Talk:List of largest exoplanets/workpage

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
A comparison of hot Jupiter exoplanets. Hot Jupiters are usually some of the largest exoplanets known.

Below is a list of the largest exoplanets so far discovered (and possible candidates), in terms of physical size, ordered by radius and separated into categories by types. The units of measurement used are the radius of Jupiter (71,492 km; 44,423 mi) for the largest gas giants, and the radius of Earth (6,378.137 km; 3,963.191 mi) for the largest terrestrial planets.[a]

Overview[edit]

Young gas giants (and as well as brown dwarfs) before contracting.

Planets are celestial bodies that is massive enough for its self-gravity to achieve hydrostatic equilibrium and rounded. Any planet that are outside Earth's Solar System is called an exoplanet or extrasolar planet. Gas giants are the largest type of planets, but not enough to sustain core fusion like a star, thus are sometimes called failed stars. It is believed that when Jupiter formed about 4.6 billion years ago, it was about twice its current size, or about 140,000 km (87,000 mi) in radius.[1] It is currently still shrinking by about 1 mm (0.039 in)/yr.[2][3]

Many hot Jupiters were discovered to have radii in excess of 1.2 times that of Jupiter (RJ, RJup).[4] Before cooling and contracting.[4] Although hot Jupiters can be very large, there are theoretical reasons their radii cannot exceed approximately 2.2 RJ, which is in good agreement with the current observations.[4]

Among terrestrial planets, super-Earths below 10 M🜨 1.5–2 R🜨. Terrestrial planets above this mass have been discovered though, and were therefore dubbed "mega-Earths". However, it is estimated that most planets above 2.4 R🜨 have large hydrogen envelops, leaving only a small minority of them being massive mega-Earths.[5] It is possible that some mega-Earths would be the remnant cores of a Jupiter-like or Neptune-like planets,[5] to which those objects are also known as "chthonian planets". Studies suggested that massive solid planets and hundreds of thousands of blanets may be able to form around massive stars and supermassive black holes inside active galactic nuclei with masses up to approximately 4,000 M🜨 or 13 MJup, which is used in the IAU's working definition of an exoplanet.[6][7][8] In comparison, the mass of Jupiter is 318 M🜨. The maximum radius of a such planet is roughtly R🜨 (for homogenous water ice planets)[6][b] or 10 R🜨 for a planet with an average internal density similar to that of the Earth,[8] because mass above 1,000 M🜨 would causes the planet to compress due to the hydrostatic equilibrium, hence decreasing its radius.[6]

Lists[edit]

Caveats[edit]

Key
Candidate or controversal
Potentially brown dwarfs or sub-brown dwarfs
Confirmed planets
Potentially remnant cores

Those lists of extrasolar objects may and will change over time because of inconsistency between journals, different methods used to examine these objects and the already extremely hard task of discovering exoplanets, or any other large objects for that matter. Then there is the fact that these objects might be brown dwarfs, sub-brown dwarfs, or not exist at all. Because of this, this list only cites the best measurements to date and is prone to change.

Brown dwarf. Some of planetary-mass objects such as OTS 44 might be even sub-brown dwarfs. The mass estimates are also included in the lists.

Gas giants[edit]

All planets listed are larger than 1.7 times the size of the largest planet in the Solar System, Jupiter. Some planets that are smaller than 1.7 RJ have been included for the sake of comparison.

