Jump to content

Symbion

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Pbsouthwood (talk | contribs) at 15:50, 4 February 2020 (Adding local short description: "A monotypic phylum of marine invertebrates", overriding Wikidata description "monotypic phylum of marine animals" (Shortdesc helper)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Symbion
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Superphylum: Lophotrochozoa
Phylum: Cycliophora
Funch & Kristensen, 1995
Class: Eucycliophora
Funch & Kristensen, 1995
Order: Symbiida
Funch & Kristensen, 1995
Family: Symbiidae
Funch & Kristensen, 1995
Genus: Symbion
Funch & Kristensen, 1995
Species

Symbion is the name of a genus of commensal aquatic animals, less than 0.5 mm wide, found living attached to the mouthparts of cold-water lobsters. They have sac-like bodies, and three distinctly different forms in different parts of their two-stage life-cycle. They appear so different from other animals that they were assigned their own, new phylum Cycliophora shortly after they were discovered in 1995.[1] This was the first new phylum of multicelled organism to be discovered since the Loricifera in 1983.

Taxonomy

Symbion was discovered in 1995 by Reinhardt Kristensen and Peter Funch[2] on the mouthparts of the Norway lobster (Nephrops norvegicus), and other, related, species have since been discovered on:

The genus is so named because of its commensal relationship with the lobster (a form of symbiosis) – it feeds on the leftovers from the lobster's own meals.[5]

The genus Symbion are peculiar microscopic animals, with no obvious close relatives, and which was therefore given its own phylum, called Cycliophora. The phylogenetic position of Symbion remains unclear: originally the phyla Ectoprocta and Entoprocta were considered possible relatives of Symbion, based on structural similarities.[6] However, genetic studies suggest that Symbion may be more closely related to Gnathifera.

Description

Symbion pandora has a bilateral, sac-like body with no coelom. There are three basic life stages:

  • Asexual Feeding Stage – At this stage, S. pandora is neither male nor female. It has a length of 347 μm and a width of 113 μm. On the posterior end of the sac-like body is a stalk with an adhesive disc, which attaches itself to the host. On the anterior end is a ciliated funnel (mouth) and an anus.
  • Sexual Stage
    • MaleS. pandora has a length of 84 μm and a width of 42 μm during this stage. It has no mouth or anus, which signifies the absence of a digestive system. It also has two reproductive organs.
    • FemaleS. pandora is the same size as the male in this stage. It does, however, have a digestive system which collapses and reconstitutes itself as a larva.[2]

Reproduction

Symbion reproduce both asexually and sexually, and has a complex reproduction cycle, a strategy evolved to produce as many offspring as possible that can survive and find a new host when the lobster they live on shed its shell. The asexual individuals are the largest ones. The sexual individuals doesn't eat. During fall they make copies of themselves, where a new individual grows inside the parent body, one offspring at the time. The new offspring attach themselves to an available spot on the lobster, begins to feed and eventually start making new copies of themselves. In early winter, the asexual animals starts producing males. When the male is born, it crawls away from the parent and glue itself to another asexual individual. Once attached, the male produce two dwarf males inside its body, which turns into a hollow pouch. Each of the two dwarf males are about hundred times smaller than the asexual individual they are attached to, and their body starts out with about 200 cells, but this number has been reduced to just 47 by the time they reach maturity. 34 of the cells form its nervous system, and three more becomes sensory cells used to help them feel their surroundings. Eight cells becomes mucus glands, which produce mucus that helps them move across the surface. The final two cells form the testes, which make the sperm that fertilize the female’s egg. Most of the cells of the dwarf males also lose their nucleus, and make them shrink to almost half their size, which is an adaptation that allows two mature individuals to fit inside the body of the parent male. Two males increases the chances to fertilize a female. By late winter, when the large feeding individuals in the colony have males attached to their bodies, they start making females. Each female has a single egg inside them. When she is about the be born, one of the two dwarf males fertilize her when she comes out. The fertilized female find herself a place on the host's whiskers where she attach herself. Inside her the developing embryo extracts all the nutrients it needs to grow from its mother, and by the time it is ready to be born, all that remains of the mother is an empty husk. This new offspring is a strong swimmer unlike all the other forms in the colony, and those who succeeds in finding a new host will attach themselves to its mouthparts, where it will grow a stomach and mouthparts, morphing into a large, feeding and asexual type, starting the cycle all over again.[7] The larval stage may be unscientifically referred to as sea worms. [8]

References

  1. ^ Marshall, Michael (28 April 2010). "Zoologger: The most bizarre life story on Earth?". New Scientist. Retrieved 19 November 2018. ... In 1995, Peter Funch and Reinhardt Møbjerg Kristensen, both then at the University of Copenhagen, Denmark, discovered an animal so unlike any other that a new phylum – Cycliophora – had to be created just for it. ...
  2. ^ a b P. Funch; R. M. Kristensen (1995). "Cycliophora is a new phylum with affinities to Entoprocta and Ectoprocta". Nature. 378 (6558): 711–714. doi:10.1038/378711a0. {{cite journal}}: Unknown parameter |lastauthoramp= ignored (|name-list-style= suggested) (help)
  3. ^ M. Obst; P. Funch; G. Giribet (2005). "Hidden diversity and host specificity in cycliophorans: a phylogeographic analysis along the North Atlantic and Mediterranean Sea". Molecular Ecology. 14 (14): 4427–4440. doi:10.1111/j.1365-294X.2005.02752.x. PMID 16313603. {{cite journal}}: Unknown parameter |lastauthoramp= ignored (|name-list-style= suggested) (help)
  4. ^ Neves RC, Kristensen RM, Wanninger A (March 2009). "Three-dimensional reconstruction of the musculature of various life cycle stages of the cycliophoran Symbion americanus". J. Morphol. 270 (3): 257–70. doi:10.1002/jmor.10681. PMID 18937332.
  5. ^ P. Funch; P. Thor; M. Obst (2008). "Symbiotic relations and feeding biology of Symbion pandora (Cycliophora) and Triticella flava (Bryozoa)". Vie et Milieu. 58: 185–188. {{cite journal}}: Unknown parameter |lastauthoramp= ignored (|name-list-style= suggested) (help)
  6. ^ "Cycliophorans - Cycliophora - Details - Encyclopedia of Life". Encyclopedia of Life. Retrieved 2017-09-02.
  7. ^ Living Mysteries: This complex beast lurks on lobster whiskers
  8. ^ Piper, Ross (2007), Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals, Greenwood Press.