List of largest known stars

Page semi-protected
From Wikipedia, the free encyclopedia

Below are lists of the largest stars currently known, ordered by radius and separated into categories by galaxy. The unit of measurement used is the radius of the Sun (approximately 695,700 km; 432,300 mi).[1]

The angular diameters of stars can be measured directly using stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test indirect methods of finding stellar radii. Only a few useful supergiant stars can be occulted by the Moon, including Antares A (Alpha Scorpii A). Examples of eclipsing binaries are Epsilon Aurigae (Almaaz), VV Cephei, and V766 Centauri (HR 5171). Angular diameter measurements can be inconsistent because the boundary of the very tenuous atmosphere (opacity) differs depending on the wavelength of light in which the star is observed.

Uncertainties remain with the membership and order of the lists, especially when deriving various parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or be within a large range of values. Values for stellar radii vary significantly in different sources and for different observation methods.

All the sizes stated in these lists have inaccuracies and may be disputed. The lists are still a work in progress and parameters are prone to change.

Caveats

Various issues exist in determining accurate radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions; these include:

  • Stellar radii or diameters are usually derived only approximately using Stefan–Boltzmann law for the deduced stellar luminosity and effective surface temperature.
  • Stellar distances, and their errors, for most stars, remain uncertain or poorly determined.
  • Many supergiant stars have extended atmospheres, and many are within opaque dust shells, making their true effective temperatures and surfaces highly uncertain.[citation needed]
  • Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years as variable stars. This makes adopted luminosities poorly known and may significantly change the quoted radii.
  • Other direct methods for determining stellar radii rely on lunar occultations or from eclipses in binary systems. This is only possible for a very small number of stars.
  • Most distance estimates for red supergiants come from stellar cluster or association membership, because it is difficult to calculate accurate distances for red supergiants that are not part of any cluster or association.
  • In these lists are some examples of extremely distant extragalactic stars, which may have slightly different properties and natures than the currently largest known stars in the Milky Way. For example, some red supergiants in the Magellanic Clouds are suspected to have slightly different limiting temperatures and luminosities. Such stars may exceed accepted limits by undergoing large eruptions or changing their spectral types over just a few months (or potentially years).[2][3]

Lists

The following lists show the largest known stars based on the host galaxy.

Milky Way

List of the largest known stars in the Milky Way
Star name Solar radii
(Sun = 1)
Method[a] Notes
Stephenson 2-18 (Stephenson 2 DFK 1) 2,150[4] L/Teff Located in close proximity to the extremely massive open cluster Stephenson 2 (RSGC2), where 25 other red supergiants are also located. Membership in the cluster currently uncertain, with large uncertainties in the measurements.
Orbit of Saturn 2,0472,049.9[5][b] Reported for reference
RSGC1-F01 1,530[6] L/Teff
The above radii are larger than what stellar evolution theory predicts, and are thus potentially unreliable[citation needed]
Theoretical limit of star size (Milky Way) ~1,500[7] This value comes from the rough average radii of the three largest stars studied in the paper. It is consistent with the largest possible stellar radii predicted from the current evolutionary theory, and it is believed that stars above this radius would be too unstable and simply do not form.[7]
Reported for reference
RSGC1-F04 1,422[6] L/Teff
VY Canis Majoris 1,420±120[8] AD
CM Velorum 1,416.24+0.40
−0.96
[9]
L/Teff
AH Scorpii 1,411±124[10][11] AD
RSGC1-F06 1,382[6] L/Teff
CD-26 5055 1,280+20
−123
[9]
L/Teff
AS Cephei 1,263+19
−9
[9]
L/Teff
RSGC1-F10 1,246[6] L/Teff
Westerlund 1 W237 (Westerlund 1 BKS B) 1,241±70[12] L/Teff
IRC -10414 ~1,200[13] L/Teff
V517 Monocerotis 1,196+80
−159
[9]
L/Teff
PZ Cassiopeiae 1,190±238(–1,940±388)[7] L/Teff
BC Cygni 1,187+34
−37
[9]
L/Teff A more detailed but older study gives values of 1,081 R (8561,375) for the year 2000, and 1,303 R (1,0211,553) for the year 1900.[14]
RSGC1-F05 1,185[6] L/Teff
NML Cygni 1,183[15] L/Teff
GCIRS 7 1,170±60[16]1,368[17] AD
Westerlund 1 W26 (Westerlund 1 BKS AS) 1,165±581,221±120[12] L/Teff
EV Carinae 1,165[18] L/Teff
RSGC1-F08 1,150[6] L/Teff
IRAS 18111-2257 ~1,150–1,437[19] L/Teff Estimated based on the bolometric luminosity and assumed effective temperature of 2,000 K. Another period-luminosity-derived luminosity for this star results in a radius of 1,730 R.[19]
RSGC1-F02 1,128[6] L/Teff
Orbit of Jupiter 1,114.51,115.8[5][b] Reported for reference
V766 Centauri Aa 1,110±50[20] ? V766 Centauri Aa is a rare variable yellow supergiant.
RW Cygni 1,103+251
−177
[21]
AD
RT Carinae 1,090±218[7] L/Teff
V384 Persei 1,088[22] L/Teff
UU Persei 1,079+9
−8
[9]
L/Teff
R Fornacis 1,078[22] L/Teff
V396 Centauri 1,070±214[7]1,145.31[23] L/Teff & ?
HD 126577 1,066+9
−32
[9]
L/Teff
V1300 Aquilae (IRC -10529) 1,059[24] L/Teff
HaroChavira 1 1,058[25] L/Teff
V602 Carinae 1,050±165[26] AD
WX Piscium 1,044[24] L/Teff
KU Andromedae (IRC +40004) 1,044[24] L/Teff
RSGC1-F11 1,035[6] L/Teff
KY Cygni 1,032[25]–(1,420±2842,850±570)[7] L/Teff
RW Leonis Minoris 1,028[24] L/Teff
V346 Puppis 1,025[22] L/Teff
RSGC1-F13 1,017[6] L/Teff
CK Carinae 1,0131,060±212[7] L/Teff
KW Sagittarii 1,009±142[10][11] AD
RSGC1-F07 1,006[6] L/Teff
V349 Carinae 1,002+12
−74
[9]
L/Teff
RSGC1-F09 996[6] L/Teff
MSX6C G086.5890-00.7718 (975+175
−183
1,035+186
−158
)[27]1,196.91+6.31
−6.35
[9]
L/Teff Lower values based on the Gaia DR3 effective temperature and the luminosity of Levesque et al. (2005) and that of Messineo & Brown (2019). Higher value based on the GSP Phot-Aeneas library using BR/RP spectra in Gaia DR3.
V3953 Sagittarii (IRC -30398) 970[24] L/Teff
S Aurigae 957[22] L/Teff
RSGC1-F12 955[6] L/Teff
RSGC1-F03 942[6] L/Teff
V384 Persei 937[24] L/Teff
GX Monocerotis 931[24] L/Teff
S Cassiopeiae 920[24] L/Teff
NV Aurigae (IRC +50137) 918[24] L/Teff
V1111 Ophiuchi (IRC +10365) 902[24] L/Teff
NSV 25875 891[15] L/Teff
T Lyrae 876[24] L/Teff
V437 Scuti 874[15] L/Teff
LL Pegasi 869[15] L/Teff
V1417 Aquilae 866[28] L/Teff
V669 Cassiopeiae 859[15] L/Teff
FX Serpentis 857[22] L/Teff
Westerlund 1 W20 (Westerlund 1 BKS D) 858±48[12] L/Teff
VX Sagittarii 853[15]-1,335±215[29] L/Teff Another paper estimates an angular diameter of 8.82±0.5 mas which would result in a radius of 1,479±194 R.[11]
BI Cygni 851[30]1,240±248[7] L/Teff
VLH96 A 833[31] L/Teff
μ Cephei (Herschel's Garnet Star) 830[15]-972±228[32] AD
V1185 Scorpii 830[15] L/Teff
CW Leonis 826[15] L/Teff
R Cygni 825[24] L/Teff
UY Scuti 825[33]1,708±192[10] L/Teff, AD The upper radius of UY Sct is more extreme than what current stellar evolution models predict. One paper mentions this extremity, and the reason for it is not yet clear.[34]
LP Andromedae 815[15] L/Teff
AZ Cygni 814+175
−124
[21]911+57
−50
[35]
AD Estimated based on data from the CHARA array, higher value is an average of calculated radii based on the LDD angular diameter. Another paper estimates 856+20
−14
 R (2011), 927+21
−15
 R (2012), 890+21
−15
 R (2014), 895+21
−15
 R (2015) and 890+21
−15
 R (2016) based on the same data.[36]
HaroChavira 2 813[25] L/Teff
U Arietis 801±205[37] AD
RT Ophiuchi 801±217[38] AD
II Lupis 795[28] L/Teff
BO Carinae 790±158[7] L/Teff
S Persei 780±156(–1,230±246)[7] L/Teff
SU Persei 780±156[7]1,139+34
−23
[36]
L/Teff Higher value is one of three radii (1,139+34
−23
 R (2015), 1,044+31
−21
 R (August 2016) and 1,095+33
−22
 R (October 2016)) measured from observations by the CHARA array.
RV Aquarii 772[24] L/Teff
T Cancri 770[22] L/Teff
RS Persei 770±30[39] AD
V355 Cephei 770±154[7] L/Teff
V Cygni 770[28] L/Teff
GU Cephei A 767[23] ?
V1943 Sagittarii 767[40] L/Teff


Betelgeuse (α Orionis) 764+116
−62
[41]
? Tenth brightest star in the night sky.[42]
IRAS 10176-5802 751.2+0.4
−0.6
[9]–(793+281
−152
849+172
−133
)[27]
L/Teff Lower value based on the GSP Phot-Aeneas library using BR/RP spectra in Gaia DR3. Higher values based on the Gaia DR3 effective temperature and the luminosity of Levesque et al. (2005) and that of Messineo & Brown (2019).
HD 303250 750±150[7] L/Teff
GY Aquilae 748[11] AD
RU Virginis 745[22] L/Teff
TT Centauri 744[24] L/Teff
UU Pegasi 742±193[38] AD
RSGC3-S3 735[6] L/Teff
RSGC3-S15 728[6] L/Teff
Westerlund 1 W75 (Westerlund 1 BKS E) 722±36[12] L/Teff
V Camelopardalis 716±185[38] AD
S Cephei 715[22] L/Teff
V923 Centauri 716[23] ?
V528 Carinae 700±140[7] L/Teff
The following well-known stars are listed for the purpose of comparison.
V354 Cephei 685[43] L/Teff
Antares A (α Scorpii) 680[44] AD Fourteenth brightest star in the night sky.[42]
Mira A (ο Ceti) 541[15] L/Teff
Unurgunite (σ Canis Majoris) 420±84[7] L/Teff
Orbit of Mars 322323.1[5][b] Reported for reference
Pistol Star (V4647 Sagittarii) 306[45] ?
Rasalgethi A (α Herculis) 284±60 (264303)[46] L/Teff
Wezen (δ Canis Majoris) 215±66[47] AD Thirty-sixth brightest star in the night sky.[42]
Orbit of Earth (~1 AU) 214[5][b] Reported for reference
Enif (ε Pegasi) 210.4 – 210.7[48] ?
Suhail (λ Velorum) 210[49] ?
Deneb (α Cygni) 203±17[50] ? Eighteenth brightest star in the night sky.[42]
Orbit of Venus 158.6[5][b] Reported for reference
Orbit of Mercury 82.984.6[5][b] Reported for reference
Vega (α Lyrae) 2.726±0.006 × 2.418±0.012[51] Fifth brightest star in the night sky.[42]
Reported for reference
Sun 1 The largest object in the Solar System.
Reported for reference

Magellanic Clouds

List of the largest known stars in the Magellanic Clouds
Star name Solar radii
(Sun = 1)
Galaxy Method[a] Notes
WOH G64 1,540[52] Large Magellanic Cloud L/Teff Surrounded by a large dust cloud.
WOH S170 1,461[53] Large Magellanic Cloud L/Teff
HD 269551 1,439[53] Large Magellanic Cloud L/Teff
HV 12463 1,420[53] Large Magellanic Cloud L/Teff
W60 B90 (WOH S264) 1,390+130
−110
[54]
Large Magellanic Cloud L/Teff Further investigation is needed to constrain the luminosity and radius with more certainty.[54]
HV 888 1,374[53] Large Magellanic Cloud L/Teff
LMC 23095 1,280[53] Large Magellanic Cloud L/Teff
OGLE BRIGHT-LMC-LPV-52 1,275[53] Large Magellanic Cloud L/Teff
LMC 145013 1,243[53] Large Magellanic Cloud L/Teff
HV 5618 1,163[53] Large Magellanic Cloud L/Teff
SMC 18592 1,129[53] Small Magellanic Cloud L/Teff
SP77 21-12 1,103[53] Large Magellanic Cloud L/Teff
LMC 25320 1,156[53] Large Magellanic Cloud L/Teff
[W60] D44 1,063[53] Large Magellanic Cloud L/Teff
UCAC2 2674864 (HV 2834) 990+115
−100
[54]
Large Magellanic Cloud L/Teff
HV 2362 982[53] Large Magellanic Cloud L/Teff
SMC 56389 976[53] Small Magellanic Cloud L/Teff
LMC 136404 974[53] Large Magellanic Cloud L/Teff
SMC 69886 967[53] Small Magellanic Cloud L/Teff
SMC 10889 963[53] Small Magellanic Cloud L/Teff
TRM 87 947[53] Large Magellanic Cloud L/Teff
SMC 18136 945[53] Small Magellanic Cloud L/Teff
LMC 147199 939[53] Large Magellanic Cloud L/Teff
WOH S457 902±45[55] Large Magellanic Cloud L/Teff
IRAS 04498-6842 (LI-LMC 60) 898-1,660[56] Large Magellanic Cloud Lower value derived from fitting models that assume the star's effective temperature to be 3,400 K. Higher value based on the measured effective temperature from van Loon et al. (2005). A newer paper estimates parameters that would result in a radius of 1,765 R.[57]
HV 12185 890+55
−65
[54]
Large Magellanic Cloud L/Teff
HV 11423 872[53] Small Magellanic Cloud L/Teff
SMC 49478 888[53] Small Magellanic Cloud L/Teff
SMC 5092 880[53] Small Magellanic Cloud L/Teff
HV 12793 880+45
−65
[54]
Large Magellanic Cloud L/Teff
WOH S57 875+70
−60
[54]
Large Magellanic Cloud L/Teff
SMC 83202 864[53] Small Magellanic Cloud L/Teff
SMC 81961 848[53] Small Magellanic Cloud L/Teff
SMC 20133 835[53] Small Magellanic Cloud L/Teff
SMC 59803 829[53] Small Magellanic Cloud L/Teff
SP77 28-2 825±60[54] Large Magellanic Cloud L/Teff
Z Doradus 824±108[55] Large Magellanic Cloud L/Teff
2MASS J00534794-7202095 784[53] Small Magellanic Cloud L/Teff
W61 19-24 780+50
−70
[54]
Large Magellanic Cloud L/Teff
SMC 12322 765[53] Small Magellanic Cloud L/Teff
WOH S452 762±275[55] Large Magellanic Cloud L/Teff
WOH S438 757±211[55] Large Magellanic Cloud L/Teff
SMC 64663 745[53] Small Magellanic Cloud L/Teff
LMC 67982 730[53] Large Magellanic Cloud L/Teff
PMMR 64 730+75
−65
[54]
Small Magellanic Cloud L/Teff
VFTS 828 664±106[55] Large Magellanic Cloud L/Teff
LMC 68125 660[53] Large Magellanic Cloud L/Teff
LMC 68098 660[53] Large Magellanic Cloud L/Teff
SP77 54-25 654±111[55] Large Magellanic Cloud L/Teff
WOH S374 610+75
−60
[54]
Large Magellanic Cloud L/Teff
MH 35 602±77[55] Large Magellanic Cloud L/Teff
VFTS 839 539±92[55] Large Magellanic Cloud L/Teff
HTR 7 522±53[55] Large Magellanic Cloud L/Teff
RM 1-703 507±59[55] Large Magellanic Cloud L/Teff
VFTS 198 435±132[55] Large Magellanic Cloud L/Teff
VFTS 852 431±54[55] Large Magellanic Cloud L/Teff
HTR 4 403±55[55] Large Magellanic Cloud L/Teff
VFTS 2090 394±61[55] Large Magellanic Cloud L/Teff
VFTS 289 349±43[55] Large Magellanic Cloud L/Teff
2MASS J00450746-7327417 305[53] Small Magellanic Cloud L/Teff
VFTS 744 298±149[55] Large Magellanic Cloud L/Teff
SMC079 297[53] Small Magellanic Cloud L/Teff
2MASS J05055608-7032372 290[53] Large Magellanic Cloud L/Teff
VFTS 655 288±65[55] Large Magellanic Cloud L/Teff
VFTS 222 276±46[55] Large Magellanic Cloud L/Teff
VFTS 23 268±56[55] Large Magellanic Cloud L/Teff
SMC080 244[53] Small Magellanic Cloud L/Teff
2MASS J00450138-7350513 200[53] Small Magellanic Cloud L/Teff
2MASS J05060067-6916283 142[53] Large Magellanic Cloud L/Teff
2MASS J05055720-6858112 139[53] Large Magellanic Cloud L/Teff
2MASS J05055891-6830314 137[53] Large Magellanic Cloud L/Teff
2MASS J00450816-7325382 125[53] Small Magellanic Cloud L/Teff
2MASS J00450831-7254146 121[53] Small Magellanic Cloud L/Teff
2MASS J00450482-7340132 119[53] Small Magellanic Cloud L/Teff

M31 and M33

List of the largest known stars in other galaxies (within the Local Group)
Star name Solar radii
(Sun = 1)
Galaxy Method[a] Notes
LGGS J013414.27+303417.7 1,479[53] Triangulum Galaxy L/Teff
LGGS J004514.91+413735.0 1,324[53] Andromeda Galaxy L/Teff
LGGS J004125.23+411208.9 1,302[53] Andromeda Galaxy L/Teff
LGGS J013350.62+303230.3 1,283[53] Triangulum Galaxy L/Teff
LGGS J003951.33+405303.7 1,272[53] Andromeda Galaxy L/Teff
LGGS J004124.80+411634.7 1,240[58] Andromeda Galaxy L/Teff
LGGS J004035.08+404522.3 1,230[58] Andromeda Galaxy L/Teff
LGGS J013409.63+303907.6 1,182[53] Triangulum Galaxy L/Teff
LGGS J013352.96+303816.0 1,182[53] Triangulum Galaxy L/Teff
LGGS J004047.22+404445.5 1,162[53] Andromeda Galaxy L/Teff
LGGS J004428.48+415130.9 1,130[53] Andromeda Galaxy L/Teff
LGGS J013335.90+303344.5 1,104[53] Triangulum Galaxy L/Teff
LGGS J013358.54+303419.9 1,103[53] Triangulum Galaxy L/Teff
LGGS J013336.64+303532.3 1,102[53] Triangulum Galaxy L/Teff
LGGS J013241.94+302047.5 1,083[53] Triangulum Galaxy L/Teff
LGGS J004059.50+404542.6 1,071[53] Andromeda Galaxy L/Teff
LGGS J013430.75+303218.8 1,067[53] Triangulum Galaxy L/Teff
LGGS J013314.31+302952.9 1,067[53] Triangulum Galaxy L/Teff
LGGS J013412.27+305314.1 1,063[53] Triangulum Galaxy L/Teff
LGGS J013328.17+304741.5 1,063[53] Triangulum Galaxy L/Teff
LGGS J013233.77+302718.8 1,058[53] Triangulum Galaxy L/Teff
LGGS J013307.60+304259.0 1,051[53] Triangulum Galaxy L/Teff
LGGS J013305.48+303138.5 1,046[53] Triangulum Galaxy L/Teff
LGGS J013351.47+303640.3 1,034[53] Triangulum Galaxy L/Teff
LGGS J013303.54+303201.2 1,027[53] Triangulum Galaxy L/Teff
LGGS J004047.82+410936.4 1,010[58] Andromeda Galaxy L/Teff
LGGS J013344.10+304425.1 1,007[53] Triangulum Galaxy L/Teff
LGGS J013312.35+303033.9 993[53] Triangulum Galaxy L/Teff
LGGS J013423.29+305655.0 993[53] Triangulum Galaxy L/Teff
LGGS J013350.84+304403.1 984[53] Triangulum Galaxy L/Teff
LGGS J013329.47+301848.3 981[53] Triangulum Galaxy L/Teff
LGGS J004148.74+410843.0 981[53] Andromeda Galaxy L/Teff
LGGS J013319.13+303642.5 970[53] Triangulum Galaxy L/Teff
LGGS J013403.73+304202.4 965[53] Andromeda Galaxy L/Teff
LGGS J004138.35+412320.7 954[53] Andromeda Galaxy L/Teff
LGGS J004424.94+412322.3 945[58] Andromeda Galaxy L/Teff
LGGS J013258.18+303606.3 943[53] Triangulum Galaxy L/Teff
LGGS J013321.44+304045.4 932[53] Triangulum Galaxy L/Teff
LGGS J013357.08+303817.8 918[53] Triangulum Galaxy L/Teff
LGGS J013312.38+302453.2 911[53] Triangulum Galaxy L/Teff
LGGS J004501.30+413922.5 910[58] Andromeda Galaxy L/Teff
LGGS J013338.77+303532.9 885[53] Triangulum Galaxy L/Teff
LGGS J013309.10+303017.8 865[53] Triangulum Galaxy L/Teff
LGGS J004447.08+412801.7 825[58] Andromeda Galaxy L/Teff
LGGS J004255.95+404857.5 785[58] Andromeda Galaxy L/Teff
LGGS J013257.86+303555.0 648[53] Triangulum Galaxy L/Teff
LGGS J003913.40+403714.2 640[58] Andromeda Galaxy L/Teff
LGGS J004428.71+420601.6 605[58] Andromeda Galaxy L/Teff
LGGS J004607.45+414544.6 560[58] Andromeda Galaxy L/Teff
LGGS J004623.75+420141.4 535[53] Andromeda Galaxy L/Teff
LGGS J003902.20+403907.3 525[58] Andromeda Galaxy L/Teff
LGGS J004620.92+415545.8 511[53] Andromeda Galaxy L/Teff
LGGS J003857.29+404053.6 500[58] Andromeda Galaxy L/Teff
LGGS J004620.78+421001.8 475[53] Andromeda Galaxy L/Teff
LGGS J004625.67+421322.0 412[53] Andromeda Galaxy L/Teff
LGGS J013257.92+302500.1 389[53] Triangulum Galaxy L/Teff
LGGS J013257.79+304323.1 348[53] Triangulum Galaxy L/Teff
LGGS J004625.69+420046.9 246[53] Andromeda Galaxy L/Teff
LGGS J004625.59+415911.6 246[53] Andromeda Galaxy L/Teff
LGGS J004623.60+421012.2 221[53] Andromeda Galaxy L/Teff
LGGS J013257.77+301226.0 209[53] Triangulum Galaxy L/Teff
LGGS J013258.25+304006.0 186[53] Triangulum Galaxy L/Teff

Other galaxies (within the Local Group)

List of the largest known stars in other galaxies (within the Local Group)
Star name Solar radii
(Sun = 1)
Galaxy Method[a] Notes


Sextans A 10 995±130[59] Sextans A L/Teff
Sextans A 5 870±145[59] Sextans A L/Teff
LeoA 7 786.5[60] Leo A L/Teff
Sextans A 7 710±100[59] Sextans A L/Teff
IC 10 3 685±90[59] IC 10 L/Teff
WLM 14 610±80[59] WLM L/Teff
Sextans B 1 565±70[59] Sextans B L/Teff
IC 1613 2 560±70[59] IC 1613 L/Teff
WLM 12 430±70[59] WLM L/Teff
IC 10 5 420±50[59] IC 10 L/Teff
Sextans B 2 405±90[59] Sextans B L/Teff
LeoA 75 404.4[60] Leo A L/Teff
WLM 13 380±50[59] WLM L/Teff
LeoA 90 353.9[60] Leo A L/Teff
LeoA 143 353.7[60] Leo A L/Teff
Sextans A 6 350±40[59] Sextans A L/Teff
Pegasus 1 340±50[59] Pegasus Dwarf L/Teff
Sextans A 4 335±40[59] Sextans A L/Teff
WLM 11 310±50[59] WLM L/Teff
IC 1613 1 300±40[59] IC 1613 L/Teff
IC 10 2 280±30[59] IC 10 L/Teff
Pegasus 2 260±40[59] Pegasus Dwarf L/Teff
Sextans A 8 260±60[59] Sextans A L/Teff
LeoA 203 244[60] Leo A L/Teff Known red supergiant[61]
Sextans A 9 230±50[59] Sextans A L/Teff
LeoA 98 211.2[60] Leo A L/Teff
IC 10 4 200±25[59] IC 10 L/Teff
IC 10 1 165±60[59] IC 10 L/Teff
IC 10 6 160±25[59] IC 10 L/Teff
Phoenix 3 90±15[59] Phoenix Dwarf L/Teff

Outside the Local Group

List of the largest known stars in galaxies outside the Local Group
Star name Solar radii
(Sun = 1)
Galaxy Group Method[a] Notes
NGC 2403 V14 1,263[62] NGC 2403 M81 Group L/Teff
M83 10584-25-2 852.8[62] Messier 83 M83 Group L/Teff
M83 10584-13-3 844.8[62] Messier 83 M83 Group L/Teff
NGC 2363-V1 194356[63] NGC 2363 M81 Group L/Teff

Notes

  1. ^ a b c d e Methods for calculating the radius:
  2. ^ a b c d e f At the J2000 epoch

References

  1. ^ Mamajek, E. E.; Prsa, A.; Torres, G.; Harmanec, P.; Asplund, M.; Bennett, P. D.; Capitaine, N.; Christensen-Dalsgaard, J.; Depagne, E.; Folkner, W. M.; Haberreiter, M. (October 2015). "IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties". arXiv:1510.07674 [astro-ph.SR].
  2. ^ Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (July 2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal. 645 (2): 1102–1117. arXiv:astro-ph/0603596. Bibcode:2006ApJ...645.1102L. doi:10.1086/504417. ISSN 0004-637X. S2CID 5150686.
  3. ^ Ren, Yi; Jiang, Bi-Wei (July 2020). "On the Granulation and Irregular Variation of Red Supergiants". The Astrophysical Journal. 898 (1): 24. arXiv:2006.06605. Bibcode:2020ApJ...898...24R. doi:10.3847/1538-4357/ab9c17. ISSN 0004-637X. S2CID 250739134.
  4. ^ Fok, Thomas K. T.; Nakashima, Jun-ichi; Yung, Bosco H. K.; Hsia, Chih-Hao; Deguchi, Shuji (20 November 2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal. 760 (1): 65. doi:10.1088/0004-637X/760/1/65. hdl:10722/181706. S2CID 53393926.
  5. ^ a b c d e f "HORIZONS Web-Interface". ssd.jpl.nasa.gov. Retrieved 2021-09-25.
  6. ^ a b c d e f g h i j k l m n o Humphreys, Roberta M.; Helmel, Greta; Jones, Terry J.; Gordon, Michael S. (August 2020). "Exploring the Mass Loss Histories of the Red Supergiants". The Astronomical Journal. 160 (3): 145. arXiv:2008.01108. Bibcode:2020AJ....160..145H. doi:10.3847/1538-3881/abab15. S2CID 220961677.
  7. ^ a b c d e f g h i j k l m n o Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (August 2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not As Cool As We Thought". The Astrophysical Journal. 628 (2): 973–985. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901. ISSN 0004-637X. S2CID 15109583.
  8. ^ Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (April 2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy and Astrophysics. 540: L12. arXiv:1203.5194. Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126. ISSN 0004-6361. S2CID 54044968.
  9. ^ a b c d e f g h i j Vallenari, A.; Brown, A. G. A.; Prusti, T. (13 June 2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. doi:10.1051/0004-6361/202243940. ISSN 0004-6361. S2CID 244398875.
  10. ^ a b c Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Hauschildt, P. H. (June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy and Astrophysics. 554: A76. arXiv:1305.6179. Bibcode:2013A&A...554A..76A. doi:10.1051/0004-6361/201220920. ISSN 0004-6361. S2CID 73575062.
  11. ^ a b c d Montargès, M.; et al. (5 January 2023). "The VLT/SPHERE view of the ATOMIUM cool evolved star sample. I. Overview: Sample characterization through polarization analysis". arXiv:2301.02081. Bibcode:2023arXiv230102081M. {{cite journal}}: Cite journal requires |journal= (help)
  12. ^ a b c d Arévalo, Aura de Las Estrellas Ramírez (July 2018). The Red Supergiants in the Supermassive Stellar Cluster Westerlund 1 (text thesis). University of São Paulo. doi:10.11606/D.14.2019.tde-12092018-161841.
  13. ^ Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D. M. -A.; Kamiński, T. (January 2014). "IRC -10414: a bow-shock-producing red supergiant star". Monthly Notices of the Royal Astronomical Society. 437 (1): 843–856. arXiv:1310.2245. Bibcode:2014MNRAS.437..843G. doi:10.1093/mnras/stt1943. ISSN 0035-8711.
  14. ^ Turner, David G.; Rohanizadegan, Mina; Berdnikov, Leonid N.; Pastukhova, Elena N. (November 2006). "The Long-Term Behavior of the Semiregular M Supergiant Variable BC Cygni". Publications of the Astronomical Society of the Pacific. 118 (849): 1533–1544. Bibcode:2006PASP..118.1533T. doi:10.1086/508905. ISSN 0004-6280. S2CID 121309425.
  15. ^ a b c d e f g h i j k De Beck, E.; Decin, L.; De Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M. (2010). "Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: Derivation of mass-loss rate formulae". Astronomy and Astrophysics. 523: A18. arXiv:1008.1083. Bibcode:2010A&A...523A..18D. doi:10.1051/0004-6361/200913771. S2CID 16131273.
  16. ^ Tsuboi, Masato; Kitamura, Yoshimi; Tsutsumi, Takahiro; Miyawaki, Ryosuke; Miyoshi, Makoto; Miyazaki, Atsushi (April 2020). "Sub-millimeter detection of a Galactic center cool star IRS 7 by ALMA". Publications of the Astronomical Society of Japan. 72 (2): 36. arXiv:2002.01620. Bibcode:2020PASJ...72...36T. doi:10.1093/pasj/psaa013. ISSN 0004-6264.
  17. ^ Rodríguez-Coira, G.; Gravity Collaboration (2021). "The Molecular Layer of GCIRS7". New Horizons in Galactic Center Astronomy and Beyond. 528: 397. Bibcode:2021ASPC..528..397R.
