Jump to content

Anticoagulant

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 99.248.3.176 (talk) at 15:00, 7 March 2008 (Heparin recall para. added). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

An anticoagulant is a substance that prevents coagulation; that is, it stops blood from clotting. A group of pharmaceuticals called anticoagulants can be used in vivo as a medication for thrombotic disorders. Some chemical compounds are used in medical equipment, such as test tubes, blood transfusion bags, and renal dialysis equipment. They also have military applications, whereby their introduction into the wounds of enemy soldiers will make their treatment significantly more difficult.

As medications

Anticoagulants are given to people to stop thrombosis (blood clotting inappropriately in the blood vessels). This is useful in primary and secondary prevention of deep vein thrombosis, pulmonary embolism, myocardial infarctions and strokes in those who are predisposed.

Vitamin K antagonists

The oral anticoagulants are a class of pharmaceuticals that act by antagonizing the effects of vitamin K. Examples include warfarin. It is important to note that they take at least 48 to 72 hours for the anticoagulant effect to develop fully. In cases when any immediate effect is required, heparin must be given concomitantly. Generally, these anticoagulants are used to treat patients with deep-vein thrombosis (DVT), pulmonary embolism (PE), atrial fibrillation (AF), and mechanical prosthetic heart valves.

Adverse effects

Patients aged 80 years or more may be especially susceptible to bleeding complications with a rate of 13 bleeds per 100 person-years.[1]

These oral anticoagulants are used widely as poisons for mammalian pests, especially rodents. (For details, see rodenticide and warfarin.)

Available agents

The most important oral anticoagulants are:

Heparin and derivative substances

Heparin is a biological substance, usually made from pig intestines. It works by activating antithrombin III, which blocks thrombin from clotting blood. Heparin can be used in vivo (by injection), and also in vitro to prevent blood or plasma clotting in or on medical devices. Vacutainer brand test tubes containing heparin are usually colored green.

Low molecular weight heparin

Low molecular weight heparin is a more highly processed product that is useful as it does not require monitoring of the APTT coagulation parameter (it has more predictable plasma levels) and has fewer side effects.

Synthetic pentasaccharide inhibitors of factor Xa

  • Fondaparinux is a synthetic sugar composed of the five sugars (pentasaccharide) in heparin that bind to antithrombin. It is a smaller molecule than low molecular weight heparin.
  • Idraparinux

Major pharmaceutical Heparin recall due to contamination

In March 2008 major recalls of Heparin were announced by pharmaceuticals due to a suspected and unknown contamination of the raw Heparin stock imported from China [3] [4]. The U.S. Food and Drug Administration was quoted as stating that at least 19 deaths were believed linked to a raw Heparin ingredient imported from the People's Republic of China, and that they had also received 785 reports of serious injuries associated with the drug’s use. According to the New York Times: 'Problems with heparin reported to the agency include difficulty breathing, nausea, vomiting, excessive sweating and rapidly falling blood pressure that in some cases led to life-threatening shock'.

Direct thrombin inhibitors

Another type of anticoagulant is the direct thrombin inhibitor.[5] Current members of this class include argatroban, lepirudin, and bivalirudin. An oral direct thrombin inhibitor, ximelagatran (Exanta®) was denied approval by the Food and Drug Administration (FDA) in September 2004 [1] and was pulled from the market entirely in February 2006 after reports of severe liver damage and heart attacks. [2]

Anticoagulants outside the body

Laboratory instruments, test tubes, blood transfusion bags, and medical and surgical equipment will get clogged up and become nonoperational if blood is allowed to clot. Chemicals can be added to stop blood clotting. Apart from heparin, most of these chemicals work by binding calcium ions, preventing the coagulation proteins from using them.

  • EDTA is denoted by mauve or purple caps on Vacutainer brand test tubes. This chemical strongly and irreversibly binds calcium. It is in a powdered form.
  • Citrate is usually in blue Vacutainer tube. It is in liquid form in the tube and is used for coagulation tests, as well as in blood transfusion bags. It gets rid of the calcium, but not as strongly as EDTA. Correct proportion of this anticoagulant to blood is crucial because of the dilution. It can be in the form of sodium citrate or ACD.
  • Oxalate has a similar mechanism to citrate. It is the anticoagulant used in fluoride (grey top) tubes.

For the meaning of more colors, see Vacutainer#including coagulants.

References

  1. ^ Hylek EM, Evans-Molina C, Shea C, Henault LE, Regan S (2007). "Major hemorrhage and tolerability of warfarin in the first year of therapy among elderly patients with atrial fibrillation". Circulation. 115 (21): 2689–96. doi:10.1161/CIRCULATIONAHA.106.653048. PMID 17515465.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ Ron Winslow (2007-12-10). "Race Is on for the Next Blood Thinner". Wall Street Journal. p. A12. Retrieved 2008-01-06. ...in a market now dominated by one of the oldest mainstay pills in medicine: the blood thinner warfarin. At least five next-generation blood thinners are in advanced testing to treat or prevent potentially debilitating or life-threatening blood clots in surgery and heart patients. First candidates could reach the market in 2009. {{cite news}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  3. ^ New York Times, March 6, 2008, Drug Tied to China Had Contaminant, F.D.A. Says, retrieved 2008-03-07
  4. ^ New York Times, March 7, 2008, German Authorities Report Problems With Blood Thinner, retrieved 2008-03-07
  5. ^ Di Nisio M, Middeldorp S, Büller HR (2005). "Direct thrombin inhibitors". N. Engl. J. Med. 353 (10): 1028–40. doi:10.1056/NEJMra044440. PMID 16148288.{{cite journal}}: CS1 maint: multiple names: authors list (link)

See also