed to meet your friend at a well-known local landmark, the pile of wooden replica hand-grenade safety pins – they look exactly like the real thing but are too weak to hold open the safety handle. Your buddy arrives and guess what, he’s goofing around with a hand-grenade. “Be careful with that”, you say. “Don’t be silly” he retorts, ”I know what I’m doing… Oops!”. Yes, he’s only gone and dropped the safety pin onto the pile of look-alikes! “Oh dear”, says your foolish partner, “with my Osteochondrodysplasia I won’t be able to hold the safety handle shut for much longer”. “Drat”, you think, “and me with my bizarre muscle-wasting disease in both my forearms, I won’t be able to help”. Suddenly you remember the magnetic bracelet you bought in a futile attempt to strengthen your wrists. A quick sweep over the pile of safety pins soon retrieves the real thing and you can secure the fragmentation device.
So I think you have been a bit hasty in dismissing the wonders of the magnetic bracelet. Markb (talk) 14:14, 18 December 2009 (UTC)
- Nothing but a few studies on this have shown more than a placebo effect. There may be a subtle positive effect, but magnet therapy devices have traditionally been sold to often poor, sick and/or elderly based on over-hyped claims of miraculous cures and supported by little more than wishful thinking and testimonials. See http://www.skepdic.com/magnetic.html -- mav (please help review urgent FAC and FARs) 19:44, 21 December 2009 (UTC)
- Whoosh. Markb (talk) 18:09, 24 December 2009 (UTC)
Wrong numbers in the aercraft applications section
Titanium commercial aerospace requirements (including engine components such as blades, discs, rings and engine cases as well as airframe components including bulkheads, tail sections, landing gear, wing supports and fasteners) can account for a substantial proportion of the mass of modern aircraft, for example:
Boeing (including both the airframes and engines)
- B787 – 134 metric tons (295,000 lb) of titanium B787 empty weight is 114 metric tons, Boeing says 15% titanium content--total would be 17 metric tons
- B777 – 59 metric tons (130,000 lb) of titanium
- B747 – 45 metric tons (99,000 lb) of titanium
- B737 – 18 metric tons (40,000 lb) of titanium
Airbus (including both the airframes and engines)
- A380 – 145 metric tons (320,000 lb) of titanium
- A350 – 74 metric tons (165,000 lb) of titanium (estimated minimal requirement)
- A340 – 32 metric tons (71,000 lb) of titanium
- A330 – 18 metric tons (40,000 lb) of titanium
- A320 – 12 metric tons (26,000 lb) of titanium
Source: TIMET 2007 Form 10-K
A solution has to be found to get from those numbers which are the purchased alloy blocks for the production of endproducts used in the plane to numbers which have give a impression how much titane is in the air plane at the end.--Stone (talk) 20:49, 6 May 2009 (UTC)
Article quality
It's been more than a year since I've looked at this article, and I have to say that IMHO the quality has declined.
Please note that I work in the titanium field, and speak from some experience.
The introduction is unfocused, and contains information that belongs in the body of the article. It is essential to be concise in the intro, and drill down later. "Space age metal". Please. There is no room for qualitative language and marketing-speak in a "factual" article. Professionals in the business don't talk like that. I could go on. I don't know what the solution is; this is one of the caveats of the wiki paradigm: the factual drowning in the frivolous. Pzzp (talk) 23:15, 15 August 2009 (UTC)
- Thanks. Lack of manpower is an issue and you're welcome to improve the article! Materialscientist (talk) 23:21, 15 August 2009 (UTC)
Disadvantages of titanium
This article does not list the main disadvantages of titanium. Even a few words might be in order.--Environnement2100 (talk) 11:28, 11 November 2009 (UTC)
Pronunciation
tye-TAY-nee-əm is not the only pronunciation I’ve heard, ti-TAY-nee-əm is also used. Markb (talk) 12:56, 24 November 2009 (UTC)
just because you've heard it doesn't make it right — Preceding unsigned comment added by 2.96.57.43 (talk) 00:10, 2 July 2011 (UTC)
Vickers Hardness!?
