Jump to content

June 2029 lunar eclipse

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Some1 (talk | contribs) at 23:41, 27 December 2020 (Undid revision 996662618 by 2601:14A:600:B390:F527:9DA9:D8A1:31F9 (talk) Unnecessary.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Total lunar eclipse
June 26, 2029
Ecliptic north up

The moon will pass through the center of the Earth's shadow.
Saros (and member) 130 (49 of 72)
Gamma +0.01240
Duration (hr:mn:sc)
Totality 1:41:53
Partial 3:39:32
Penumbral 5:35:08
Contacts (UTC)
P1 0:34:34
U1 1:32:18
U2 2:31:18
Greatest 3:22:05
U3 4:13:01
U4 5:11:50
P4 6:09:42

A total lunar eclipse will take place on June 26, 2029. A dramatic total eclipse lasting 1 hour and 42 minutes will plunge the full Moon into deep darkness, as it passes right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may be stained a deep orange or red colour at maximum eclipse. This will be a great spectacle for everyone who sees it from most of the Americas and western Europe and Africa. The partial eclipse will last for 3 hours and 40 minutes in total.

The moon will pass through the center of the Earth's shadow. Totality will last 102 minutes, the maximum duration for Saros series 130.

With an umbral eclipse magnitude of 1.84362, this is the largest lunar eclipse of the 21st century. Gamma has a value of only 0.01240. Due to the Moon's relatively large size, totality will not last 106 minutes. This is the darkest total lunar eclipse in the 21st century.

Visibility

It will be completely visible over South America, seen rising over North America, and setting over Africa and Europe.

Lunar year series

Lunar eclipse series sets from 2027–2031
Ascending node   Descending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
110 2027 Jul 18
Penumbral
-1.57589 115 2028 Jan 12
Partial
0.98177
120 2028 Jul 06
Partial
-0.79040 125 2028 Dec 31
Total
0.32583
130 2029 Jun 26
Total
0.01240 135 2029 Dec 20
Total
-0.38110
140 2030 Jun 15
Partial
0.75346 145 2030 Dec 09
Penumbral
-1.07315
150 2031 Jun 05
Penumbral
1.47322
Last set 2027 Aug 17 Last set 2027 Feb 20
Next set 2031 May 07 Next set 2031 Oct 30

Metonic series

The Metonic cycle repeats nearly exactly every 19 years and represents a Saros cycle plus one lunar year. Because it occurs on the same calendar date, the Earth's shadow will be in nearly the same location relative to the background stars.

Ascending node Descending node
  1. 1991 Jun 27 - penumbral (110)
  2. 2010 Jun 26 - partial (120)
  3. 2029 Jun 26 - total (130)
  4. 2048 Jun 26 - partial (140)
  5. 2067 Jun 27 - penumbral (150)
  1. 1991 Dec 21 - partial (115)
  2. 2010 Dec 21 - total (125)
  3. 2029 Dec 20 - total (135)
  4. 2048 Dec 20 - partial (145)

Saros series

Lunar saros series 130, repeating every 18 years and 11 days, has a total of 71 lunar eclipse events including 56 umbral lunar eclipses (42 partial lunar eclipses and 14 total lunar eclipses). Solar Saros 137 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

Greatest First

The greatest eclipse of the series will occur on 2029 Jun 26, lasting 102 minutes.[1]
Penumbral Partial Total Central
1416 Jun 10 1560 Sep 4 1921 Apr 22
1957 May 13
Last
Central Total Partial Penumbral
2083 Jul 29
2155 Sep 11 2552 May 10 2678 Jul 26
1901–2200
1903 Apr 12 1921 Apr 22 1939 May 3
1957 May 13 1975 May 25 1993 Jun 4
2011 Jun 15 2029 Jun 26 2047 Jul 7
2065 Jul 17 2083 Jul 29

Inex series

The inex series repeats eclipses 20 days short of 29 years, repeating on average every 10571.95 days. This period is equal to 358 lunations (synodic months) and 388.5 draconic months. Saros series increment by one on successive Inex events and repeat at alternate ascending and descending lunar nodes.

This period is 383.6734 anomalistic months (the period of the Moon's elliptical orbital precession). Despite the average 0.05 time-of-day shift between subsequent events, the variation of the Moon in its elliptical orbit at each event causes the actual eclipse time to vary significantly. It is a part of Lunar Inex series 40.

All events in this series shown (from 1000 to 2500) are central total lunar eclipses.

Inex series from 1000–2500 AD
Descending node Ascending node Descending node Ascending node
Saros Date Saros Date Saros Date Saros Date
95 1016 May 24 96 1045 May 3 97 1074 Apr 14 98 1103 Mar 25
99 1132 Mar 3 100 1161 Feb 12 101 1190 Jan 23 102 1219 Jan 2
103 1247 Dec 13 104 1276 Nov 23 105 1305 Nov 2 106 1334 Oct 13
107 1363 Sep 23 108 1392 Sep 2 109 1421 Aug 13 110 1450 Jul 24
111 1479 Jul 4 112 1508 Jun 13
113 1537 May 24 114 1566 May 4
115 1595 Apr 24 116 1624 Apr 3 117 1653 Mar 14 118 1682 Feb 21
119 1711 Feb 3 120 1740 Jan 13 121 1768 Dec 23 122 1797 Dec 4
123 1826 Nov 14 124 1855 Oct 25 125 1884 Oct 4 126 1913 Sep 15
127 1942 Aug 26
128 1971 Aug 6
129 2000 Jul 16
130 2029 Jun 26
131 2058 Jun 6
132 2087 May 17
133 2116 Apr 27 134 2145 Apr 7
135 2174 Mar 18 136 2203 Feb 26 137 2232 Feb 7 138 2261 Jan 17
139 2289 Dec 27 140 2318 Dec 9 141 2347 Nov 19 142 2376 Oct 28
143 2405 Oct 8 144 2434 Sep 18 145 2463 Aug 29 146 2492 Aug 8

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[2] This lunar eclipse is related to two annular solar eclipses of Solar Saros 137.

June 21, 2020 July 2, 2038

See also

Notes

  1. ^ Listing of Eclipses of cycle 130
  2. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros