From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Input/output operations per second (IOPS, pronounced eye-ops) is an input/output performance measurement used to characterize computer storage devices like hard disk drives (HDD), solid state drives (SSD), and storage area networks (SAN). Like benchmarks, IOPS numbers published by storage device manufacturers do not directly relate to real-world application performance.[1][2]


To meaningfully describe the performance characteristics of any storage device, it is necessary to specify a minimum of three metrics simultaneously: IOPS, response time, and (application) workload. Absent simultaneous specifications of response-time and workload, IOPS are essentially meaningless. In isolation, IOPS can be considered analogous to "revolutions per minute" of an automobile engine i.e. an engine capable of spinning at 10,000 RPMs with its transmission in neutral does not convey anything of value, however an engine capable of developing specified torque and horsepower at a given number of RPMs fully describes the capabilities of the engine.

The specific number of IOPS possible in any system configuration will vary greatly, depending upon the variables the tester enters into the program, including the balance of read and write operations, the mix of sequential and random access patterns, the number of worker threads and queue depth, as well as the data block sizes.[1] There are other factors which can also affect the IOPS results including the system setup, storage drivers, OS background operations etc. Also, when testing SSDs in particular, there are preconditioning considerations that must be taken into account.[3]

Performance characteristics[edit]

Random access compared to sequential access.

The most common performance characteristics measured are sequential and random operations. Sequential operations access locations on the storage device in a contiguous manner and are generally associated with large data transfer sizes, e.g. 128 kB. Random operations access locations on the storage device in a non-contiguous manner and are generally associated with small data transfer sizes, e.g. 4kB.

The most common performance characteristics are as follows:

Measurement Description
Total IOPS Total number of I/O operations per second (when performing a mix of read and write tests)
Random Read IOPS Average number of random read I/O operations per second
Random Write IOPS Average number of random write I/O operations per second
Sequential Read IOPS Average number of sequential read I/O operations per second
Sequential Write IOPS Average number of sequential write I/O operations per second

For HDDs and similar electromechanical storage devices, the random IOPS numbers are primarily dependent upon the storage device's random seek time, whereas, for SSDs and similar solid state storage devices, the random IOPS numbers are primarily dependent upon the storage device's internal controller and memory interface speeds. On both types of storage devices, the sequential IOPS numbers (especially when using a large block size) typically indicate the maximum sustained bandwidth that the storage device can handle.[1] Often sequential IOPS are reported as a simple MB/s number as follows:

(with the answer typically converted to MegabytesPerSec)

Some HDDs will improve in performance as the number of outstanding IOs (i.e. queue depth) increases. This is usually the result of more advanced controller logic on the drive performing command queuing and reordering commonly called either Tagged Command Queuing (TCQ) or Native Command Queuing (NCQ). Most commodity SATA drives either cannot do this, or their implementation is so poor that no performance benefit can be seen.[citation needed] Enterprise class SATA drives, such as the Western Digital Raptor and Seagate Barracuda NL will improve by nearly 100% with deep queues.[4] High-end SCSI drives more commonly found in servers, generally show much greater improvement, with the Seagate Savvio exceeding 400 IOPS—more than doubling its performance.[citation needed]

While traditional HDDs have about the same IOPS for read and write operations, most NAND flash-based SSDs are much slower writing than reading due to the inability to rewrite directly into a previously written location forcing a procedure called garbage collection.[5][6][7] This has caused hardware test sites to start to provide independently measured results when testing IOPS performance.

Newer flash SSDs, such as the Intel X25-E, have much higher IOPS than traditional HDD. In a test done by Xssist, using IOmeter, 4 KB random transfers, 70/30 read/write ratio, queue depth 4, the IOPS delivered by the Intel X25-E 64GB G1 started around 10000 IOPs, and dropped sharply after 8 minutes to 4000 IOPS, and continued to decrease gradually for the next 42 minutes. IOPS vary between 3000 and 4000 from around the 50th minutes onwards for the rest of the 8+ hours test run.[8] Even with the drop in random IOPS after the 50th minute, the X25-E still has much higher IOPS compared to traditional hard disk drives. Some SSDs, including the OCZ RevoDrive 3 x2 PCIe using the SandForce controller, have shown much higher sustained write performance that more closely matches the read speed.[9]