Where is the number HV = 970 from, this would mean Titan is harder than hardened steel or intermetallics!? —Preceding unsigned comment added by 131.130.30.195 (talk) 16:08, 9 February 2010 (UTC)
- It has also been given the units MPa. The conversion to MPa from traditional units may be to blame for the discrepancy as the original Vickers unit can be thrashed out to kilograms-force over square millimetres (usually written Hv30 with 30 being the equivalent test weight in Kg). I prefer the Hv units because it imparts the test weight and is (in my experience) more widely used. I am also reluctant to use MPa because it is not, technically, a pressure. To convert back to Hv divide by 9.81 129.215.113.163 (talk) 16:03, 16 February 2011 (UTC)
Titanium in Russia
In article lack of data about abundance and producing of titanium in Russia. May I add such information to article? http://www.mineral.ru/Facts/russia/131/296/index.html
Lorne12 (talk) 02:33, 17 March 2010 (UTC) —Preceding unsigned comment added by Lorne12 (talk • contribs) 02:31, 17 March 2010 (UTC)
- According to this reference, production of titanium oxide is only 84 thousand tonnes - this is too little compared to major producers to mention in the article. Materialscientist (talk) 10:34, 19 March 2010 (UTC)
Allergy
I'd like to add that while Ti may not be "toxic" to the human body, humans can definitely have severe allergies to it, and that a significant number of people who have had it implanted in their bodies cannot tolerate it. Your article makes it sound like Ti is totally harmless in all scenarios and it is not. —Preceding unsigned comment added by 76.14.23.181 (talk) 05:53, 24 May 2010 (UTC)
- Might be good to add, although it is a very uncommon reaction. Here are two articles on the problem.
- Du Preez, LA; Bütow, KW; Swart, TJ (2007). "Implant failure due to titanium hypersensitivity/allergy?--Report of a case". SADJ : journal of the South African Dental Association = tydskrif van die Suid-Afrikaanse Tandheelkundige Vereniging. 62 (1): 22, 24–5. PMID 17427726.
- Sicilia, Alberto; Cuesta, Susana; Coma, Gerardo; Arregui, Ignacio; Guisasola, Cristina; Ruiz, Eduardo; Maestro, Antonio (2008). "Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients". Clinical Oral Implants Research. 19 (8): 823. doi:10.1111/j.1600-0501.2008.01544.x. PMID 18705814.
--Stone (talk) 06:38, 24 May 2010 (UTC)
Titanium and chloride
Two snippets of information from the article are in apparent contradiction.
Section Chemical:
The most noted chemical property of titanium is its excellent resistance to corrosion; it is almost as resistant as platinum, capable of withstanding attack by dilute sulfuric acid and hydrochloric acid as well as chlorine gas, chloride solutions, and most organic acids.[a] a. ^ Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
Section Precautions:
When used in the production or handling of chlorine, care must be taken to use titanium only in locations where it will not be exposed to dry chlorine gas which can result in a titanium/chlorine fire.[b] A fire hazard exists even when titanium is used in wet chlorine due to possible unexpected drying brought about by extreme weather conditions. b. ^ Compressed Gas Association (1999). Handbook of compressed gases (4th ed.). Springer. p. 323. ISBN 0412782308.
