Chlorogenic acid
Names | |
---|---|
IUPAC name
(1S,3R,4R,5R)-3-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexanecarboxylic acid
| |
Other names
3-(3,4-Dihydroxycinnamoyl)quinate
3-(3,4-Dihydroxycinnamoyl)quinic acid 3-Caffeoylquinate 3-Caffeoylquinic acid 3-CQA 3-O-Caffeoylquinic acid Chlorogenate Chlorogenic acid Heriguard 3-trans-Caffeoylquinic acid | |
Identifiers | |
| |
3D model (JSmol)
|
|
ChEBI | |
ChEMBL | |
ChemSpider | |
PubChem CID
|
|
RTECS number |
|
UNII |
|
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C16H18O9 | |
Molar mass | 354.311 g·mol−1 |
Density | 1.28 g/cm3 |
Melting point | 207 to 209 °C (405 to 408 °F; 480 to 482 K) |
Hazards | |
NFPA 704 (fire diamond) | |
Safety data sheet (SDS) | External MSDS |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Chlorogenic acid (CGA) is the ester of caffeic acid and (−)-quinic acid, functioning as an intermediate in lignin biosynthesis.[1] The term "chlorogenic acids" refers to a related polyphenol family of esters, including hydroxycinnamic acids (caffeic acid, ferulic acid and p-coumaric acid) with quinic acid.[2]
Despite the "chloro" of the name, chlorogenic acids contain no chlorine. Instead, the name comes from the Greek χλωρός (light green) and -γένος (a suffix meaning "giving rise to"), pertaining to the green color produced when chlorogenic acids are oxidized.
Chemical properties
Structurally, chlorogenic acid is the ester formed between caffeic acid and the 3-hydroxyl position of L-quinic acid.[3] Isomers of chlorogenic acid include the caffeoyl ester at other hydroxyl sites on the quinic acid ring: 4-O-caffeoylquinic acid (cryptochlorogenic acid or 4-CQA) and 5-O-caffeoylquinic acid (neochlorogenic acid or 5-CQA). The epimer at position 1 has not yet been reported.[2]
It should be noted that there is considerable ambiguity about the atom-numbering of chlorogenic acid.[4] The order of numbering of atoms on the quinic acid ring was reversed in 1976 following IUPAC guidelines, with the consequence that 3-CQA became 5-CQA, and 5-CQA became 3-CQA. This article uses the original numbering, which was exclusive prior to 1976, (chlorogenic acid being 3-CQA, while neochlorogenic acid is 5-CQA). Thereafter researchers and manufacturers have been divided, with both numbering systems in use. Even the 1976 IUPAC recommendations are not entirely satisfactory when applied to some of the less common chlorogenic acids.[5][unreliable source?]
Structures having more than one caffeic acid group are called isochlorogenic acids, and can be found in coffee.[6] There are several isomers, such as 3,4-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid[7] and cynarine (1,5-dicaffeoylquinic acid).
Chlorogenic acid is freely soluble in ethanol and acetone.
Natural occurrences
Chlorogenic acid can be found in the bamboo Phyllostachys edulis.[8] as well as in many other plants.[9]
Chlorogenic acid can be found in the shoots of common heather (Calluna vulgaris).[10]
In food
Chlorogenic acid and the related compounds cryptochlorogenic acid, and neochlorogenic acid have been found in the leaves of Hibiscus sabdariffa.[11] Isomers of chlorogenic acid are found in potatoes.[12] Chlorogenic acid is present in the flesh of eggplants,[13] peaches,[14] and prunes.[15]
Research
Taken as a dietary supplement or in coffee, chlorogenic acid has been shown in review articles to have a small reduction in blood pressure,[16][17] and remains under investigation for possible anti-inflammatory effects.[18] Chlorogenic acid has been studied as a possible chemical sensitizer involved in respiratory allergy to certain plant materials.[19]
References
- ^ Boerjan, Wout; Ralph, John; Baucher, Marie (2003). "Lignin biosynthesis". Annual Review of Plant Biology. 54: 519–546. doi:10.1146/annurev.arplant.54.031902.134938. PMID 14503002.
- ^ a b Clifford, M. N.; Johnston, K. L.; Knigh, S.; Kuhnert, N. (2003). "Hierarchical Scheme for LC-MSn Identification of Chlorogenic Acids". Journal of Agricultural and Food Chemistry. 51 (10): 2900–2911. doi:10.1021/jf026187q. PMID 12720369.
- ^ Clifford, M. N. (1999). "Chlorogenic acids and other cinnamates – nature, occurrence and dietary burden". Journal of the Science of Food and Agriculture. 79 (3): 362–372. doi:10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D.