Mechanical hard drives[edit]

Block size used when testing significantly affects the number of IOPS performed by a given drive. See below for some typical performance figures:[10]

Drive(Type / RPM) IOPS

(4KB block, random)


(64KB block, random)

MB/s(64KB block, random) IOPS

(512KB block, random)

KB/s(512KB block, random) MB/s(large block, sequential)
FC / 15K 163 - 178 151 - 169 9.7 – 10.8 97 – 123 49.7 – 63.1 73.5 – 127.5
SAS / 15K 188 - 203 175 - 192 11.2 – 12.3 115 – 135 58.9 – 68.9 91.5 – 126.3
FC / 10K 142 - 151 130 – 143 8.3 – 9.2 80 – 104 40.9 – 53.1 58.1 – 107.2
SAS / 10K 142 - 151 130 – 143 8.3 – 9.2 80 – 104 40.9 – 53.1 58.1 – 107.2
SAS/SATA / 7200 73 - 79 69 - 76 4.4 – 4.9 47 – 63 24.3 – 32.1 43.4 – 97.8
SATA / 5400 57 55 3.5 44 22.6

Solid-state devices[edit]

Device Type IOPS Interface Notes
Intel X25-M G2 (MLC) SSD ~8,600 IOPS[11] SATA 3 Gbit/s Intel's data sheet[12] claims 6,600/8,600 IOPS (80 GB/160 GB version) and 35,000 IOPS for random 4 KB writes and reads, respectively.
Intel X25-E (SLC) SSD ~5,000 IOPS[13] SATA 3 Gbit/s Intel's data sheet[14] claims 3,300 IOPS and 35,000 IOPS for writes and reads, respectively. 5,000 IOPS are measured for a mix. Intel X25-E G1 has around 3 times higher IOPS compared to the Intel X25-M G2.[15]
G.Skill Phoenix Pro SSD ~20,000 IOPS[16] SATA 3 Gbit/s SandForce-1200 based SSD drives with enhanced firmware, states up to 50,000 IOPS, but benchmarking shows for this particular drive ~25,000 IOPS for random read and ~15,000 IOPS for random write.[16]
OCZ Vertex 3 SSD Up to 60,000 IOPS[17] SATA 6 Gbit/s Random Write 4 kB (Aligned)
Corsair Force Series GT SSD Up to 85,000 IOPS[18] SATA 6 Gbit/s 240 GB Drive, 555 MB/s sequential read & 525 MB/s sequential write, Random Write 4 kB Test (Aligned)
Samsung SSD 850 PRO SSD 100,000 read IOPS
90,000 write IOPS[19]
SATA 6 Gbit/s 4 KB aligned random I/O at QD32
10,000 read IOPS, 36,000 write IOPS at QD1
550 MB/s sequential read, 520 MB/s sequential write on 256 GB and larger models
550 MB/s sequential read, 470 MB/s sequential write on 128 GB model[19]
Memblaze PBlaze5 910/916 NVMe SSD[20] SSD 1000K Random Read(4KB) IOPS