Exoplanets with radii greater than 1.7 RJup
Exoplanet name/designation Radius
(in Jupiter radius)
Method Mass
(in Jupiter mass)
Notes
(Brown dwarf limit) 8[9]
Proplyd 133-353 7.4–8.0[10][c] 2–28[10][c] Located in the Orion Nebula Cluster, and one of the youngest substellar objects known (0.5 Ma) with a proplyd or an evaporating gaseous globule at below.[10][c]
GQ Lupi b 4.20+0.25
−0.13
[11]
22+2
−3
[11]
Surrounded by a protolunar disk in a transitional stage.[12]
HD 100546 b 3.4[13] ≤1.65[14]
DH Tauri b 2.68+0.21
−0.22
[15]
14.2+2.4
−3.5
[15]
Potentially orbited by a candidate Jupiter-mass companion (possibly an exomoon).[16]
PZ Telescopii b 2.42+0.28
−0.34
[17]
27+25
−9
[18]
This might be the first exoplanet to be directly imaged, but evolutionary models suggest it is very likely a brown dwarf instead.[17]
CT Chamaeleontis b 2.4[19] 19±5[20]
SR 12 c 2.38+0.32
−0.27
[21]
13±2[21]
ROXs 12 b 2.31+0.10
−0.18
[21]
17.5±1.5[21]
The above radii are larger than what planetary evolution theory predicts, and are thus potentially unreliable, although objects above might be brown dwarfs instead.
(Theoretical limit) 2.2[4] Theoretical limit for hot Jupiters close to a star, that are limited by tidal heating, resulting in 'runaway inflation'.
ROXs 42Bb 2.11±0.11[15][21] 10±4[22]
HAT-P-67b 2.085+0.096
−0.071
[23]
0.34+0.25
−0.19
[23]
XO-6b 2.08±0.18[24] 2.01±0.71[24]
HAT-P-41b 2.05±0.50[25] 1.19±0.60[25]
HIP 65 Ab 2.03+0.61
−0.49
[26]
3.213±0.0078[26]
Kepler-435b 1.99±0.18[27] 0.84±0.15[27]
PDS 70 c 1.98+0.39
−0.31
[28]
7.5–7.8[28] Orbited by a confirmed moon-forming circumplanetary disk.
HAT-P-32b 1.980±0.045[29] 0.68+0.11
−0.10
[29]
PDS 70 b 1.96+0.20
−0.17
[28]
3.2–7.9[28] Co-orbited by a cloud of debris of 0.03-2 times that of the Moon, which may include a Trojan planet or one in the process of forming.[30][31]
WASP-178b (KELT-26b)[32] 1.940+0.060
−0.058
[33]
1.41+0.43
−0.51
[33]
WASP-12b 1.937±0.056[34] 1.465±0.076[34] This planet is so close to its parent star that its tidal forces are distorting it into an egg shape. As of September 2017, it has been described as "black as asphalt", and as a "pitch black" hot Jupiter as it absorbs 94% of the light that shines on its surface.
KELT-9b 1.926±0.047[35] 2.17±0.56[36] One of the hottest exoplanets known.
HAT-P-65b 1.89±0.13[37][38] 0.527±0.083[37][38]
TOI-1518 b 1.875±0.053[39] <2.3[39]
HAT-P-33b 1.87+0.26
−0.20
[40]
0.72+0.13
−0.12
[40]
WASP-17b (Ditsö̀) 1.87±0.24[25] 0.78±0.23[25]
HAT-P-70b 1.87+0.15
−0.10
[41]
<6.78[41]
HATS-23b 1.86+0.30
−0.40
[42]
1.470±0.072[42]
CFHTWIR-Oph 98 b 1.86±0.05[43] 7.8+0.7
−0.8
[43]
WASP-78b 1.84±0.10[44] 1.11±0.54[25]
MASCARA-2 b (KELT-20b) 1.83±0.07[45] <17[45] One of most massive hot Jupiters known.
WASP-76b 1.83+0.06
−0.04
[46]
0.92±0.03[46] The tidally-locked planet where winds move 18,000 km/h, and where molten iron rains from the sky due to daytime temperatures exceeding 2,400 °C (4,350 °F).[47][48]
KOI-368 b 1.83±0.02[49] ? Controversial[50][unreliable source?]
WASP-79b (Pollera) 1.82+0.32
−0.23
[51]
0.843+0.085
−0.080
[51]
TYC 8998-760-1 b 1.82±0.08[52] 14.0±3.0[53]
KELT-19 Ab 1.794±0.097[54] <4.10[54]
KELT-12b 1.79+0.18
−0.17
[55]
0.95±0.14[55]
TOI-640 b 1.771+0.060
−0.056
[56]
0.880±0.160[56]
WASP-121b 1.753±0.036[57] 1.157±0.070[57]
HATS-26b 1.75±0.21[58] 0.650±0.076[58]
Kepler-12b 1.7455+0.0765
−0.0724
[59]
0.432+0.053
−0.051
[60]
WASP-122b (KELT-14b) 1.743±0.047[61] 1.284±0.032[61]
KELT-15b 1.74±0.20[25] 1.31±0.43[25]
HAT-P-57b 1.74±0.36[25] 1.41±1.52[25]
HAT-P-64b 1.703±0.070[62] 0.58+0.18
−0.13
[62]
OTS 44 1.7–3.8[63] 6–17[63] Very likely a brown dwarf[64] or sub-brown dwarf,[65] which it may be the least massive free-floating substellar objects. It is surrounded by a circumstellar disk.
Cha 110913-773444 1.7–2.4[63] 5–13[63] A rogue planet (likely a sub-brown dwarf) that is surrounded by a protoplanetary disk. It is one of youngest free-floating substellar objects with 0.5–10 Myr.
Qatar-7b 1.70±0.03[66] 1.88±0.25[66]
A few additional examples with radii lower than 1.7 RJ.
1RXS 1609b 1.664[67] 8–12[68]
TrES-4b 1.61±0.18[25] 0.78±0.19[25] Once descirbed to be the largest and least dense known transiting exoplanet at the time of its discovery.[69]
AB Aurigae b 1.6[70] – 2.75[71] 9–12[70][71] Likely formed via disk instability, given the core accretion model would have difficulty forming massive gas giants at the planet's large distance from its host star.
Kepler-7b 1.5743+0.0749
−0.0708
[59]
0.449+0.051
−0.048
[51]
Beta Pictoris b 1.46±0.01[72] 11.729+2.337
−2.135
[73]
Likely the second most massive object in its namesake system.
HD 209458 b 1.39±0.02[25] 0.682+0.014
−0.015
[51]
The first exoplanet whose size was determined. Named after a prominent Egyptian deity, 'Osiris'.
PSO J318.5−22 1.38±0.02[74][75] 6.92±0.68[74][75] An extrasolar object that does not seem to be orbiting any stellar mass, see: rogue planet.
Kepler-13 Ab (KOI-13b) 1.33±0.05[76] 1.47±0.17[76]
TrES-2b (Kepler-1b) 1.229±0.065[77] 1.253±0.053[77] Darkest known exoplanet due to an extremely low geometric albedo. It absorbs 99% of light.
51 Pegasi b (Dimidium) 1.2±0.1[78] 0.46±0.02[78] First exoplanet to be discovered orbiting a main-sequence star. Prototype hot Jupiter.
HR 2562 b 1.11±0.11 29±15[79]
Kepler-39b 1.07±0.03[80] 19.0±1.3[80] One of the most massive exoplanets known.
Jupiter 1 1 Largest planet in the Solar System, both by radius and mass.[81]
Reported for reference

Terrestrial planets[edit]

All planets listed are larger than 1.5 times the size of the largest terrestrial planet in the Solar System, Earth.

Exoplanet name/designation Radius
(in Earth radius)
Method Mass
(in Earth mass)
Notes
PSR J1719−1438 b 4.55–4.87 400–489 It may be considered instead a ultra-low-mass white dwarf
TOI-849 b 3.44+0.16
−0.12
[82]
39.09+2.66
−2.55
[82]
Most likely the remnant core of a super-Neptune or gas giant, given it have no terrestrial composition and instead matches the Rock–Ice giant composition class. Despite that, it falls below the pure-water composition line on the Mass-Radius diagram, and thus would be classified as a terrestrial planet.
Kepler-277c 3.36[83] 64.24[83]
Kepler-277b 2.92[83] 87.395[83]
Kepler-145b 2.65[84] 37.1[84]
(Hycean world limit) 2.60[83] Maximum radius for the most massive hycean worlds of about 10 ME.[83] Less massive hycean worlds have lower maximum radii limit.[83]
(Ocean world limit) ~2.6[85][86] Maximum radius for the most massive ocean worlds of about 10–12 ME.[83]
K2-18b 2.51+0.13
−0.18
[83]
8.63±1.35[83]
K2-66b 2.49[84] 21.3[84]
TOI-732 b 2.42±0.10[83] 6.29+0.63
−0.61
[83]
TOI-270 c 2.33±0.07[83] 6.14±0.38[83]
Kepler-22b 2.25±0.05[87] 6.21[88]
BD+20 594b 2.23[89] 16.3[89]
K2-3b 2.12+0.12
−0.17
[83]
6.48+0.99
−0.93
[83]
TOI-776 b 2.02±0.14[83] 5.30±1.80[83]
TOI-270 d 2.00±0.05[90] 4.20±0.16[90]
55 Cancri e (Janssen) 1.875±0.029Cite error: The opening <ref> tag is malformed or has a bad name (see the help page). 7.99+0.32
−0.33
Cite error: The opening <ref> tag is malformed or has a bad name (see the help page).
(Rocky planet limit) 1.76±0.38[91] This is the mean radius for rocky planets below 10 ME (manly composed of silicate rocks or metals) around Sun-like stars between 4,700 K and 6,300 K. Between 1.5 R🜨 to 2 R🜨, there is a dichotomy between rocky and gas-enveloped planets (or possible water worlds).
CoRoT-7b 1.528±0.065[92] 6.056±0.653[92]
Kepler-452b 1.511±0.14[87] 5±2[93]
Earth 1 1 Largest terrestrial planet in the Solar System, both by radius and mass.