- ^ Ventura, K. (2016). "Unremitting problems with chlorogenic acid nomenclature: a review". Química Nova. 39 (4): 530–533. doi:10.5935/0100-4042.20160063.
- ^ M. N. Clifford and L. Abranko. Some Notes on the Chlorogenic Acids. 1. Numbering and Nomenclature. ResearchGate. doi:10.13140/RG.2.2.22301.31202 2017.
- ^ Barnes, H. M.; Feldman, J. R.; White, W. V. (1950). "Isochlorogenic Acid. Isolation from Coffee and Structure Studies". J. Am. Chem. Soc. 72 (9): 4178–4182. doi:10.1021/ja01165a095.
- ^ Corse, J.; Lundin, R. E.; Waiss, A. C. (May 1965). "Identification of several components of isochlorogenic acid". Phytochemistry. 4 (3): 527–529. doi:10.1016/S0031-9422(00)86209-3.
- ^ Kweon, Mee-Hyang; Hwang, Han-Joon; Sung, Ha-Chin (2001). "Identification and Antioxidant Activity of Novel Chlorogenic Acid Derivatives from Bamboo (Phyllostachys edulis)". Journal of Agricultural and Food Chemistry. 49 (20): 4646–4652. doi:10.1021/jf010514x.
- ^ Clifford, M. N. (2003). "14. The analysis and characterization of chlorogenic acids and other cinnamates". In Santos-Buelga, C.; Williamson, G. (eds.). Methods in Polyphenol Analysis. Cambridge: Royal Society of Chemistry. pp. 314–337. ISBN 0-85404-580-5.
- ^ Jalal, Mahbubul A. F.; Read, David J.; Haslam, E. (1982). "Phenolic composition and its seasonal variation in Calluna vulgaris". Phytochemistry. 21 (6): 1397–1401. doi:10.1016/0031-9422(82)80150-7.
- ^ Zhen, Jing; Villani, Thomas S.; Guo, Yue; Qi, Yadong; Chin, Kit; Pan, Min-Hsiung; Ho, Chi-Tang; Simon, James E.; Wu, Qingli (2016). "Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves". Food Chemistry. 190: 673–680. doi:10.1016/j.foodchem.2015.06.006.
- ^ Friedman, Mendel (1997). "Chemistry, Biochemistry, and Dietary Role of Potato Polyphenols. A Review". Journal of Agricultural and Food Chemistry. 45 (5): 1523–1540. doi:10.1021/jf960900s.
- ^ Luthria, Devanand L.; Mukhopadhyay, Sudarsan (2006). "Influence of Sample Preparation on Assay of Phenolic Acids from Eggplant". J. Agric. Food Chem. 54 (1): 41–47. doi:10.1021/jf0522457.
- ^ Cheng, G. W.; Crisosto, C. H. (September 1995). "Browning Potential, Phenolic Composition, and Polyphenoloxidase Activity of Buffer Extracts of Peach and Nectarine Skin Tissue" (PDF). Journal of the American Society for Horticultural Science. 120 (5): 835–838.
- ^ Stacewicz-Sapuntzakis, M.; Bowen, P. E.; Hussain, E. A.; Damayanti-Wood, B. I.; Farnsworth, N. R. (2001). "Chemical composition and potential health effects of prunes: a functional food?". Critical Reviews in Food Science and Nutrition. 41 (4): 251–286. doi:10.1080/20014091091814. PMID 11401245.
- ^ Zhao, Y.; Wang, J.; Ballevre, O.; Luo, H.; Zhang, W. (2011). "Antihypertensive effects and mechanisms of chlorogenic acids". Hypertension Research. 35 (4): 370–374. doi:10.1038/hr.2011.195. PMID 22072103.
- ^ Onakpoya, I. J.; Spencer, E. A.; Thompson, M. J.; Heneghan, C. J. (19 June 2014). "The effect of chlorogenic acid on blood pressure: a systematic review and meta-analysis of randomized clinical trials". Journal of Human Hypertension. 29 (2): 77–81. doi:10.1038/jhh.2014.46. PMID 24943289.
- ^ Tajik, N; Tajik, M; Mack, I; Enck, P (2017). "The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature". European Journal of Nutrition. doi:10.1007/s00394-017-1379-1. PMID 28391515.
- ^ Freedman, Samuel O.; Shulman, Robert; Krupey, John; Sehon, A. H. (1964). "Antigenic properties of chlorogenic acid". The Journal of Allergy and Clinical Immunology. 35 (2): 97–107. doi:10.1016/0021-8707(64)90023-1.