Neither this article nor our article Chlorine define a notion of "dry" and "wet" chlorine; the Handbook of Compressed Gases defines dry chlorine as "chlorine with its water content dissolved in solution", while referring for an "exact definition" to Chlorine Institute publications entitled Chlorine Manual and "Pamphlet 100. Solubility of Dry Chlorine. Definitions and Analytical Issues". I do not understand the given definition, but it appears that the statement about withstanding attack by chlorine gas needs to be qualified. --Lambiam 08:35, 15 July 2010 (UTC)
Comparative Expense
If cost/expense of titanium is one of its disadvantages (compared to other metals), would a price history of aerospace titanium alloy, over time (1950-2010) add any value, or is price history generally not considered encyclopedic data. 144.183.224.2 (talk) 23:59, 16 August 2010 (UTC)
If you have the data in tabular or graphical format, backed by a reference, it'd definitely be nice to have. --Rifleman 82 (talk) 00:45, 17 August 2010 (UTC)
Titanium Spectra
Elements often have distinct spectra which make them identifiable for chemical analysis. Ti is a great example of this, as its electron energy loss spectrum is clearly defined for the L2,3 Edge. I propose a section which shows the chemical signature of this element. I can only acquire EELS spectra to place in the public domain, but it would be great to get xray data as well. (talk) 23:59, 16 August 2010 (UTC)
If you have the data in tabular or graphical format, backed by a reference, it'd definitely be nice to have. --Rifleman 82 (talk) 00:45, 17 August 2010 (UTC) —Preceding unsigned comment added by Hovden (talk • contribs)
Edit request from Kathrags, 17 March 2011
{{edit semi-protected}} Would you please add a link to Titanium Industries (titanium.com) to the "External Links" section of this page. This will give users a source for a global distributor/supplier of Titanium. You could just have the link read: Titanium Industries (link to titanium.com) - Global distributor and supplier of titanium products.
Kathrags (talk) 15:19, 17 March 2011 (UTC)
- Not done. A promotional link such as this is not appropriate per Wikipedia guidelines (Wikipedia:External links). -- Ed (Edgar181) 15:23, 17 March 2011 (UTC)
titanium comparison to aluminium
could some one edit the following to say that titanium is not lighter than aluminium?
Many backpackers use titanium equipment, including cookware, eating utensils, lanterns, and tent stakes.[64] Though slightly more expensive than traditional steel or aluminium alternatives, these titanium products can be significantly lighter without compromising strength,
im not sure on the wording that should be used. but while agreeing that titanium is more expensive and stronger, it is twice as heavy as aluminium. titanium being 4.51gcm3 and aluminium being 2.70gcm3.LTEK4NZ (talk) 16:15, 21 June 2011 (UTC)LTEK4NZ
- While titanium is heavier, it is stronger than aluminium. It is 60% more dense, but more than twice as strong, less material is need for the same strength as its aluminium counterpart, the end result is lighter. Titanium is not 'lighter', but equipment made from it with the same sturdiness is. Xeworlebi (talk) 16:50, 21 June 2011 (UTC)
Edit request from 70.91.201.76, 21 July 2011
{{edit semi-protected}}
Titanium is also alloyed with gold to produce a usable alloy that can be marketed as 24K gold, as the 1% of Ti alloyed with the gold is insufficient to require a lesser mark. The resulting alloy is roughly the hardness of 14K gold, so is more durable than a pure 24K gold item would be. See: http://www.goldbulletin.org/assets/file/goldbulletin/downloads/Gafner_4_22.pdf. 70.91.201.76 (talk) 04:09, 21 July 2011 (UTC)
- Added. Thanks. Materialscientist (talk) 04:44, 21 July 2011 (UTC)
Bit of a mixup in the TiO2 section
As written, we have that it is "very opaque", then much later on we have "has a very high index of refraction". Both of these are true, but these need to be combined. It is very opaque because it has such a high index of refraction. Old_Wombat (talk) 10:35, 14 December 2011 (UTC)
- No, refractive index of TiO2 is about 2.5, almost same as diamond. Natural TiO2 is opaque because of defects and impurities, and TiO2 powder is opaque as any fine powder, because of multiple light scattering. Pure synthetic TiO2 is transparent, look at the top-right corner here (the rest is milky because it is unpolished). Materialscientist (talk) 10:47, 14 December 2011 (UTC)
Uhh, I think we are saying close to the same thing, but all right, I'll wander off elsewhere. Old_Wombat (talk) 05:31, 15 December 2011 (UTC)
Is 44Ti really synthetic?