  18. ^ Van Loon, J. Th.; Cioni, M.-R. L.; Zijlstra, A. A.; Loup, C. (18 April 2005). "An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars". Astronomy and Astrophysics. 438 (1): 273–289. arXiv:astro-ph/0504379. Bibcode:2005A&A...438..273V. doi:10.1051/0004-6361:20042555. S2CID 16724272.
  19. ^ a b De, Kishalay; Mereminskiy, Ilya; Soria, Roberto; Conroy, Charlie; Kara, Erin; Anand, Shreya; Ashley, Michael C. B.; Boyer, Martha L.; Chakrabarty, Deepto; Grefenstette, Brian; Hankins, Matthew J.; Hillenbrand, Lynne A.; Jencson, Jacob E.; Karambelkar, Viraj; Kasliwal, Mansi M. (2022-08-01). "SRGA J181414.6-225604: A New Galactic Symbiotic X-Ray Binary Outburst Triggered by an Intense Mass-loss Episode of a Heavily Obscured Mira Variable". The Astrophysical Journal. 935 (1): 36. arXiv:2205.09139. Bibcode:2022ApJ...935...36D. doi:10.3847/1538-4357/ac7c6e. ISSN 0004-637X. S2CID 248887540.
  20. ^ van Genderen, A. M.; Lobel, A.; Nieuwenhuijzen, H.; Henry, G. W.; De Jager, C.; Blown, E.; Di Scala, G.; Van Ballegoij, E. J. (2019). "Pulsations, eruptions, and evolution of four yellow hypergiants". Astronomy and Astrophysics. 631: A48. arXiv:1910.02460. Bibcode:2019A&A...631A..48V. doi:10.1051/0004-6361/201834358. S2CID 203836020.
  21. ^ a b Norris, Ryan (27 February 2021). "An Interferometric Imaging Survey of Red Supergiant Stars". The 20.5Th Cambridge Workshop on Cool Stars: 263. Bibcode:2021csss.confE.263N. doi:10.5281/zenodo.4567641.
  22. ^ a b c d e f g h Bergeat, J.; Chevallier, L. (January 2005). "The mass loss of C-rich giants". Astronomy and Astrophysics. 429: 235–246. arXiv:astro-ph/0601366. Bibcode:2005A&A...429..235B. doi:10.1051/0004-6361:20041280. S2CID 56424665.
  23. ^ a b c Stassun K.G.; et al. (October 2019). "The revised TESS Input Catalog and Candidate Target List". The Astronomical Journal. 158 (4): 138. arXiv:1905.10694. Bibcode:2019AJ....158..138S. doi:10.3847/1538-3881/ab3467. S2CID 166227927.
  24. ^ a b c d e f g h i j k l m n Ramstedt, S.; Olofsson, H. (25 May 2014). "The 12CO/13CO ratio in AGB stars of different chemical type. Connection to the 12C/13C ratio and the evolution along the AGB". Astronomy and Astrophysics. 566: A145. arXiv:1405.6404. Bibcode:2014A&A...566A.145R. doi:10.1051/0004-6361/201423721. ISSN 0004-6361. S2CID 59125036.
  25. ^ a b c Comerón, F.; Djupvik, A. A.; Schneider, N.; Pasquali, A. (27 September 2020). "The historical record of massive star formation in Cygnus" (PDF). Astronomy & Astrophysics. 2009: A62. arXiv:2009.12779. Bibcode:2020A&A...644A..62C. doi:10.1051/0004-6361/202039188. S2CID 221970180.
  26. ^ Arroyo-Torres, B.; Wittkowski, M.; Chiavassa, A.; Scholz, M.; Freytag, B.; Marcaide, J. M.; Hauschildt, P. H.; Wood, P. R.; Abellan, F. J. (March 2015). "What causes the large extensions of red supergiant atmospheres?. Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres". Astronomy and Astrophysics. 575: A50. arXiv:1501.01560. Bibcode:2015A&A...575A..50A. doi:10.1051/0004-6361/201425212. ISSN 0004-6361. S2CID 29210064.
  27. ^ a b Messineo, Maria (18 January 2023). "Identification of late-type stars of class I". arXiv e-prints. arXiv:2301.07415. Bibcode:2023arXiv230107415M.
  28. ^ a b c Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N. L. J.; González-Alfonso, E.; Neufeld, D.; De Ridder, J.; Agúndez, M.; Blommaert, J. A. D. L.; Khouri, T. (April 2016). "Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars" (PDF). Astronomy and Astrophysics. 588: A124. arXiv:1601.07017. Bibcode:2016A&A...588A.124L. doi:10.1051/0004-6361/201527049. ISSN 0004-6361. S2CID 62787287.
  29. ^ Xu, Shuangjing; Zhang, Bo; Reid, Mark J.; Menten, Karl M.; Zheng, Xingwu; Wang, Guangli (May 2018). "The Parallax of the Red Hypergiant VX Sgr with Accurate Tropospheric Delay Calibration". The Astrophysical Journal. 859 (1): 14. arXiv:1804.00894. Bibcode:2018ApJ...859...14X. doi:10.3847/1538-4357/aabba6. ISSN 0004-637X. S2CID 55572194.
  30. ^ Josselin, E.; Plez, B. (July 2007). "Atmospheric dynamics and the mass loss process in red supergiant stars". Astronomy and Astrophysics. 469 (2): 671–680. arXiv:0705.0266. Bibcode:2007A&A...469..671J. doi:10.1051/0004-6361:20066353. ISSN 0004-6361. S2CID 17789027.
  31. ^ Natale, G.; Rea, N.; Lazzati, D.; Perna, R.; Torres, D. F.; Girart, J. M. (25 January 2017). "Dust Radiative Transfer Modeling of the Infrared Ring around the Magnetar SGR 1900+14". The Astrophysical Journal. 837 (1): 10. arXiv:1701.07442. Bibcode:2017ApJ...837....9N. doi:10.3847/1538-4357/aa5c82. S2CID 119213779.
  32. ^ Montargès, M.; Homan, W.; Keller, D.; Clementel, N.; Shetye, S.; Decin, L.; Harper, G. M.; Royer, P.; Winters, J. M.; Le Bertre, T.; Richards, A. M. S. (May 2019). "NOEMA maps the CO J = 2 - 1 environment of the red supergiant μ Cep". Monthly Notices of the Royal Astronomical Society. 485 (2): 2417–2430. arXiv:1903.07129. Bibcode:2019MNRAS.485.2417M. doi:10.1093/mnras/stz397. ISSN 0035-8711.
  33. ^ Van Loon, J. Th.; Cioni, M.-R. L.; Zijlstra, A. A.; Loup, C. (2005). "An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars". Astronomy and Astrophysics. 438 (1): 273–289. arXiv:astro-ph/0504379. Bibcode:2005A&A...438..273V. doi:10.1051/0004-6361:20042555. S2CID 16724272.
  34. ^ Wittkowski, M.; Arroyo-Torres, B.; Marcaide, J. M.; Abellan, F. J.; Chiavassa, A.; Guirado, J. C. (January 2017). "VLTI/AMBER spectro-interferometry of the late-type supergiants V766 Cen (=HR 5171 A), σ Oph, BM Sco, and HD 206859". Astronomy and Astrophysics. 597: A9. arXiv:1610.01927. Bibcode:2017A&A...597A...9W. doi:10.1051/0004-6361/201629349. ISSN 0004-6361. S2CID 55679854.
  35. ^ Norris, Ryan P.; Baron, Fabien R.; Monnier, John D.; Paladini, Claudia; Anderson, Matthew D.; Martinez, Arturo O.; Schaefer, Gail H.; Che, Xiao; Chiavassa, Andrea; Connelley, Michael S.; Farrington, Christopher D.; Gies, Douglas R.; Kiss, László L.; Lester, John B.; Montargès, Miguel; Neilson, Hilding R.; Majoinen, Olli; Pedretti, Ettore; Ridgway, Stephen T.; Roettenbacher, Rachael M.; Scott, Nicholas J.; Sturmann, Judit; Sturmann, Laszlo; Thureau, Nathalie; Vargas, Norman; Ten Brummelaar, Theo A. (2021). "Long Term Evolution of Surface Features on the Red Supergiant AZ Cyg". The Astrophysical Journal. 919 (2): 124. arXiv:2106.15636. Bibcode:2021ApJ...919..124N. doi:10.3847/1538-4357/ac0c7e. S2CID 235683123.
  36. ^ a b Norris, Ryan Patrick (13 December 2019). Seeing stars like never before: A long-term interferometric imaging survey of red supergiants. Physics and Astronomy Dissertations (Thesis). Georgia State University. Bibcode:2019PhDT........63N. doi:10.57709/15009706.
  37. ^ van Belle, G. T.; Creech-Eakman, M. J.; Hart, A. (April 2009). "Supergiant temperatures and linear radii from near-infrared interferometry". Monthly Notices of the Royal Astronomical Society. 394 (4): 1925–1935. arXiv:0811.4239. Bibcode:2009MNRAS.394.1925V. doi:10.1111/j.1365-2966.2008.14146.x. ISSN 0035-8711. S2CID 118372600.
  38. ^ a b c Van Belle, G. T.; Thompson, R. R.; Creech-Eakman, M. J. (2002). "Angular Size Measurements of Mira Variable Stars at 2.2 Microns. II". The Astronomical Journal. 124 (3): 1706–1715. arXiv:astro-ph/0210167. Bibcode:2002AJ....124.1706V. doi:10.1086/342282. S2CID 33832649.
  39. ^ Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E.; Thureau, N.; ten Brummelaar, T. A.; Ridgway, S. T. (April 2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging". The Astrophysical Journal. 785 (1): 46. arXiv:1405.4032. Bibcode:2014ApJ...785...46B. doi:10.1088/0004-637X/785/1/46. ISSN 0004-637X. S2CID 17085548.
  40. ^ Massalkhi, S.; Agúndez, M.; Cernicharo, J.; Velilla-Prieto, L. (September 2020). "The abundance of S- and Si-bearing molecules in O-rich circumstellar envelopes of AGB stars". Astronomy and Astrophysics. 641: A57. arXiv:2007.00572. Bibcode:2020A&A...641A..57M. doi:10.1051/0004-6361/202037900. ISSN 0004-6361. PMC 7116315. PMID 33154600.
  41. ^ Joyce, Meridith; Leung, Shing-Chi; Molnár, László; Ireland, Michael; Kobayashi, Chiaki; Nomoto, Ken'ichi (October 2020). "Standing on the Shoulders of Giants: New Mass and Distance Estimates for Betelgeuse through Combined Evolutionary, Asteroseismic, and Hydrodynamic Simulations with MESA". The Astrophysical Journal. 902 (1): 63. arXiv:2006.09837. Bibcode:2020ApJ...902...63J. doi:10.3847/1538-4357/abb8db. ISSN 0004-637X. S2CID 221507952.
  42. ^ a b c d e Hoffleit, D.; Warren, W. H. Jr. (November 1995). "VizieR Online Data Catalog: Bright Star Catalogue, 5th Revised Ed. (Hoffleit+, 1991)". VizieR Online Data Catalog: V/50. Bibcode:1995yCat.5050....0H.
  43. ^ Messineo, M.; Brown, A. G. A (May 2019). "A Catalog of Known Galactic K-M Stars of Class I Candidate Red Supergiants in Gaia DR2". The Astronomical Journal. 158 (1): 20. arXiv:1905.03744. Bibcode:2019AJ....158...20M. doi:10.3847/1538-3881/ab1cbd. S2CID 148571616.
  44. ^ Ohnaka, K.; Hofmann, K. -H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (July 2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy and Astrophysics. 555: A24. arXiv:1304.4800. Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063. ISSN 0004-6361. S2CID 56396587.
  45. ^ Najarro, Francisco; Figer, Don F.; Hillier, D. John; Geballe, T. R.; Kudritzki, Rolf P. (February 2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal. 691 (2): 1816–1827. arXiv:0809.3185. Bibcode:2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816. ISSN 0004-637X. S2CID 15473563.
  46. ^ Moravveji, Ehsan; Guinan, Edward F.; Khosroshahi, Habib; Wasatonic, Rick (December 2013). "The Age and Mass of the α Herculis Triple-star System from a MESA Grid of Rotating Stars with 1.3". The Astronomical Journal. 146 (6): 148. arXiv:1308.1632. Bibcode:2013AJ....146..148M. doi:10.1088/0004-6256/146/6/148. ISSN 0004-6256. S2CID 117872505.
  47. ^ Davis, J.; Booth, A. J.; Ireland, M. J.; Jacob, A. P.; North, J. R.; Owens, S. M.; Robertson, J. G.; Tango, W. J.; Tuthill, P. G. (October 2007). "The Emergent Flux and Effective Temperature of δ Canis Majoris". Publications of the Astronomical Society of Australia. 24 (3): 151–158. arXiv:0709.3873. Bibcode:2007PASA...24..151D. doi:10.1071/AS07017. ISSN 1323-3580. S2CID 9095731.
  48. ^ Stock, S.; Reffert, S.; Quirrenbach, A. (May 2018). "VizieR Online Data Catalog: Stellar parameters of 372 giant stars (Stock+, 2018)". VizieR On-line Data Catalog. 361 (33): 600. Bibcode:2018yCat..36160033S.