See also[edit]

Notes[edit]

  1. ^ While some papers use rather the average radii for Jupiter and Earth,.
  2. ^ Stated in Figure 4 in the cited reference.
  3. ^ a b c Based on the estimated temperature and luminosity. More information about the exoplanet and estimates of its radius are available below:
    • Using PMS evolutionary models and a potential higher age of 1 million year (Myr), the luminosity would be lower, and the planet would be smaller. However, this would require for the object to be closer as well, which is unlikely. Another distance estimate to the Orion Nebula Cluster would result in a luminosity 1.14 times lower and also a smaller radius.
    • Instead of a photo-evaporating disk it may be an evaporating gaseous globule (EGG). If so, it has a mass of 2 - 28 MJ.
    • A calculated radius thus does not need to be the radius of the (dense) core.[10]

References[edit]

  1. ^ Bodenheimer, P. (1974). "Calculations of the early evolution of Jupiter". Icarus. 23. 23 (3): 319–325. Bibcode:1974Icar...23..319B. doi:10.1016/0019-1035(74)90050-5.
  2. ^ Irwin, Patrick G. J. (2009) [2003]. Giant Planets of Our Solar System: Atmospheres, Composition, and Structure (Second ed.). Springer. p. 4. ISBN 978-3-642-09888-8. the radius of Jupiter is estimated to be currently shrinking by approximately 1 mm/yr.
  3. ^ Guillot, Tristan; Stevenson, David J.; Hubbard, William B.; Saumon, Didier (2004). "Chapter 3: The Interior of Jupiter". In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press. ISBN 978-0-521-81808-7.
  4. ^ a b c d Hou, Qiang; Wei, Xing (2022). "Why hot Jupiters can be large but not too large". Monthly Notices of the Royal Astronomical Society. 511 (3): 3133–3137. arXiv:2201.07008. doi:10.1093/mnras/stac169.
  5. ^ a b Modirrousta-Galian, Darius; Locci, Daniele; Micela, Giuseppina (2020). "The Bimodal Distribution in Exoplanet Radii: Considering Varying Core Compositions and H2 Envelope's Sizes". The Astrophysical Journal. 891 (2): 158. arXiv:2002.02166. Bibcode:2020ApJ...891..158M. doi:10.3847/1538-4357/ab7379.
  6. ^ a b c Seager, S.; Kuchner, M.; Hier‐Majumder, C. A.; Militzer, B. (2007). "Mass‐Radius Relationships for Solid Exoplanets". The Astrophysical Journal. 669 (2): 1279–1297. arXiv:0707.2895. Bibcode:2007ApJ...669.1279S. doi:10.1086/521346. S2CID 8369390.
  7. ^ Wada, K.; Tsukamoto, Y.; Kokubo, E. (26 November 2019). "Planet Formation around Supermassive Black Holes in the Active Galactic Nuclei". The Astrophysical Journal. 886 (2): 107. arXiv:1909.06748. Bibcode:2019ApJ...886..107W. doi:10.3847/1538-4357/ab4cf0.
  8. ^ a b Wada, K.; Tsukamoto, Y.; Kokubo, E. (2021). "Formation of "Blanets" from Dust Grains around the Supermassive Black Holes in Galaxies". The Astrophysical Journal. 909 (1): 96. arXiv:2007.15198. Bibcode:2021ApJ...909...96W. doi:10.3847/1538-4357/abd40a. S2CID 220870610.
  9. ^ Chabrier, G.; Johansen, A.; Janson, M.; Rafikov, R. (2014). "Giant Planet and Brown Dwarf Formation". Protostars and Planets VI. arXiv:1401.7559. doi:10.2458/azu_uapress_9780816531240-ch027. ISBN 9780816531240. S2CID 67776527.
  10. ^ a b c d Fang, Min; Kim, Jinyoung Serena; Pascucci, Ilaria; Apai, Dániel; Manara, Carlo Felice (2016-12-12). "A candidate planetary-mass object with a photoevaporating disk in Orion". The Astrophysical Journal. 833 (2): L16. arXiv:1611.09761. Bibcode:2016ApJ...833L..16F. doi:10.3847/2041-8213/833/2/L16. ISSN 2041-8213.
  11. ^ a b Demars, D.; Bonnefoy, M.; Dougados, C.; Aoyama, Y.; Thanathibodee, T.; Marleau, G. -D.; Tremblin, P.; Delorme, P.; Palma-Bifani, P.; Petrus, S.; Bowler, B. P.; Chauvin, G.; Lagrange, A. -M. (21 August 2023). "Emission line variability of young 10-30 MJup companions. I. The case of GQ Lup b and GSC 06214-00210 b". Astronomy & Astrophysics. 676: 22. arXiv:2305.09460. Bibcode:2023A&A...676A.123D. doi:10.1051/0004-6361/202346221. ISSN 0004-6361. S2CID 258714632.
  12. ^ Stolker, Tomas; Haffert, Sebastiaan Y.; Kesseli, Aurora Y.; Van Holstein, Rob G.; Aoyama, Yuhiko; Brinchmann, Jarle; Cugno, Gabriele; Girard, Julien H.; Marleau, Gabriel-Dominique; Meyer, Michael R.; Milli, Julien; Quanz, Sascha P.; Snellen, Ignas A. G.; Todorov, Kamen O.; Todorov, Kamen O. (2021). "Characterizing the Protolunar Disk of the Accreting Companion GQ Lupi B". The Astronomical Journal. 162 (6): 286. arXiv:2110.04307. Bibcode:2021AJ....162..286S. doi:10.3847/1538-3881/ac2c7f.
  13. ^ . Bibcode:2017PhDT.......406S. {{cite journal}}: Cite journal requires |journal= (help); Missing or empty |title= (help)
  14. ^ Pineda, Jaime E.; Szulágyi, Judit; Quanz, Sascha P.; Van Dishoeck, Ewine F.; Garufi, Antonio; Meru, Farzana; Mulders, Gijs D.; Testi, Leonardo; Meyer, Michael R.; Reggiani, Maddalena (2019). "High-resolution ALMA Observations of HD 100546: Asymmetric Circumstellar Ring and Circumplanetary Disk Upper Limits". The Astrophysical Journal. 871 (1): 48. arXiv:1811.10365. Bibcode:2019ApJ...871...48P. doi:10.3847/1538-4357/aaf389.
  15. ^ a b c Xuan, Jerry W.; Bryan, Marta L.; Knutson, Heather A.; Bowler, Brendan P.; Morley, Caroline V.; Benneke, Björn (2020-02-10). "A Rotation Rate for the Planetary-Mass Companion DH Tau b". The Astronomical Journal. 159 (3): 97. arXiv:2001.01759. Bibcode:2020AJ....159...97X. doi:10.3847/1538-3881/ab67c4. ISSN 1538-3881. S2CID 210023665.
  16. ^ Lazzoni, C.; et al. (20 July 2020). "The search for disks or planetary objects around directly imaged companions: A candidate around DH Tau B". Astronomy & Astrophysics. 641: A131. arXiv:2007.10097. Bibcode:2020A&A...641A.131L. doi:10.1051/0004-6361/201937290. S2CID 220647289.
  17. ^ a b Schmidt, T. O. B.; Mugrauer, M.; Neuhäuser, R.; Vogt, N.; Witte, S.; Hauschildt, P. H.; Helling, Ch.; Seifahrt, A. (2014). "First spectroscopic observations of the substellar companion of the young debris disk star PZ Telescopii". Astronomy & Astrophysics. 566: A85. arXiv:1404.2870. Bibcode:2014A&A...566A..85S. doi:10.1051/0004-6361/201321625. S2CID 119074837.
  18. ^ Franson, Kyle; Bowler, Brendan P. (June 2023). "Dynamical Mass of the Young Brown Dwarf Companion PZ Tel B". The Astronomical Journal. 165 (6): 246. arXiv:2304.01302. Bibcode:2023AJ....165..246F. doi:10.3847/1538-3881/acca18.
  19. ^ Wu, Ya-Lin; Close, Laird M.; Males, Jared R.; Barman, Travis S.; Morzinski, Katie M.; Follette, Katherine B.; Bailey, Vanessa; Rodigas, Timothy J.; Hinz, Philip; Puglisi, Alfio; Xompero, Marco; Briguglio, Runa (2015). "New Extinction and Mass Estimates from Optical Photometry of the Very Low Mass Brown Dwarf Companion Ct Chamaeleontis B with the Magellan Ao System". The Astrophysical Journal. 801 (1): 4. arXiv:1501.01396. Bibcode:2015ApJ...801....4W. doi:10.1088/0004-637X/801/1/4. S2CID 96467798.
  20. ^ Wu, Ya-Lin; Close, Laird M.; Males, Jared R.; Barman, Travis S.; Morzinski, Katie M.; Follette, Katherine B.; Bailey, Vanessa; Rodigas, Timothy J.; Hinz, Philip; Puglisi, Alfio; Xompero, Marco; Briguglio, Runa (2015). "New Extinction and Mass Estimates from Optical Photometry of the Very Low Mass Brown Dwarf Companion CT Chamaeleontis B with the Magellan AO System". The Astrophysical Journal. 801 (1): 4. arXiv:1501.01396. Bibcode:2015ApJ...801....4W. doi:10.1088/0004-637X/801/1/4. S2CID 96467798.
  21. ^ a b c d e Bryan, Marta L.; Ginzburg, Sivan; Chiang, Eugene; Morley, Caroline; Bowler, Brendan P.; Xuan, Jerry W.; Knutson, Heather A. (2020). "As the Worlds Turn: Constraining Spin Evolution in the Planetary-mass Regime". The Astrophysical Journal. 905 (1): 37. arXiv:2010.07315. Bibcode:2020ApJ...905...37B. doi:10.3847/1538-4357/abc0ef.
  22. ^ Bryan, Marta L.; Benneke, Bjorn; Knutson, Heather A.; Batygin, Konstantin; Bowler, Brendan P. (2017). "Constraints on the Spin Evolution of Young Planetary-Mass Companions". Nature Astronomy. 2 (2): 138. arXiv:1712.00457. Bibcode:2018NatAs...2..138B. doi:10.1038/s41550-017-0325-8. S2CID 256709225.
  23. ^ a b Zhou, G; Bakos, G. Á; Hartman, J. D; Latham, D. W; Torres, G; Bhatti, W; Penev, K; Buchhave, L; Kovács, G; Bieryla, A; Quinn, S; Isaacson, H; Fulton, B. J; Falco, E; Csubry, Z; Everett, M; Szklenar, T; Esquerdo, G; Berlind, P; Calkins, M. L; Béky, B; Knox, R. P; Hinz, P; Horch, E. P; Hirsch, L; Howell, S. B; Noyes, R. W; Marcy, G; De Val-Borro, M; et al. (2017). "HAT-P-67b: An Extremely Low Density Saturn Transiting an F-subgiant Confirmed via Doppler Tomography". The Astronomical Journal. 153 (5): 211. arXiv:1702.00106. Bibcode:2017AJ....153..211Z. doi:10.3847/1538-3881/aa674a. S2CID 119491990.
  24. ^ a b Ridden-Harper, Andrew; Turner, Jake D.; Jayawardhana, Ray (2020). "TESS Observations of the Hot Jupiter Exoplanet XO-6b: No Evidence of Transit Timing Variations". The Astronomical Journal. 160 (6): 249. arXiv:2009.10781. Bibcode:2020AJ....160..249R. doi:10.3847/1538-3881/abba1e.
  25. ^ a b c d e f g h i j k l Stassun, Keivan G.; Collins, Karen A.; Gaudi, B. Scott (2017). "Accurate Empirical Radii and Masses of Planets and Their Host Stars with Gaia Parallaxes". The Astronomical Journal. 153 (3): 136. arXiv:1609.04389. Bibcode:2017AJ....153..136S. doi:10.3847/1538-3881/aa5df3.
  26. ^ a b Nielsen, L. D.; et al. (2020). "Three short-period Jupiters from TESS". Astronomy & Astrophysics. 639: A76. arXiv:2003.05932. doi:10.1051/0004-6361/202037941. S2CID 212675311.
  27. ^ a b Almenara, J. M; Damiani, C; Bouchy, F; Havel, M; Bruno, G; Hébrard, G; Diaz, R. F; Deleuil, M; Barros, S. C. C; Boisse, I; Bonomo, A. S; Montagnier, G; Santerne, A (2015). "SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: A massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars". Astronomy & Astrophysics. 575: A71. arXiv:1501.01486. Bibcode:2015A&A...575A..71A. doi:10.1051/0004-6361/201424291. S2CID 118701259.
  28. ^ a b c d Wang, J. J.; et al. (2021), "Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY ∗", The Astronomical Journal, 161 (3): 148, arXiv:2101.04187, Bibcode:2021AJ....161..148W, doi:10.3847/1538-3881/abdb2d, S2CID 231583118
  29. ^ a b . Bibcode:2019AJ....157...82W. {{cite journal}}: Cite journal requires |journal= (help); Missing or empty |title= (help)
  30. ^ Cite error: The named reference Balsalobre-Ruza2023 was invoked but never defined (see the help page).
  31. ^ Cite error: The named reference eso2311 was invoked but never defined (see the help page).
  32. ^ Lothringer, Joshua D.; Sing, David K.; Rustamkulov, Zafar; Wakeford, Hannah R.; Stevenson, Kevin B.; Nikolov, Nikolay; Lavvas, Panayotis; Spake, Jessica J.; Winch, Autumn T. (2022). "UV absorption by silicate cloud precursors in ultra-hot Jupiter WASP-178b". Nature. 604 (7904): 49–52. arXiv:2204.03639. Bibcode:2022Natur.604...49L. doi:10.1038/s41586-022-04453-2. PMID 35388193.
  33. ^ a b Martínez, Romy Rodríguez; et al. (2020). "KELT-25 b and KELT-26 b: A Hot Jupiter and a Substellar Companion Transiting Young a Stars Observed by TESS". The Astronomical Journal. 160 (3): 111. arXiv:1912.01017. Bibcode:2020AJ....160..111R. doi:10.3847/1538-3881/ab9f2d.
  34. ^ a b Chakrabarty, Aritra; Sengupta, Sujan (2019). "Precise Photometric Transit Follow-up Observations of Five Close-in Exoplanets: Update on Their Physical Properties". The Astronomical Journal. 158 (1): 39. arXiv:1905.11258. Bibcode:2019AJ....158...39C. doi:10.3847/1538-3881/ab24dd.
  35. ^ Zhang, Yapeng; Snellen, Ignas A. G.; Wyttenbach, Aurèlien; Nielsen, Louise D.; Lendl, Monika; Casasayas-Barris, Núria; Chaverot, Guillaume; Kesseli, Aurora Y.; Lovis, Christophe; Pepe, Francesco A.; Psaridi, Angelica; Seidel, Julia V.; Udry, Stéphane; Ulmer-Moll, Solène (2022). "Transmission spectroscopy of the ultra-hot Jupiter MASCARA-4 B". Astronomy & Astrophysics. 666: A47. arXiv:2208.11427. doi:10.1051/0004-6361/202244203. S2CID 251678624.
  36. ^ Asnodkar, Anusha Pai; et al. (4 January 2022). "KELT-9 as an Eclipsing Double-lined Spectroscopic Binary: A Unique and Self-consistent Solution to the System". The Astronomical Journal. 163 (2). 40. arXiv:2110.15275. Bibcode:2022AJ....163...40P. doi:10.3847/1538-3881/ac32c7.
  37. ^ a b Hartman, J. D; Bakos, G. Á; Bhatti, W; Penev, K; Bieryla, A; Latham, D. W; Kovács, G; Torres, G; Csubry, Z; De Val-Borro, M; Buchhave, L; Kovács, T; Quinn, S; Howard, A. W; Isaacson, H; Fulton, B. J; Everett, M. E; Esquerdo, G; Béky, B; Szklenar, T; Falco, E; Santerne, A; Boisse, I; Hébrard, G; Burrows, A; Lázár, J; Papp, I; Sári, P (2016). "HAT-P-65b and HAT-P-66b: Two Transiting Inflated Hot Jupiters and Observational Evidence for the Reinflation of Close-in Giant Planets". The Astronomical Journal. 152 (6): 182. arXiv:1609.02767. Bibcode:2016AJ....152..182H. doi:10.3847/0004-6256/152/6/182. S2CID 118546031.
  38. ^ a b Chen, Guo; Pallé, Enric; Parviainen, Hannu; Murgas, Felipe; Yan, Fei (2021). "Evidence for TiO in the Atmosphere of the Hot Jupiter HAT-P-65 B". The Astrophysical Journal Letters. 913 (1): L16. arXiv:2104.13058. Bibcode:2021ApJ...913L..16C. doi:10.3847/2041-8213/abfbe1.
  39. ^ a b Cabot, Samuel H. C.; et al. (2021). "TOI-1518b: A Misaligned Ultra-hot Jupiter with Iron in Its Atmosphere". The Astronomical Journal. 162 (5): 218. arXiv:2108.11403. Bibcode:2021AJ....162..218C. doi:10.3847/1538-3881/ac1ba3.
  40. ^ a b Wang, Yong-Hao; et al. (2017). "Transiting Exoplanet Monitoring Project (TEMP). II. Refined System Parameters and Transit Timing Analysis of HAT-P-33b". The Astronomical Journal. 154 (2). 49. arXiv:1705.08605. Bibcode:2017AJ....154...49W. doi:10.3847/1538-3881/aa7519.
  41. ^ a b Zhou, G.; et al. (2019). "Two New HATNet Hot Jupiters around a Stars and the First Glimpse at the Occurrence Rate of Hot Jupiters from TESS". The Astronomical Journal. 158 (4): 141. arXiv:1906.00462. Bibcode:2019AJ....158..141Z. doi:10.3847/1538-3881/ab36b5.
  42. ^ a b Bento, J; Schmidt, B; Hartman, J. D; Bakos, G. Á; Ciceri, S; Brahm, R; Bayliss, D; Espinoza, N; Zhou, G; Rabus, M; Bhatti, W; Penev, K; Csubry, Z; Jordán, A; Mancini, L; Henning, T; De Val-Borro, M; Tinney, C. G; Wright, D. J; Durkan, S; Suc, V; Noyes, R; Lázár, J; Papp, I; Sári, P (2017). "HATS-22b, HATS-23b and HATS-24b: Three new transiting super-Jupiters from the HATSouth project". Monthly Notices of the Royal Astronomical Society. 468 (1): 835–848. arXiv:1607.00688. Bibcode:2017MNRAS.468..835B. doi:10.1093/mnras/stx500. S2CID 119228961.
  43. ^ a b Fontanive, Clémence; Allers, Katelyn N.; Pantoja, Blake; Biller, Beth; Dubber, Sophie; Zhang, Zhoujian; Dupuy, Trent; Liu, Michael C.; Albert, Loïc (2020). "A Wide Planetary-mass Companion to a Young Low-mass Brown Dwarf in Ophiuchus". The Astrophysical Journal. 905 (2): L14. arXiv:2011.08871. Bibcode:2020ApJ...905L..14F. doi:10.3847/2041-8213/abcaf8.
  44. ^ Wong, Ian; Shporer, Avi; Daylan, Tansu; Benneke, Björn; Fetherolf, Tara; Kane, Stephen R.; Ricker, George R.; Vanderspek, Roland; Latham, David W.; Winn, Joshua N.; Jenkins, Jon M.; Boyd, Patricia T.; Glidden, Ana; Goeke, Robert F.; Sha, Lizhou; Ting, Eric B.; Yahalomi, Daniel (2020). "Systematic Phase Curve Study of Known Transiting Systems from Year One of the TESS Mission". The Astronomical Journal. 160 (4): 155. arXiv:2003.06407. Bibcode:2020AJ....160..155W. doi:10.3847/1538-3881/ababad.
  45. ^ a b Talens, G. J. J.; Justesen, A. B.; Albrecht, S.; McCormac, J.; Van Eylen, V.; Otten, G. P. P. L.; Murgas, F.; Palle, E.; Pollacco, D.; Stuik, R.; Spronck, J. F. P.; Lesage, A.-L.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Snellen, I. A. G. (2018). "MASCARA-2 B". Astronomy & Astrophysics. 612: A57. arXiv:1707.01500. doi:10.1051/0004-6361/201731512. S2CID 119422884.
  46. ^ a b West, R. G; Hellier, C; Almenara, J.-M; Anderson, D. R; Barros, S. C. C; Bouchy, F; Brown, D. J. A; Collier Cameron, A; Deleuil, M; Delrez, L; Doyle, A. P; Faedi, F; Fumel, A; Gillon, M; Gómez Maqueo Chew, Y; Hébrard, G; Jehin, E; Lendl, M; Maxted, P. F. L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smalley, B; Smith, A. M. S; Southworth, J; Triaud, A. H. M. J; Udry, S (2016). "Three irradiated and bloated hot Jupiters:. WASP-76b, WASP-82b, and WASP-90b" (PDF). Astronomy & Astrophysics. 585: A126. arXiv:1310.5607. Bibcode:2016A&A...585A.126W. doi:10.1051/0004-6361/201527276. S2CID 54746373. Archived (PDF) from the original on 2017-09-21. Retrieved 2018-11-04.
  47. ^ Amos, Jonathan (March 11, 2020). "Wasp-76b: The exotic inferno planet where it 'rains iron'". BBC. Retrieved March 11, 2020.
  48. ^ Ehrenreich, D.; Lovis, C.; Allart, R.; et al. (2020). "Nightside condensation of iron in an ultrahot giant exoplanet". Nature. 503 (7805): 597–601. arXiv:2003.05528. Bibcode:2020Natur.580..597E. doi:10.1038/s41586-020-2107-1. PMC 7212060. PMID 32161364.
  49. ^ Ahlers, John P.; Seubert, Shayne A.; Barnes, Jason W. (2014). "Spin-Orbit Alignment for 110 Day Period Koi368.01 from Gravity Darkening". The Astrophysical Journal. 786 (2): 131. arXiv:1404.1015. Bibcode:2014ApJ...786..131A. doi:10.1088/0004-637X/786/2/131. S2CID 119002466.
  50. ^ "Open Exoplanet Catalogue - KOI-368.01". www.openexoplanetcatalogue.com. Retrieved 2021-07-17.
  51. ^ a b c d Bonomo, A. S.; et al. (2017). "The GAPS Programme with HARPS-N at TNG". Astronomy & Astrophysics. 602: A107. arXiv:1704.00373. doi:10.1051/0004-6361/201629882. S2CID 118923163.
  52. ^ Zhang, Yapeng; Snellen, Ignas A. G.; Bohn, Alexander J.; Mollière, Paul; Ginski, Christian; Hoeijmakers, H. Jens; Kenworthy, Matthew A.; Mamajek, Eric E.; Meshkat, Tiffany; Reggiani, Maddalena; Snik, Frans (2021-07-15). "The 13CO-rich atmosphere of a young accreting super-Jupiter". Nature. 595 (7867): 370–372. arXiv:2107.06297. Bibcode:2021Natur.595..370Z. doi:10.1038/s41586-021-03616-x. ISSN 0028-0836. PMID 34262209. S2CID 235829633.
  53. ^ Bohn, A. J.; Kenworthy, M. A.; Ginski, C.; Manara, C. F.; Pecaut, M. J.; De Boer, J.; Keller, C. U.; Mamajek, E. E.; Meshkat, T.; Reggiani, M.; Todorov, K. O.; Snik, F. (2020). "The Young Suns Exoplanet Survey: Detection of a wide-orbit planetary-mass companion to a solar-type Sco-Cen member". Monthly Notices of the Royal Astronomical Society. 492: 431–443. arXiv:1912.04284. doi:10.1093/mnras/stz3462.
  54. ^ a b Garai, Z.; Pribulla, T.; Kovács, J.; Szabó, Gy M.; Claret, A.; Komžík, R.; Kundra, E. (2022). "Rapidly rotating stars and their transiting planets: KELT-17b, KELT-19Ab, and KELT-21b in the CHEOPS and TESS era". Monthly Notices of the Royal Astronomical Society. 513 (2): 2822–2840. arXiv:2204.09077. doi:10.1093/mnras/stac1095.
  55. ^ a b Stevens, Daniel J; Collins, Karen A; Gaudi, B. Scott; Beatty, Thomas G; Siverd, Robert J; Bieryla, Allyson; Fulton, Benjamin J; Crepp, Justin R; Gonzales, Erica J; Coker, Carl T; Penev, Kaloyan; Stassun, Keivan G; Jensen, Eric L. N; Howard, Andrew W; Latham, David W; Rodriguez, Joseph E; Zambelli, Roberto; Bozza, Valerio; Reed, Phillip A; Gregorio, Joao; Buchhave, Lars A; Penny, Matthew T; Pepper, Joshua; Berlind, Perry; Calchi Novati, Sebastiano; Calkins, Michael L; d'Ago, Giuseppe; Eastman, Jason D; Bayliss, D; et al. (2017). "KELT-12b: A P ˜ 5 day, Highly Inflated Hot Jupiter Transiting a Mildly Evolved Hot Star". The Astronomical Journal. 153 (4): 178. arXiv:1608.04714. Bibcode:2017AJ....153..178S. doi:10.3847/1538-3881/aa5ffb. S2CID 27321568.
  56. ^ a b Rodriguez, Joseph E.; et al. (2021). "TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images". The Astronomical Journal. 161 (4): 194. arXiv:2101.01726. Bibcode:2021AJ....161..194R. doi:10.3847/1538-3881/abe38a.
  57. ^ a b Bourrier, V.; Ehrenreich, D.; Lendl, M.; Cretignier, M.; Allart, R.; Dumusque, X.; Cegla, H. M.; Suárez-Mascareño, A.; Wyttenbach, A.; Hoeijmakers, H. J.; Melo, C.; Kuntzer, T.; Astudillo-Defru, N.; Giles, H.; Heng, K.; Kitzmann, D.; Lavie, B.; Lovis, C.; Murgas, F.; Nascimbeni, V.; Pepe, F.; Pino, L.; Segransan, D.; Udry, S. (2020). "Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS)". Astronomy & Astrophysics. 635: A205. arXiv:2001.06836. doi:10.1051/0004-6361/201936640. S2CID 55988055.
  58. ^ a b Espinoza, N; Bayliss, D; Hartman, J. D; Bakos, G. Á; Jordán, A; Zhou, G; Mancini, L; Brahm, R; Ciceri, S; Bhatti, W; Csubry, Z; Rabus, M; Penev, K; Bento, J; De Val-Borro, M; Henning, T; Schmidt, B; Suc, V; Wright, D. J; Tinney, C. G; Tan, T. G; Noyes, R (2016). "HATS-25b through HATS-30b: A Half-dozen New Inflated Transiting Hot Jupiters from the HATSouth Survey". The Astronomical Journal. 152 (4): 108. arXiv:1606.00023. Bibcode:2016AJ....152..108E. doi:10.3847/0004-6256/152/4/108. S2CID 119104881.
  59. ^ a b Berger, Travis A.; Huber, Daniel; Gaidos, Eric; Van Saders, Jennifer L. (2018). "Revised Radii of Kepler Stars and Planets Using Gaia Data Release 2". The Astrophysical Journal. 866 (2): 99. arXiv:1805.00231. Bibcode:2018ApJ...866...99B. doi:10.3847/1538-4357/aada83.
  60. ^ Esteves, Lisa J.; Mooij, Ernst J. W. De; Jayawardhana, Ray (2015). "CHANGING PHASES OF ALIEN WORLDS: PROBING ATMOSPHERES OF KEPLER PLANETS WITH HIGH-PRECISION PHOTOMETRY". The Astrophysical Journal. 804 (2): 150. arXiv:1407.2245. Bibcode:2015ApJ...804..150E. doi:10.1088/0004-637X/804/2/150. S2CID 117798959.
  61. ^ a b Turner, O. D; Anderson, D. R; Collier Cameron, A; Delrez, L; Evans, D. F; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P. F. L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smalley, B; Smith, A. M. S; Triaud, A. H. M. J; Udry, S; West, R. G (2016). "WASP-120 b, WASP-122 b, AND WASP-123 b: Three Newly Discovered Planets from the WASP-South Survey". Publications of the Astronomical Society of the Pacific. 128 (964): 064401. arXiv:1509.02210. Bibcode:2016PASP..128f4401T. doi:10.1088/1538-3873/128/964/064401. S2CID 53647627.
  62. ^ a b Bakos, G. Á.; et al. (2021). "HAT-P-58b–HAT-P-64b: Seven Planets Transiting Bright Stars". The Astronomical Journal. 162 (1): 7. arXiv:2007.05528. Bibcode:2021AJ....162....7B. doi:10.3847/1538-3881/abf637.
  63. ^ a b c d Bonnefoy, M.; Chauvin, G.; Lagrange, A.-M.; Rojo, P.; Allard, F.; Pinte, C.; Dumas, C.; Homeier, D. (2014). "A library of near-infrared integral field spectra of young M–L dwarfs". Astronomy & Astrophysics. 562: A127. arXiv:1306.3709. Bibcode:2014A&A...562A.127B. doi:10.1051/0004-6361/201118270. S2CID 53064211.
  64. ^ Cite error: The named reference apj620_1_L51 was invoked but never defined (see the help page).
  65. ^ Cite error: The named reference joergens2013_AA558 was invoked but never defined (see the help page).
  66. ^ a b Alsubai, Khalid; Tsvetanov, Zlatan I.; Latham, David W.; Bieryla, Allyson; Pyrzas, Stylianos; Mislis, Dimitris; Esquerdo, Gilbert A.; Esamdin, Ali; Liu, Jinzhong; Ma, Lu; Bretton, Marc; Pallé, Enric; Murgas, Felipe; Vilchez, Nicolas P. E.; Morton, Timothy D.; Parviainien, Hannu; Montañes-Rodriguez, Pilar; Narita, Norio; Fukui, Akihiko; Kusakabe, Nobuhiko; Tamura, Motohide (2019). "Qatar Exoplanet Survey: Qatar-7b—A Very Hot Jupiter Orbiting a Metal-rich F-Star". The Astronomical Journal. 157 (2): 74. arXiv:1812.05601. Bibcode:2019AJ....157...74A. doi:10.3847/1538-3881/aaf80a.
  67. ^ Lafrenière, David; Jayawardhana, Ray; Van Kerkwijk, Marten H. (2008). "Direct Imaging and Spectroscopy of a Planetary-Mass Candidate Companion to a Young Solar Analog". The Astrophysical Journal. 689 (2): L153–L156. arXiv:0809.1424. Bibcode:2008ApJ...689L.153L. doi:10.1086/595870. S2CID 15685566.
  68. ^ Lachapelle, François-René; Lafrenière, David; Gagné, Jonathan; Jayawardhana, Ray; Janson, Markus; Helling, Christiane; Witte, Soeren (2015). "Characterization of Low-Mass, Wide-Separation Substellar Companions to Stars in Upper Scorpius: Near-Infrared Photometry and Spectroscopy". The Astrophysical Journal. 802 (1): 61. arXiv:1503.07586. Bibcode:2015ApJ...802...61L. doi:10.1088/0004-637X/802/1/61. S2CID 54762786.
  69. ^ Mandushev, Georgi; et al. (2007). "TrES-4: A Transiting Hot Jupiter of Very Low Density". The Astrophysical Journal Letters. 667 (2): L195–L198. arXiv:0708.0834. Bibcode:2007ApJ...667L.195M. doi:10.1086/522115. S2CID 6087170.
  70. ^ a b Zhou, Yifan; Sanghi, Yaniket; Bowler, Brendan P.; Wu, Ya-Lin; Close, Laird M.; Long, Feng; Ward-Duong, Kimberly; Zhu, Zhaohuan; Kraus, Adam L.; Follette, Katherine B.; Bae, Jaehan (9 July 2022). "HST/WFC3 Hα Direct-imaging Detection of a Pointlike Source in the Disk Cavity of AB Aur". The Astrophysical Journal Letters. 934 (1): 8. arXiv:2207.06525. Bibcode:2022ApJ...934L..13Z. doi:10.3847/2041-8213/ac7fef. ISSN 2041-8213. S2CID 251064702.
  71. ^ a b Currie, Thayne; et al. (4 April 2022). "Images of embedded Jovian planet formation at a wide separation around AB Aurigae". Nature Astronomy. 6 (6). Springer Science and Business Media LLC: 751–759. arXiv:2204.00633. Bibcode:2022NatAs...6..751C. doi:10.1038/s41550-022-01634-x. ISSN 2397-3366. S2CID 247940163.
  72. ^ Chilcote, Jeffrey; et al. (2017). "1–2.4μm Near-IR Spectrum of the Giant Planet β Pictoris b Obtained with the Gemini Planet Imager". The Astronomical Journal. 153 (4). 182. arXiv:1703.00011. Bibcode:2017AJ....153..182C. doi:10.3847/1538-3881/aa63e9. S2CID 23669676.
  73. ^ Feng, Fabo; Butler, R. Paul; et al. (August 2022). "3D Selection of 167 Substellar Companions to Nearby Stars". The Astrophysical Journal Supplement Series. 262 (21): 21. arXiv:2208.12720. Bibcode:2022arXiv220812720F. doi:10.3847/1538-4365/ac7e57.
  74. ^ a b Sanghi, Aniket; Liu, Michael C.; Best, William M.; Dupuy, Trent J.; Siverd, Robert J.; Zhang, Zhoujian; Hurt, Spencer A.; Magnier, Eugene A.; Aller, Kimberly M.; Deacon, Niall R. (6 September 2023). "The Hawaii Infrared Parallax Program. VI. The Fundamental Properties of 1000+ Ultracool Dwarfs and Planetary-mass Objects Using Optical to Mid-IR SEDs and Comparison to BT-Settl and ATMO 2020 Model Atmospheres". ApJ: 51. arXiv:2309.03082.
  75. ^ a b Sanghi, Aniket; Liu, Michael C.; Best, William M.; Dupuy, Trent J.; Siverd, Robert J.; Zhang, Zhoujian; Hurt, Spencer A.; Magnier, Eugene A.; Aller, Kimberly M.; Deacon, Niall R. (7 September 2023). "Table of Ultracool Fundamental Properties". Zenodo: 1.
