Jump to content

Bolivian hemorrhagic fever

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Magic links bot (talk | contribs) at 07:35, 30 May 2017 (Replace magic links with templates per local RfC and MediaWiki RfC). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Machupo virus
Virus classification
Group:
Group V ((−)ssRNA)
Family:
Genus:
Species

Machupo virus

Bolivian hemorrhagic fever
SpecialtyInfectious disease

Bolivian hemorrhagic fever (BHF), also known as black typhus or Ordog Fever, is a hemorrhagic fever and zoonotic infectious disease originating in Bolivia after infection by Machupo virus.[1]

BHF was first identified in 1963 as an ambisense RNA virus of the Arenaviridae family,[2][3] by a research group led by Karl Johnson. The mortality rate is estimated at 5 to 30 percent. Due to its pathogenicity, Machupo virus requires Biosafety Level Four conditions, the highest level.[4]

In February and March 2007, some 20 suspected BHF cases (3 fatal) were reported to the El Servicio Departamental de Salud (SEDES) in Beni Department, Bolivia, and in February 2008, at least 200 suspected new cases (12 fatal) were reported to SEDES.[5] In November 2011, a SEDES expert involved in a serosurvey to determine the extent of Machupo virus infections in the Department after the discovery of a second confirmed case near the departmental capital of Trinidad in November, 2011, expressed concern about expansion of the virus' distribution outside the endemic zone in Mamoré and Iténez provinces.[6][7]

Epidemiology

History

The disease was first encountered in 1962, in the Bolivian village of San Joachim, hence the name "Bolivian" Hemorrhagic Fever. When initial investigations failed to find an arthropod carrier, other sources were sought before finally determining that the disease was carried by infected mice. Although mosquitoes were not the cause as originally suspected, the extermination of mosquitoes using DDT to prevent malaria proved to be indirectly responsible for the outbreak in that the accumulation of DDT in various animals along the food chain led to a shortage of cats in the village; subsequently, a mouse plague erupted in the village, leading to an epidemic.[8]

Vectors

The vector is the vesper mouse Calomys callosus, a rodent indigenous to northern Bolivia. Infected animals are asymptomatic and shed the virus in excreta, thereby infecting humans. Evidence of person-to-person transmission of BHF exists but is believed to be rare.[9]

Symptoms

The infection has a slow onset with fever, malaise, headache and muscular pains, very similar to Malaria symptoms. Petechiae (blood spots) on the upper body and bleeding from the nose and gums are observed when the disease progresses to the hemorrhagic phase, usually within seven days of onset.[9]

Prevention

Measures to reduce contact between the vesper mouse and humans may have contributed to limiting the number of outbreaks, with no cases identified between 1973 and 1994. Although there are no cures or vaccine for the disease, a vaccine developed for the genetically related Junín virus which causes Argentine hemorrhagic fever has shown evidence of cross-reactivity to Machupo virus, and may therefore be an effective prophylactic measure for people at high risk of infection. Post infection (and providing that the person survives the infection), those that have contracted BHF are usually immune to further infection of the disease.[9]

Weaponization

Bolivian hemorrhagic fever was one of three hemorrhagic fevers and one of more than a dozen agents that the United States researched as potential biological weapons before the nation suspended its biological weapons program.[10] It was also under research by the Soviet Union, under the Biopreparat bureau.[11]

Vaccine Research

Investigational vaccines exist for Argentine hemorrhagic fever and RVF; however, neither is approved by FDA or commonly available in the United States.[citation needed]

The structure of the attachment glycoprotein has been determined by X-ray crystallography and this glycoprotein is likely to be an essential component of any successful vaccine.[12]

References

  1. ^ Public Health Agency of Canada: Machupo Virus Pathogen Safety Data Sheet, http://www.phac-aspc.gc.ca/lab-bio/res/psds-ftss/machupo-eng.php, Date Modified: 2011-02-18.
  2. ^ "Machupo". Retrieved 2009-01-22.
  3. ^ Webb PA, Johnson KM, Mackenzie RB, Kuns ML (July 1967). "Some characteristics of Machupo virus, causative agent of Bolivian hemorrhagic fever". Am. J. Trop. Med. Hyg. 16 (4): 531–8. PMID 4378149.
  4. ^ Center for Food Security & Public Health and Institute for International Cooperation in Animal Biologics, Iowa State University: Viral Hemorrhagic Fevers Caused by Arenaviruses, http://www.cfsph.iastate.edu/Factsheets/pdfs/viral_hemorrhagic_fever_arenavirus.pdf, last updated: February 23, 2010.
  5. ^ Aguilar PV, Carmago W, Vargas J, Guevara C, Roca Y, Felices V, et al. Reemergence of Bolivian hemorrhagic fever, 2007–2008 [letter]. Emerg Infect Dis [serial on the Internet] 2009 Sep. Available from http://wwwnc.cdc.gov/eid/article/15/9/09-0017.htm. Accessed 2 Dec 2011.
  6. ^ "Caso confirmado de fiebre hemorrágica alerta a autoridades benianas," Los Tiempos.com, http://www.lostiempos.com/diario/actualidad/nacional/20111116/caso-confirmado-de-fiebre-hemorragica-alerta-a-autoridades_149655_310330.html, 16/11/2011.
  7. ^ "SEDES movilizado para controlar brote de fiebre hemorrágica en Beni; También se Capacita a Los Comunarios y Estudiantes," Lost Tiempos.com, http://www.lostiempos.com/diario/actualidad/nacional/20111130/sedes-movilizado-para-controlar-brote-de-fiebre-hemorragica-en_151529_314539.html, 30/11/2011.
  8. ^ Medical Microbiology 2nd edition; Mims et al. Mosby publishing 1998, p 371
  9. ^ a b c Kilgore, et al., (1995).
  10. ^ "Chemical and Biological Weapons: Possession and Programs Past and Present", James Martin Center for Nonproliferation Studies, Middlebury College, April 9, 2002, accessed November 14, 2008.
  11. ^ Alibek, Ken and Steven Handelman (1999), Biohazard: The Chilling True Story of the Largest Covert Biological Weapons Program in the World - Told from Inside by the Man Who Ran It, Random House, ISBN 0-385-33496-6.
  12. ^ Bowden, Thomas A.; Crispin, Max; Graham, Stephen C.; Harvey, David J.; Grimes, Jonathan M.; Jones, E. Yvonne; Stuart, David I. (2009-08-15). "Unusual Molecular Architecture of the Machupo Virus Attachment Glycoprotein". Journal of Virology. 83 (16): 8259–8265. doi:10.1128/JVI.00761-09. ISSN 0022-538X. PMC 2715760. PMID 19494008.

Bibliography

[1]

  1. ^ Medical Microbiology 2nd Edition Mims et al. Mosby Publishing 1998 p 371