I'm not a chemist or materials scientist, so I will not attempt to answer this question or edit the page to reflect this. The isotopes table on the right of the page shows the isotope 44Ti to be synthetic. However, a recent presentation about the Nuclear Spectroscopic Telescope Array (NuSTAR) by Dr. Fiona Harrison, Professor of Physics and Astronomy at Caltech and Principal Investigator for the NuSTAR Explorer Mission, shows 44Ti to be produced naturally in supernova experiments. Her presentation may be found here: http://asterisk.apod.com/viewtopic.php?f=44&t=28899. Also, very interesting is the discussion on that same page, which shows that 44Ti has been believed to be produced in supernova as early as 1998, as given here: http://www.nucleonica.com/wiki/Articles/Article07/article7.htm. Would someone with the right domain knowledge please investigate? Thanks for your time. FrankBaird (talk) 14:47, 19 June 2012 (UTC)
- It's been known for quite some time that 44Ti is produced naturally in the silicon burning process in stars. However, 44Ti undergoes electron capture with a half-life of about 60 years to become 44Sc, which itself undergoes β+ decay with a half-life of about 4 hours to become 44Ca, which is stable. So any primordial 44Ti nuclides are now 44Ca, and so 44Ti doesn't occur naturally on the Earth and has to be synthesised. Double sharp (talk) 08:46, 10 October 2012 (UTC)
Please Edit Caption
The image "Titanzylinder.jpg" has the caption: "A titanium cylinder, "Grade 2" quality"
In reference to titanium metal "Grade 2" has nothing to do with quality. "Grade 2" specifies the chemical makeup or alloy. "Grade 2" is one of at least four "commercially pure" alloys of titanium meaning it is mostly elemental titanium. Compare with "Grade 5" which contains 6% aluminium and 4% vanadium. Please edit the caption so that "Grade 2" is not given any relation to "quality." — Preceding unsigned comment added by Unborn Wrath (talk • contribs) 21:37, 20 June 2012 (UTC)
Implausible claim
"The Airbus A380 may use 146 metric tons, including about 26 tons in the engines."
The A380 article claims that the typical empty weight of the aircraft is 276 tonnes. It is implausible that more than half of this mass consists of titanium.Eregli bob (talk) 08:16, 10 October 2012 (UTC)
- The source says 77 t [9], which is still high. I'm not sure what do they mean by "use", in the final aircraft or during its production. Materialscientist (talk) 08:22, 10 October 2012 (UTC)
Edit request on 11 November 2012
This edit request has been answered. Set the |answered= or |ans= parameter to no to reactivate your request. |
please add the following text to the Precautions section:
There is evidence the rare disease Yellow nail syndrome may be caused by titanium, either implanted for medical reasons or through eating various foods containing titanium dioxide.
Berglund F, Carlmark B (2011). "Titanium, Sinusitis, and the Yellow Nail Syndrome". Biol. Trace Elem. Res. 143 (1): 1–7. {{cite journal}}
: Unknown parameter |month=
ignored (help)
Nxn (talk) 17:51, 11 November 2012 (UTC)
- Done; no objections after 4 days. —KuyaBriBriTalk 16:17, 15 November 2012 (UTC)
Name used by William Gregor
William Gregor used the name "manaccanite" for the material he found in manaccan. Should this be included in the article for historical accuracy?
Citation: Handbook of Extractive Metallurgy, Vol.2, Fathi Habashi, Weinheim ; Chichester : Wiley-VCH, 1997. ISBN: 3527287922 — Preceding unsigned comment added by 128.193.44.35 (talk) 21:31, 29 March 2013 (UTC)
- What he found was titanium dioxide inclusions in ilmenite, not titanium, thus "manaccanite" may hardly refer to titanium. Materialscientist (talk) 22:55, 29 March 2013 (UTC)
Titanium compounds...