  76. ^ a b Howarth, Ian D.; Morello, Giuseppe (2017). "Rapid rotators revisited: Absolute dimensions of KOI-13". Monthly Notices of the Royal Astronomical Society. 470: 932–939. arXiv:1705.07302. doi:10.1093/mnras/stx1260.
  77. ^ a b Öztürk, Oğuz; Erdem, Ahmet (2019). "New photometric analysis of five exoplanets: CoRoT-2b, HAT-P-12b, TrES-2b, WASP-12b, and WASP-52b". Monthly Notices of the Royal Astronomical Society. 486 (2): 2290–2307. doi:10.1093/mnras/stz747.
  78. ^ a b Spring, E. F.; Birkby, J. L.; Pino, L.; Alonso, R.; Hoyer, S.; Young, M. E.; Coelho, P. R. T.; Nespral, D.; López-Morales, M. (2022). "Black Mirror: The impact of rotational broadening on the search for reflected light from 51 Pegasi b with high resolution spectroscopy". Astronomy & Astrophysics. 659: A121. arXiv:2201.03600. Bibcode:2022A&A...659A.121S. doi:10.1051/0004-6361/202142314. S2CID 245853836.
  79. ^ Sutlieff, Ben J.; Bohn, Alexander J.; Birkby, Jayne L.; Kenworthy, Matthew A.; Morzinski, Katie M.; Doelman, David S.; Males, Jared R.; Snik, Frans; Close, Laird M.; Hinz, Philip M.; Charbonneau, David (2021). "High-contrast observations of brown dwarf companion HR 2562 B with the vector Apodizing Phase Plate coronagraph". Monthly Notices of the Royal Astronomical Society. 506 (3): 3224–3238. arXiv:2106.14890. Bibcode:2021MNRAS.506.3224S. doi:10.1093/mnras/stab1893.
  80. ^ a b Carmichael, Theron W. (2023). "Improved radius determinations for the transiting brown dwarf population in the era of Gaia and TESS". Monthly Notices of the Royal Astronomical Society. 519 (4): 5177–5190. arXiv:2212.02502. doi:10.1093/mnras/stac3720.
  81. ^ Jerry Coffey (8 July 2008). "What is the Biggest Planet in the Solar System?". Universe Today. Archived from the original on 16 November 2014. Retrieved 7 November 2014.
  82. ^ a b Armstrong, David J.; et al. (2020). "A remnant planetary core in the hot-Neptune desert". Nature. 583 (7814): 39–42. arXiv:2003.10314. Bibcode:2020Natur.583...39A. doi:10.1038/s41586-020-2421-7. PMID 32612222. S2CID 256822662.
  83. ^ a b c d e f g h i j k l m n o p q r Madhusudhan, Nikku; Piette, Anjali A. A.; Constantinou, Savvas (2021). "Habitability and Biosignatures of Hycean Worlds". The Astrophysical Journal. 918 (1): 1. arXiv:2108.10888. Bibcode:2021ApJ...918....1M. doi:10.3847/1538-4357/abfd9c.
  84. ^ a b c d Futó, P (2018). Kepler-145b and K2-66b: A Kepler- and a K2-Mega-Earth with Different Compositional Characteristics (PDF). 49th Lunar and Planetary Science Conference. Retrieved 6 September 2020.
  85. ^ Figure 3 in Alibert, Y. (2014). "On the radius of habitable planets". Astronomy & Astrophysics. 561: A41. arXiv:1311.3039. Bibcode:2014A&A...561A..41A. doi:10.1051/0004-6361/201322293. S2CID 118726908.
  86. ^ Figure 2 in Alibert, Yann (2015). "A Maximum Radius for Habitable Planets". Origins of Life and Evolution of Biospheres. 45 (3): 319–325. Bibcode:2015OLEB...45..319A. doi:10.1007/s11084-015-9440-7. PMID 26159097. S2CID 254898222.
  87. ^ a b Berger, Travis A.; Huber, Daniel; Gaidos, Eric; Van Saders, Jennifer L. (2018). "Revised Radii of Kepler Stars and Planets Using Gaia Data Release 2". The Astrophysical Journal. 866 (2): 99. arXiv:1805.00231. Bibcode:2018ApJ...866...99B. doi:10.3847/1538-4357/aada83.
  88. ^ Hill, Michelle L.; Bott, Kimberly; Dalba, Paul A.; Fetherolf, Tara; Kane, Stephen R.; Kopparapu, Ravi; Li, Zhexing; Ostberg, Colby (2022). "A Catalog of Habitable Zone Exoplanets". Exoplanets in Our Backyard 2. 2687: 3046. arXiv:2210.02484. Bibcode:2022LPICo2687.3046H.
  89. ^ a b Futó, P (2017). BD+20594B: A Mega-Earth Detected in the C4 field of the Kepler K2 mission (PDF). 48th Lunar and Planetary Science Conference. Retrieved 6 September 2020.
  90. ^ a b Mikal-Evans, Thomas; Madhusudhan, Nikku; Dittmann, Jason; Günther, Maximilian N.; Welbanks, Luis; Van Eylen, Vincent; Crossfield, Ian J. M.; Daylan, Tansu; Kreidberg, Laura (2023). "Hubble Space Telescope Transmission Spectroscopy for the Temperate Sub-Neptune TOI-270 d: A Possible Hydrogen-rich Atmosphere Containing Water Vapor". The Astronomical Journal. 165 (3): 84. arXiv:2211.15576. Bibcode:2023AJ....165...84M. doi:10.3847/1538-3881/aca90b.
  91. ^ Lehmer, Owen R.; Catling, David C. (2017). "Rocky Worlds Limited to ∼1.8 Earth Radii by Atmospheric Escape during a Star's Extreme UV Saturation". The Astrophysical Journal. 845 (2): 130. arXiv:1706.02050. Bibcode:2017ApJ...845..130L. doi:10.3847/1538-4357/aa8137. PMC 7545495. PMID 33041344.
  92. ^ a b Anna John, Ancy; Collier Cameron, Andrew; Wilson, Thomas G. (2022), "The impact of two non-transiting planets and stellar activity on mass determinations for the super-Earth CoRoT-7b", Monthly Notices of the Royal Astronomical Society, 515 (3): 3975–3995, arXiv:2206.14216, doi:10.1093/mnras/stac1814
  93. ^ "NASA's Kepler Mission Discovers Bigger, Older Cousin to Earth". National Aeronautics and Space Administration. 23 July 2015. Archived from the original on 15 August 2015. Retrieved 10 June 2016.

External links[edit]