303K Random Write(4KB) IOPS

PCIe (NVMe) The performance data is from PBlaze5 C916 (6.4TB) NVMe SSD.
OCZ Vertex 4 SSD Up to 120,000 IOPS[21] SATA 6 Gbit/s 256 GB Drive, 560 MB/s sequential read & 510 MB/s sequential write, Random Read 4kB Test 90K IOPS, Random Write 4kB Test 85k IOPS
(IBM) Texas Memory Systems RamSan-20 SSD 120,000+ Random Read/Write IOPS[22] PCIe Includes RAM cache
Fusion-io ioDrive SSD 140,000 Read IOPS, 135,000 Write IOPS[23] PCIe
Virident Systems tachIOn SSD 320,000 sustained READ IOPS using 4kB blocks and 200,000 sustained WRITE IOPS using 4kB blocks[24] PCIe
OCZ RevoDrive 3 X2 SSD 200,000 Random Write 4k IOPS[25] PCIe
Fusion-io ioDrive Duo SSD 250,000+ IOPS[26] PCIe
WHIPTAIL, ACCELA SSD 250,000/200,000+ Write/Read IOPS[27] Fibre Channel, iSCSI, Infiniband/SRP, NFS, SMB Flash Based Storage Array
DDRdrive X1, SSD 300,000+ (512B Random Read IOPS) and 200,000+ (512B Random Write IOPS)[28][29][30][31] PCIe
SolidFire SF3010/SF6010 SSD 250,000 4kB Read/Write IOPS[32] iSCSI Flash Based Storage Array (5RU)
Intel SSD 750 Series SSD 440,000 read IOPS
290,000 write IOPS[33][34]
NVMe over PCIe 3.0 x4, U.2 and HHHL expansion card 4 KB aligned random I/O with four workers at QD32 (effectively QD128), 1.2 TB model[34]
Up to 2.4 GB/s sequential read, 1.2 GB/s sequential write[33]
Samsung SSD 960 EVO SSD 380,000 read IOPS
360,000 write IOPS[35]
NVMe over PCIe 3.0 x4, M.2 4 kB aligned random I/O with four workers at QD4 (effectively QD16)[36], 1 TB model
14,000 read IOPS, 50,000 write IOPS at QD1
330,000 read IOPS, 330,000 write IOPS on 500 GB model
300,000 read IOPS, 330,000 write IOPS on 250 GB model
Up to 3.2 GB/s sequential read, 1.9 GB/s sequential write[35]
Samsung SSD 960 PRO SSD 440,000 read IOPS
360,000 write IOPS[35]
NVMe over PCIe 3.0 x4, M.2 4kB aligned random I/O with four workers at QD4 (effectively QD16)[36], 1 TB and 2 TB models
14,000 read IOPS, 50,000 write IOPS at QD1
330,000 read IOPS, 330,000 write IOPS on 512 GB model
Up to 3.5 GB/s sequential read, 2.1 GB/s sequential write[35]
(IBM) Texas Memory Systems RamSan-720 Appliance FLASH/DRAM 500,000 Optimal Read, 250,000 Optimal Write 4kB IOPS[37] FC / InfiniBand
OCZ Single SuperScale Z-Drive R4 PCI-Express SSD SSD Up to 500,000 IOPS[38] PCIe
WHIPTAIL, INVICTA SSD 650,000/550,000+ Read/Write IOPS[39] Fibre Channel, iSCSI, Infiniband/SRP, NFS Flash Based Storage Array
VIOLIN systems

Violin XVS 8

3RU Flash Memory Array As Low as 50μs latency | 400μs latency @ 1M IOPS | 1ms latency @ 2M IOPS Dedupe LUN - 340,000 IOPS @ 1ms Fibre Channel, ISCSI

NVMe over FC

VIOLIN systems


SSD Array IOPs up to: 400,000 at <1ms latency Fibre Channel, ISCSI 2U Dual-Controller Active/Active 8Gb FC2