  49. ^ Carpenter, Kenneth G.; Robinson, Richard D.; Harper, Graham M.; Bennett, Philip D.; Brown, Alexander; Mullan, Dermott J. (1999). "GHRS Observations of Cool, Low-Gravity Stars. V. The Outer Atmosphere and Wind of the Nearby K Supergiant λ Velorum". The Astrophysical Journal. 521 (1): 382–406. Bibcode:1999ApJ...521..382C. doi:10.1086/307520. S2CID 121891971.
  50. ^ Schiller, F.; Przybilla, N. (March 2008). "Quantitative spectroscopy of Deneb". Astronomy and Astrophysics. 479 (3): 849–858. arXiv:0712.0040. Bibcode:2008A&A...479..849S. doi:10.1051/0004-6361:20078590. ISSN 0004-6361. S2CID 103635615.
  51. ^ Monnier, J. D.; Che, Xiao; Zhao, Ming; Ekström, S.; Maestro, V.; Aufdenberg, Jason; Baron, F.; Georgy, C.; Kraus, S.; McAlister, H.; Pedretti, E. (December 2012). "Resolving Vega and the Inclination Controversy with CHARA/MIRC". The Astrophysical Journal. 761 (1): L3. arXiv:1211.6055. Bibcode:2012ApJ...761L...3M. doi:10.1088/2041-8205/761/1/L3. ISSN 0004-637X. S2CID 17950155.
  52. ^ Levesque, Emily M.; Massey, Philip; Plez, Bertrand; Olsen, Knut A. G. (2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". The Astronomical Journal. 137 (6): 4744. arXiv:0903.2260. Bibcode:2009AJ....137.4744L. doi:10.1088/0004-6256/137/6/4744. S2CID 18074349.
  53. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp Massey, Philip; Neugent, Kathryn F.; Ekstrom, Sylvia; Georgy, Cyril; Georges, Meynet (2022-11-23). "The Time-Averaged Mass-Loss Rates of Red Supergiants As Revealed by their Luminosity Functions in M31 and M33". The Astrophysical Journal: 35. arXiv:2211.14147.
  54. ^ a b c d e f g h i j de Wit, S.; Bonanos, A.Z.; Tramper, F.; Yang, M.; Maravelias, G.; Boutsia, K.; Britavskiy, N.; Zapartas, E. (2023). "Properties of luminous red supergiant stars in the Magellanic Clouds". Astronomy and Astrophysics. 669: 17. arXiv:2209.11239. doi:10.1051/0004-6361/202243394. S2CID 252519285.
  55. ^ a b c d e f g h i j k l m n o p q r s Britavskyi, N.; Lennon, D. J.; Patrick, L. R.; Evans, C. J.; Herrero, A.; Langer, N.; van Loon, J. Th.; Clark, J. S.; Schneider, F. R. N.; Almeida, L. A.; Sana, H.; de Koter, A.; Taylor, W. D. (26 February 2019). "The VLT-FLAMES Tarantula Survey. XXX. Red stragglers in the clusters Hodge 301 and SL 639". Astronomy & Astrophysics. 624: 13. arXiv:1902.09891. Bibcode:2019A&A...624A.128B. doi:10.1051/0004-6361/201834564.
  56. ^ Goldman, Steven R.; van Loon, Jacco Th.; Zijlstra, Albert A.; Green, James A.; Wood, Peter R.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Matsuura, Mikako; Groenewegen, Martin A. T.; Gómez, José F. (18 October 2016). "The wind speeds, dust content and mass-loss rates of evolved AGB and RSG stars at varying metallicity". The Royal Astronomial Society. 465 (1): 403–433. arXiv:1610.05761. Bibcode:2017MNRAS.465..403G. doi:10.1093/mnras/stw2708.
  57. ^ Beasor, Emma R.; Smith, Nathan (2022-05-01). "The Extreme Scarcity of Dust-enshrouded Red Supergiants: Consequences for Producing Stripped Stars via Winds". The Astrophysical Journal. 933: 41. arXiv:2205.02207. doi:10.3847/1538-4357/ac6dcf. S2CID 248512934.
  58. ^ a b c d e f g h i j k l Massey, Philip; Silva, David.R; Levesque, Emily M.; Plez, Betrand; Olsen, Knut, A.G.; Clayton, Geoffrey C.; Meynet, Georges; Maeder, Andre (September 2009). "Red Supergiants in the Andromeda Galaxy (M31)". The Astrophysical Journal. 703 (1): 420-440. arXiv:0907.3767. Bibcode:2009ApJ...703..420M. doi:10.1088/0004-637X/703/1/420. S2CID 119293010. Retrieved April 18, 2022.
  59. ^ a b c d e f g h i j k l m n o p q r s t u v w x Britavskiy, N. E.; Bonanos, A. Z.; Herrero, A.; Cerviño, M.; García-Álvarez, D.; Boyer, M. L.; Masseron, T.; Mehner, A.; McQuinn, K. B. W. (November 2019). "Physical parameters of red supergiants in dwarf irregular galaxies in the Local Group". Astronomy and Astrophysics. 631: A95. arXiv:1909.13378. Bibcode:2019A&A...631A..95B. doi:10.1051/0004-6361/201935212. ISSN 0004-6361. S2CID 203593402.
  60. ^ a b c d e f Jones, Olivia C.; Maclay, Matthew T.; Boyer, Martha L.; Meixner, Margaret; McDonald, Iain; Meskhidze, Helen (2018-02-01). "Near-infrared Stellar Populations in the Metal-poor, Dwarf Irregular Galaxies Sextans A and Leo A". The Astrophysical Journal. 854 (2): 117. arXiv:1712.06594. Bibcode:2018ApJ...854..117J. doi:10.3847/1538-4357/aaa542. ISSN 0004-637X. S2CID 119199303.
  61. ^ Ren, Yi; Jiang, Biwei; Yang, Ming; Wang, Tianding; Ren, Tongtian (2021-12-01). "The Sample of Red Supergiants in 12 Low-mass Galaxies of the Local Group". The Astrophysical Journal. 923 (2): 232. doi:10.3847/1538-4357/ac307b. ISSN 0004-637X. S2CID 245474758.
  62. ^ a b c Humphreys, Roberta M.; Stangl, Sarah; Gordon, Michael S.; Davidson, Kris; Grammer, Skyler H. (2019-01-01). "Luminous and Variable Stars in NGC 2403 and M81". The Astronomical Journal. 157 (1): 22. arXiv:1811.06559. Bibcode:2019AJ....157...22H. doi:10.3847/1538-3881/aaf1ac. ISSN 0004-6256. S2CID 119379139.
  63. ^ Petit, V.; Drissen, L.; Crowther, P. A. (2005). "Quantitative analysis of STIS spectra of NGC 2363-V1". The Fate of the Most Massive Stars. 332: 159. Bibcode:2005ASPC..332..157P.

See also

External links