Antimony telluride

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Antimony telluride
Electron micrograph of a seamless Bi2Te3/Sb2Te3 heterojunction and its atomic model (blue: Bi, green: Sb, red: Te)[1]
Other names
antimony telluride, antimony(III) telluride, antimony telluride, diantimony tritelluride
3D model (JSmol)
ECHA InfoCard 100.014.074
Molar mass 626.32 g·mol−1
Appearance grey solid
Density 6.50 g cm−3[2][3]
Melting point 620 °C (1,148 °F; 893 K)[2]
Band gap 0.21 eV[4]
Thermal conductivity 1.65 W/(m·K) (308 K)[5]
Trigonal, hR15
R3m, No. 166[6]
a = 0.4262 nm, c = 3.0435 nm
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 0.5 mg/m3 (as Sb)[7]
REL (Recommended)
TWA 0.5 mg/m3 (as Sb)[7]
Related compounds
Other anions
Other cations
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Antimony telluride is an inorganic compound with the chemical formula Sb2Te3. It is a grey crystalline solid with layered structure. Layers consist of two atomic sheets of antimony and three atomic sheets of tellurium and are held together by weak van der Waals forces. Sb2Te3 is a narrow-gap semiconductor with a band gap 0.21 eV; it is also a topological insulator, and thus exhibits thickness-dependent physical properties.[1]


Antimony telluride can be formed by the reaction of antimony with tellurium at 500–900 °C.[3]

2 Sb(l) + 3 Te(l) → Sb2Te3(l)


Like other binary chalcogenides of antimony and bismuth, Sb2Te3 has been investigated for its semiconductor properties. It can be transformed into both n-type and p-type semiconductors by doping with an appropriate dopant.[3]

Sb2Te3 forms the pseudobinary intermetallic system germanium-antimony-tellurium with germanium telluride, GeTe.[8]

Like bismuth telluride, Bi2Te3, antimony telluride has a large thermoelectric effect and is therefore used in solid state refrigerators.[3]


  1. ^ a b Eschbach, Markus; Młyńczak, Ewa; Kellner, Jens; Kampmeier, Jörn; Lanius, Martin; Neumann, Elmar; Weyrich, Christian; Gehlmann, Mathias; Gospodarič, Pika; Döring, Sven; Mussler, Gregor; Demarina, Nataliya; Luysberg, Martina; Bihlmayer, Gustav; Schäpers, Thomas; Plucinski, Lukasz; Blügel, Stefan; Morgenstern, Markus; Schneider, Claus M.; Grützmacher, Detlev (2015). "Realization of a vertical topological p–n junction in epitaxial Sb2Te3/Bi2Te3 heterostructures". Nature Communications. 6: 8816. Bibcode:2015NatCo...6E8816E. PMC 4660041Freely accessible. PMID 26572278. doi:10.1038/ncomms9816. 
  2. ^ a b Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 4.48. ISBN 1439855110. 
  3. ^ a b c d Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 581–582. ISBN 0-08-037941-9. 
  4. ^ Lefebvre, I.; Lannoo, M.; Allan, G.; Ibanez, A.; Fourcade, J.; Jumas, J. C.; Beaurepaire, E. (1987). "Electronic Properties of Antimony Chalcogenides". Physical Review Letters. 59 (21): 2471. Bibcode:1987PhRvL..59.2471L. PMID 10035559. doi:10.1103/PhysRevLett.59.2471. 
  5. ^ Yáñez-Limón, J. M.; González-Hernández, J.; Alvarado-Gil, J. J.; Delgadillo, I.; Vargas, H. (1995). "Thermal and electrical properties of the Ge:Sb:Te system by photoacoustic and Hall measurements". Physical Review B. 52 (23): 16321. Bibcode:1995PhRvB..5216321Y. doi:10.1103/PhysRevB.52.16321. 
  6. ^ Kim, Won-Sa (1997). "Solid state phase equilibria in the Pt–Sb–Te system". Journal of Alloys and Compounds. 252: 166. doi:10.1016/S0925-8388(96)02709-0. 
  7. ^ a b "NIOSH Pocket Guide to Chemical Hazards #0036". National Institute for Occupational Safety and Health (NIOSH). 
  8. ^ Wełnic, Wojciech; Wuttig, Matthias (2008). "Reversible switching in phase-change materials". Materials Today. 11 (6): 20–27. doi:10.1016/S1369-7021(08)70118-4.