4 ports per controller

(IBM) Texas Memory Systems RamSan-630 Appliance Flash/DRAM 1,000,000+ 4kB Random Read/Write IOPS[40] FC / InfiniBand
IBM FlashSystem 840 Flash/DRAM 1,100,000+ 4kB Random Read/600,000 4kB Write IOPS[41] 8G FC / 16G FC / 10G FCoE / InfiniBand Modular 2U Storage Shelf - 4TB-48TB
Fusion-io ioDrive Octal (single PCI Express card) SSD 1,180,000+ Random Read/Write IOPS[42] PCIe
OCZ 2x SuperScale Z-Drive R4 PCI-Express SSD SSD Up to 1,200,000 IOPS[38] PCIe
(IBM)Texas Memory Systems RamSan-70 Flash/DRAM 1,200,000 Random Read/Write IOPS[43] PCIe Includes RAM cache
Kaminario K2 SSD Up to 2,000,000 IOPS.[44]
1,200,000 IOPS in SPC-1 benchmark simulating business applications[45][46]
FC MLC Flash
NetApp FAS6240 cluster Flash/Disk 1,261,145 SPECsfs2008 nfsv3 IOPs using 1,440 15k disks, across 60 shelves, with virtual storage tiering.[47] NFS, SMB, FC, FCoE, iSCSI SPECsfs2008 is the latest version of the Standard Performance Evaluation Corporation benchmark suite measuring file server throughput and response time, providing a standardized method for comparing performance across different vendor platforms.
Fusion-io ioDrive2 SSD Up to 9,608,000 IOPS[48] PCIe Only via demonstration so far.
E8 Storage SSD Up to 10 million IOPS[49] 10-100Gb Ethernet Rack scale flash appliance
EMC DSSD D5 Flash Up to 10 million IOPS[50] PCIe Out of Box, up to 48 clients with high availability. PCIe Rack Scale Flash Appliance. Product discontinued. [51]
Pure Storage M50 Flash Up to 220,000 32k IOPS <1ms average latency Up to 7 GB/s bandwidth[52] 16 Gbit/s Fibre Channel 10 Gbit/s Ethernet iSCSI 10 Gbit/s Replication ports 1 Gbit/s Management ports 3U – 7U 1007 - 1447 Watts (nominal) 95 lbs (43.1 kg) fully loaded + 44 lbs per expansion shelf 5.12” x 18.94” x 29.72” chassis
Nimble Storage[53][circular reference] AF9000 Flash Up to 1.4 million IOPS 16 Gbit/s Fibre Channel 10 Gbit/s Ethernet iSCSI 10 Gbit/s 1/10 Gbit/s Management ports 3600 Watts - Up to 2,212 TB RAW capacity - up to 8 expansion shelves - 16 1/10 GBit iSCSI Mgmt Ports - optional 48 1/10 GBit iSCSI Ports - optional 96 8/16 GBit Fibrechannel Ports - Thermal (BTU - 11,792)

See also[edit]


