Isotopes of promethium
| ||||||||||||||||||||||||||||||
Promethium (61Pm) is an artificial element, except in trace quantities as a product of spontaneous fission of 238U and 235U and alpha decay of 151Eu, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was first synthesized in 1945.
Thirty-eight radioisotopes have been characterized, with the most stable being 145Pm with a half-life of 17.7 years, 146Pm with a half-life of 5.53 years, and 147Pm with a half-life of 2.6234 years. All of the remaining radioactive isotopes have half-lives that are less than 365 days, and the majority of these have half-lives that are less than 30 seconds. This element also has 18 meta states with the most stable being 148mPm (t1/2 41.29 days), 152m2Pm (t1/2 13.8 minutes) and 152mPm (t1/2 7.52 minutes).
The isotopes of promethium range in atomic weight from 125.95752 u (126Pm) to 162.95368 u (163Pm). The primary decay mode before the longest-lived isotope, 145Pm, is electron capture, and the primary mode after is beta decay. The primary decay products before 145Pm are isotopes of neodymium and the primary products after are isotopes of samarium.
Stability of promethium isotopes
Promethium is one of the two elements of the first 82 elements that have no stable isotopes; the other is technetium (Z = 43). This is a rarely occurring effect of the liquid drop model.
Promethium-147
Promethium-147 has a half-life of 2.62 years, and is a fission product produced in nuclear reactors via beta decay from neodymium-147. The isotopes 142Nd, 143Nd, 144Nd, 145Nd, 146Nd, 148Nd, and 150Nd are either stable or nearly so, so the isotopes of promethium with those masses cannot be produced by beta decay and therefore are not fission products in significant quantities. 149Pm and 151Pm have half-lives of only 53.08 and 28.40 hours, so are not found in spent nuclear fuel that has been cooled for months or years.
Promethium-147 is used as a beta particle source and a radioisotope thermoelectric generator (RTG) fuel; its power density is about 2 watts per gram. Mixed with a phosphor, it was used to illuminate Apollo Lunar Module electrical switch tips and painted on control panels of the Lunar Roving Vehicle.[2]
List of isotopes
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s)[3][n 1] |
daughter isotope(s)[n 2] |
nuclear spin and parity |
---|---|---|---|---|---|---|---|
excitation energy | |||||||
126Pm | 61 | 65 | 125.95752(54)# | 0.5# s | |||
127Pm | 61 | 66 | 126.95163(64)# | 1# s | 5/2+# | ||
128Pm | 61 | 67 | 127.94842(43)# | 1.0(3) s | β+ | 128Nd | 6+# |
p | 127Nd | ||||||
129Pm | 61 | 68 | 128.94316(43)# | 3# s [>200 ns] | β+ | 129Nd | 5/2+# |
130Pm | 61 | 69 | 129.94045(32)# | 2.6(2) s | β+ | 130Nd | (5+,6+,4+) |
β+, p (rare) | 129Pr | ||||||
131Pm | 61 | 70 | 130.93587(21)# | 6.3(8) s | β+, p | 130Pr | 5/2+# |
β+ | 131Nd | ||||||
132Pm | 61 | 71 | 131.93375(21)# | 6.2(6) s | β+ | 132Nd | (3+) |
β+, p (5×10−5%) | 131Pr | ||||||
133Pm | 61 | 72 | 132.92978(5) | 15(3) s | β+ | 133Nd | (3/2+) |
133mPm | 130.4(10) keV | 10# s | β+ | 133Nd | (11/2−) | ||
IT | 133Pm | ||||||
134Pm | 61 | 73 | 133.92835(6) | 22(1) s | β+ | 134Nd | (5+) |
134mPm | 0(100)# keV | ~5 s | IT | 134Pm | (2+) | ||
135Pm | 61 | 74 | 134.92488(6) | 49(3) s | β+ | 135Nd | (5/2+,3/2+) |
135mPm | 50(100)# keV | 40(3) s | β+ | 135Nd | (11/2−) | ||
136Pm | 61 | 75 | 135.92357(8) | 107(6) s | β+ | 136Nd | (5−) |
136mPm | 130(120) keV | 47(2) s | β+ | 136Nd | (2+) | ||
137Pm | 61 | 76 | 136.920479(14) | 2# min | β+ | 137Nd | 5/2+# |
137mPm | 150(50) keV | 2.4(1) min | β+ | 137Nd | 11/2− | ||
138Pm | 61 | 77 | 137.919548(30) | 10(2) s | β+ | 138Nd | 1+# |
138mPm | 30(30) keV | 3.24(5) min | β+ | 138Nd | 5−# | ||
139Pm | 61 | 78 | 138.916804(14) | 4.15(5) min | β+ | 139Nd | (5/2)+ |
139mPm | 188.7(3) keV | 180(20) ms | IT (99.83%) | 139Pm | (11/2)− | ||
β+ (0.17%) | 139Nd | ||||||
140Pm | 61 | 79 | 139.91604(4) | 9.2(2) s | β+ | 140Nd | 1+ |
140mPm | 420(40) keV | 5.95(5) min | β+ | 140Nd | 8− | ||