Why is there no page for titanium sulfate? I'm sure I'm not the only person that would appreciate a nice condensation of the properties of the compound. — Preceding unsigned comment added by 98.17.145.96 (talk) 21:15, 24 May 2013 (UTC)
Boinik
If Boinik is an unknown place, I am not sure that it is in Slovakia. — Preceding unsigned comment added by 81.147.148.174 (talk) 15:59, 11 October 2013 (UTC)
Use in dye-sensitized solar cell is missing
In section Pigments, additives and coatings, I am missing a mention of the use in dye-sensitized solar cells. --Mortense (talk) 09:04, 11 December 2013 (UTC)
Blacklisted Links Found on the Main Page
Cyberbot II has detected that page contains external links that have either been globally or locally blacklisted. Links tend to be blacklisted because they have a history of being spammed, or are highly innappropriate for Wikipedia. This, however, doesn't necessaryily mean it's spam, or not a good link. If the link is a good link, you may wish to request whitelisting by going to the request page for whitelisting. If you feel the link being caught by the blacklist is a false positive, or no longer needed on the blacklist, you may request the regex be removed or altered at the blacklist request page. If the link is blacklisted globally and you feel the above applies you may request to whitelist it using the before mentioned request page, or request its removal, or alteration, at the request page on meta. When requesting whitelisting, be sure to supply the link to be whitelisted and wrap the link in nowiki tags. The whitelisting process can take its time so once a request has been filled out, you may set the invisible parameter on the tag to true. Please be aware that the bot will replace removed tags, and will remove misplaced tags regularly.
Below is a list of links that were found on the main page:
- http://www.designbuild-network.com/projects/dam/
- Triggered by
\bdesignbuild-network\.com\b
on the local blacklist
- Triggered by
If you would like me to provide more information on the talk page, contact User:Cyberpower678 and ask him to program me with more info.
From your friendly hard working bot.—cyberbot II NotifyOnline 13:22, 3 April 2014 (UTC)
Semi-protected edit request on 19 June 2014
It is requested that an edit be made to the semi-protected article at Titanium. (edit · history · last · links · protection log)
This template must be followed by a complete and specific description of the request, that is, specify what text should be removed and a verbatim copy of the text that should replace it. "Please change X" is not acceptable and will be rejected; the request must be of the form "please change X to Y".
The edit may be made by any autoconfirmed user. Remember to change the |
The statement that Ti is "chemically and physically" similar to Zr is a huge overstatement and quite misleading, especially given that another element in the same column, Hf, is indeed VERY similar to Zr.
Physically Ti is much lighter, and I believe considerably less soft than Zr. Even the "physical" properties that should relate to the number of electrons (thus "should" be similar), such as the ability to alloy with other metals, differ due to different atomic sizes (e.g. bcc Ti is fully miscible with Ta, bcc Zr is immiscible even at 1500C).
As to the chemical properties, other than the same preferred valence, the properties differ drastically. Ti can show different valence, Zr tends to be 4-valent. For example, there are plenty of suboxides of Ti other than TiO2 (Ti2O, TiO and lots of Magnelli phases e.g. Ti2O3, Ti3O5 etc), whereas Zr has only ZrO2 (not counting Zr3O which is chemically an ordered solution of interstitial O in metallic Ti rather than a true oxide).
Even for compounds with the same composition such as TiO2 vs. ZrO2, the crystal structures are drastically different -- at normal pressures both can be found in 3 different crystal structures NONE of which coincide: TiO2 has rutile, anatase and brookite structures and ZrO2 has cubic fluorite and two distorted (tetragonal and monoclinic) fluorite-based structures.
Suggest softening/clarifying the statement in the introduction and adding further clarification (along the details above) to the corresponding statements in the chemical properties section.
- Wikipedia featured articles
- FA-Class Featured topics articles
- Wikipedia featured topics Group 4 elements featured content
- Low-importance Featured topics articles
- Featured articles that have appeared on the main page
- Featured articles that have appeared on the main page once
- FA-Class chemical elements articles
- Top-importance chemical elements articles
- WikiProject Elements articles
- Wikipedia semi-protected edit requests