  1. ^ a b c Lowe, Scott (2010-02-12). "Calculate IOPS in a storage array". Retrieved 2011-07-03.
  2. ^ "Getting The Hang Of IOPS v1.3". 2012-08-03. Retrieved 2013-08-15.
  3. ^ Smith, Kent (2009-08-11). "Benchmarking SSDs: The Devil is in the Preconditioning Details" (PDF). Retrieved 2015-05-05.
  4. ^ "SATA in the Enterprise - A 500 GB Drive Roundup | - Storage Reviews". 2006-07-13. Retrieved 2013-05-13.
  5. ^ Xiao-yu Hu; Eleftheriou, Evangelos; Haas, Robert; Iliadis, Ilias; Pletka, Roman (2009). "Write Amplification Analysis in Flash-Based Solid State Drives". IBM. CiteSeerX Cite journal requires |journal= (help)
  6. ^ "SSDs - Write Amplification, TRIM and GC" (PDF). OCZ Technology. Retrieved 2010-05-31.
  7. ^ "Intel Solid State Drives". Intel. Retrieved 2010-05-31.
  8. ^ "Intel X25-E 64GB G1, 4KB Random IOPS, iometer benchmark". 2010-03-27. Retrieved 2010-04-01.
  9. ^ "OCZ RevoDrive 3 x2 PCIe SSD Review – 1.5GB Read/1.25GB Write/200,000 IOPS As Little As $699". 2011-06-28. Retrieved 2011-06-30.
  10. ^ "RAID Performace Calculator -". Retrieved 2019-04-01.
  11. ^ Schmid, Patrick; Roos, Achim (2008-09-08). "Intel's X25-M Solid State Drive Reviewed". Retrieved 2011-08-02.
  12. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2010-08-12. Retrieved 2010-07-20. Cite uses deprecated parameter |deadurl= (help)CS1 maint: archived copy as title (link)
  13. ^ 1. "Intel's X25-E SSD Walks All Over The Competition : They Did It Again: X25-E For Servers Takes Off". Retrieved 2013-05-13.
  14. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2009-02-06. Retrieved 2009-03-18. Cite uses deprecated parameter |deadurl= (help)CS1 maint: archived copy as title (link)
  15. ^ "Intel X25-E G1 vs Intel X25-M G2 Random 4 KB IOPS, iometer". May 2010. Retrieved 2010-05-19.
  16. ^ a b "G.Skill Phoenix Pro 120 GB Test - SandForce SF-1200 SSD mit 50K IOPS - HD Tune Access Time IOPS (Diagramme) (5/12)". Retrieved 2013-05-13.
  17. ^
  18. ^ Force Series™ GT 240GB SATA 3 6Gb/s Solid-State Hard Drive. "Force Series™ GT 240GB SATA 3 6Gb/s Solid-State Hard Drive - Force Series GT - SSD". Retrieved 2013-05-13.
  19. ^ a b "Samsung SSD 850 PRO Specifications". Samsung Electronics. Retrieved 7 June 2017.
  20. ^ "PBlaze5 910/916 series NVMe SSD". Retrieved 2019-03-28.
  21. ^ "OCZ Vertex 4 SSD 2.5" SATA 3 6Gb/s". Retrieved 2013-05-13.
  22. ^ "IBM System Storage - Flash: Overview". Retrieved 2013-05-13.
  23. ^ "Home - Fusion-io Community Forum". Retrieved 2013-05-13.
  24. ^ "Virident's tachIOn SSD flashes by".
  25. ^ "OCZ RevoDrive 3 X2 480GB Review | - Storage Reviews". 2011-06-28. Retrieved 2013-05-13.
  26. ^ "Home - Fusion-io Community Forum". Retrieved 2013-05-13.
  27. ^ "Products". Whiptail. Retrieved 2013-05-13.
  28. ^
  29. ^
  30. ^
  31. ^ Allyn Malventano (2009-05-04). "DDRdrive hits the ground running - PCI-E RAM-based SSD | PC Perspective". Retrieved 2013-05-13.
  32. ^ "SSD Cloud Storage System - Examples & Specifications". SolidFire. Retrieved 2013-05-13.
  33. ^ a b "Intel® SSD 750 Series (1.2TB, 2.5in PCIe 3.0, 20nm, MLC) Specifications". Intel® ARK (Product Specs). Retrieved 2015-11-17.
  34. ^ a b Intel (October 2015). "Intel SSD 750 Series Product Specification" (PDF). p. 8. Retrieved 9 June 2017. Performance measured by Intel using IOMeter on Intel provided NVMe driver with Queue Depth 128 (QD=32, workers=4).
  35. ^ a b c d Samsung Electronics. "NVMe SSD 960 PRO/EVO". Retrieved 7 June 2017.
  36. ^ a b Ramseyer, Chris. "Samsung 960 Pro SSD Review". Tom's Hardware. Retrieved 9 June 2017. Samsung tests NVMe products with four workers at QD4
  37. ^ 8.
  38. ^ a b "OCZ Technology Launches Next Generation Z-Drive R4 PCI Express Solid State Storage Systems". OCZ. 2011-08-02. Retrieved 2011-08-02.
  39. ^ "Products". Whiptail. Retrieved 2013-05-13.
  40. ^ "IBM flash storage and solutions: Overview". Retrieved 2013-11-14.
  41. ^ "IBM flash storage and solutions: Overview". Retrieved 2014-05-21.
  42. ^ "ioDrive Octal". Fusion-io. Retrieved 2013-11-14.
  43. ^ "IBM flash storage and solutions: Overview". Retrieved 2013-11-14.
  44. ^ Lyle Smith. "Kaminario Boasts Over 2 Million IOPS and 20 GB/s Throughput on a Single All-Flash K2 Storage System".
  45. ^ Mellor, Chris (2012-07-30). "Chris Mellor, The Register, July 30, 2012: "Million-plus IOPS: Kaminario smashes IBM in DRAM decimation"". Retrieved 2013-11-14.
  46. ^ Storage Performance Council. "Storage Performance Council: Active SPC-1 Results".
  47. ^ "SpecSFS2008". Retrieved 2014-02-07.
  48. ^ "Achieves More Than Nine Million IOPS From a Single ioDrive2". Fusion-io. Retrieved 2013-11-14.
  49. ^ "E8 Storage 10 million IOPS claim". TheRegister. Retrieved 2016-02-26.
  50. ^ "Rack-Scale Flash Appliance - DSSD D5 EMC". EMC. Retrieved 2016-03-23.
  51. ^
  52. ^ "Pure Storage Datasheet" (PDF).
  53. ^ Nimble Storage