141Pm | 61 | 80 | 140.913555(15) | 20.90(5) min | β+ | 141Nd | 5/2+ |
141m1Pm | 628.40(10) keV | 630(20) ns | 11/2− | ||||
141m2Pm | 2530.9(5) keV | >2 µs | |||||
142Pm | 61 | 81 | 141.912874(27) | 40.5(5) s | β+ | 142Nd | 1+ |
142mPm | 883.17(16) keV | 2.0(2) ms | IT | 142Pm | (8)− | ||
143Pm | 61 | 82 | 142.910933(4) | 265(7) d | β+ | 143Nd | 5/2+ |
144Pm | 61 | 83 | 143.912591(3) | 363(14) d | β+ | 144Nd | 5− |
144m1Pm | 840.90(5) keV | 780(200) ns | (9)+ | ||||
144m2Pm | 8595.8(22) keV | ~2.7 µs | (27+) | ||||
145Pm | 61 | 84 | 144.912749(3) | 17.7(4) y | EC | 145Nd | 5/2+ |
α (2.8×10−7%) | 141Pr | ||||||
146Pm | 61 | 85 | 145.914696(5) | 5.53(5) y | EC (66%) | 146Nd | 3− |
β− (34%) | 146Sm | ||||||
147Pm[n 3] | 61 | 86 | 146.9151385(26) | 2.6234(2) y | β− | 147Sm | 7/2+ |
148Pm | 61 | 87 | 147.917475(7) | 5.368(2) d | β− | 148Sm | 1− |
148mPm | 137.9(3) keV | 41.29(11) d | β− (95%) | 148Sm | 5−,6− | ||
IT (5%) | 148Pm | ||||||
149Pm[n 3] | 61 | 88 | 148.918334(4) | 53.08(5) h | β− | 149Sm | 7/2+ |
149mPm | 240.214(7) keV | 35(3) µs | 11/2− | ||||
150Pm | 61 | 89 | 149.920984(22) | 2.68(2) h | β− | 150Sm | (1−) |
151Pm[n 3] | 61 | 90 | 150.921207(6) | 28.40(4) h | β− | 151Sm | 5/2+ |
152Pm | 61 | 91 | 151.923497(28) | 4.12(8) min | β− | 152Sm | 1+ |
152m1Pm | 140(90) keV | 7.52(8) min | 4− | ||||
152m2Pm | 250(150)# keV | 13.8(2) min | (8) | ||||
153Pm | 61 | 92 | 152.924117(12) | 5.25(2) min | β− | 153Sm | 5/2− |
154Pm | 61 | 93 | 153.92646(5) | 1.73(10) min | β− | 154Sm | (0,1) |
154mPm | 120(120) keV | 2.68(7) min | β− | 154Sm | (3,4) | ||
155Pm | 61 | 94 | 154.92810(3) | 41.5(2) s | β− | 155Sm | (5/2−) |
156Pm | 61 | 95 | 155.93106(4) | 26.70(10) s | β− | 156Sm | 4− |
157Pm | 61 | 96 | 156.93304(12) | 10.56(10) s | β− | 157Sm | (5/2−) |
158Pm | 61 | 97 | 157.93656(14) | 4.8(5) s | β− | 158Sm | |
159Pm | 61 | 98 | 158.93897(21)# | 1.47(15) s | β− | 159Sm | 5/2−# |
160Pm | 61 | 99 | 159.94299(32)# | 2# s | β− | 160Sm | |
161Pm | 61 | 100 | 160.94586(54)# | 700# ms | β− | 161Sm | 5/2−# |
162Pm | 61 | 101 | 161.95029(75)# | 500# ms | β− | 162Sm | |
163Pm | 61 | 102 | 162.95368(86)# | 200# ms | β− | 163Sm | 5/2−# |
- ^ Abbreviations:
EC: Electron capture
IT: Isomeric transition - ^ Bold for stable isotopes, bold italics for nearly-stable isotopes (half-life longer than the age of the universe)
- ^ a b c Fission product
Notes
- Values marked # are not purely derived from experimental data, but at least partly estimated from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
References
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ "Apollo Experience Report - Protection Against Radiation" (PDF). NASA. Retrieved 9 December 2011.
- ^ "Universal Nuclide Chart". nucleonica.
{{cite web}}
: Unknown parameter|registration=
ignored (|url-access=
suggested) (help)
- Isotope masses from:
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
{{cite journal}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help)
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
- Isotopic compositions and standard atomic masses from:
- J. R. de Laeter; J. K. Böhlke; P. De Bièvre; H. Hidaka; H. S. Peiser; K. J. R. Rosman; P. D. P. Taylor (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- M. E. Wieser (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
{{cite journal}}
: Unknown parameter|laysummary=
ignored (help)
- Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
{{cite journal}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help) - National Nuclear Data Center. "NuDat 2.1 database". Brookhaven National Laboratory. Retrieved September 2005.
{{cite web}}
: Check date values in:|accessdate=
(help) - N. E. Holden (2004). "Table of the Isotopes". In D. R. Lide (ed.). CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. Section 11. ISBN 978-0-8493-0485-9.
{{cite book}}
: Unknown parameter|nopp=
ignored (|no-pp=
suggested) (help)
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.