Page semi-protected

List of largest stars

From Wikipedia, the free encyclopedia
  (Redirected from List of largest known stars)
Jump to navigation Jump to search

Below is a list of the largest stars currently known, ordered by radius. The unit of measurement used is the radius of the Sun (approximately 695,700 km; 432,288 mi).

Great uncertainties remain with the membership and order of the list, especially when deriving various parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or within a large range of values. Values for stellar radii vary significantly in different sources and for different observation methods.

The angular diameters of many stars can be measured directly using stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test indirect methods of finding stellar radii. Only a few useful supergiant stars can be occulted by the Moon, including Antares A (Alpha Scorpii A). Examples of eclipsing binaries are Epsilon Aurigae (Almaaz), VV Cephei, and V766 Centauri (HR 5171). Angular diameter measurements can be inconsistent because the boundary of the very tenuous atmosphere (opacity) differs depending on the wavelength of light in which the star is observed.


The extreme red hypergiant star VY Canis Majoris compared to the Sun and Earth's orbit.

Various complex issues exist in determining accurate radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions; these include:

  • Stellar radii or diameters are usually derived only approximately using Stefan-Boltzmann law for the deduced stellar luminosity and effective surface temperature.
  • Stellar distances, and their errors, for most stars, remain uncertain or poorly determined.
  • Many supergiant stars have extended atmospheres, and many are embedded within opaque dust shells, making their true effective temperatures highly uncertain.
  • Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years as variable stars. This makes adopted luminosities poorly known and may significantly change the quoted radii.
  • Other direct methods for determining stellar radii rely on lunar occultations or from eclipses in binary systems. This is only possible for a very small number of stars.
  • In this list are some examples of more distant extragalactic stars, which may have slightly different properties and natures than the currently largest-known stars in the Milky Way. For example, some red supergiants in the Magellanic Clouds are suspected to have slightly different limiting temperatures and luminosities. Such stars may exceed accepted limits by undergoing large eruptions or change their spectral types over just a few months.[1][2]


List of the largest stars
Star name Solar radii
(Sun = 1)
Method[a] Notes
Stephenson 2-18 2,150[3] L/Teff Located within close proximity of the massive open cluster Stephenson 2, where 26 red supergiants are located.
MY Cephei 2,061[4] L/Teff Not to be confused with Mu Cephei (see below). Older estimates have given up to 2,440 R based on much cooler temperatures.[5]
WY Velorum 2,028[6] AD A symbiotic binary containing a red supergiant
Orbit of Saturn 1,940-2,169 Reported for reference
LGGS J004520.67+414717.3 1,870[7]–2,126[2] L/Teff Located in the Andromeda Galaxy
MG73 46 (MSX LMC 891) 1,838[2] L/Teff Located in the Large Magellanic Cloud
LGGS J004539.99+415404.1 1,792[2] L/Teff Located in the Andromeda Galaxy
HV 888 (WOH S140) 1,765[2] L/Teff Located in the Large Magellanic Cloud
V744 Sagittarii 1,745[8] L/Teff
WOH S274 1,724[2] L/Teff Located in the Large Magellanic Cloud
HV 2242 (WOH S69) 1,645[2] L/Teff Located in the Large Magellanic Cloud
SMC 78282 (PMMR 198) 1,600[9] L/Teff Located in the Small Magellanic Cloud
WOH G64 1,540[10]–1,730[11] L/Teff Located in the Large Magellanic Cloud
HV 5993 (WOH S464) 1,531[2] L/Teff Located in the Large Magellanic Cloud
Westerlund 1-26 1,530–1,580[12] L/Teff Very uncertain parameters for an unusual star with strong radio emission. The spectrum is variable but apparently the luminosity is not.
RSGC1-F01 1,530[4] L/Teff Located in the open cluster RSGC1
W61 8-88 (WOH S465) 1,491[2] L/Teff Located in the Large Magellanic Cloud
UCAC4 116-007944 (MSX LMC 810) 1,468[2] L/Teff Located in the Large Magellanic Cloud
WOH S281 (IRAS 05261-6614) 1,459[2] L/Teff Located in the Large Magellanic Cloud
W60 A78 (WOH S459) 1,445[2] L/Teff Located in the Large Magellanic Cloud
HV 12998 (WOH S369) 1,443[2] L/Teff Located in the Large Magellanic Cloud
W60 A72 (WOH S453) 1,441[2] L/Teff Located in the Large Magellanic Cloud
VY Canis Majoris 1,420[13] AD Often described as the largest star in the Milky Way.[14] Older estimates originally estimated the radius of VY CMa to be above 3,000 R,[15] or as little as 600 R.[16] The 1,420 R measure has a margin of error of ±120 R.[13]
WOH S286 1,417[2] L/Teff Located in the Large Magellanic Cloud
LGGS J004428.48+415130.9 1,410[7] L/Teff Located in the Andromeda Galaxy
RU Herculis 1,392[17] L/Teff
IRAS 05280-6910 1,367[18] L/Teff Located in the Large Magellanic Cloud
S Persei 1,364±6[19] AD A red supergiant located in the Perseus Double Cluster. Levsque et al. 2005 calculated radii of 780 R and 1,230 R based on K-band measurements.[20] Older estimates gave up to 2,853 R based on higher luminosities.[21]
PHL 293B 1,348-1,463[22] L/Teff A disappearing luminous blue variable star located in the low metallicity galaxy PHL 293B
V688 Monocerotis 1,347[23] L/Teff Also one of the coolest stars at 1,670 K.[23]
RSGC1-F03 1,325[3] L/Teff Located in the open cluster RSGC1.
PMMR 62 1,313[9] L/Teff Located in the Small Magellanic Cloud
SMC 18136 (PMMR 37) 1,307[9] L/Teff Located in the Small Magellanic Cloud
LMC 170079 1,294[9] L/Teff Located in the Large Magellanic Cloud
LGGS J05294221-6857173 1,292[24] L/Teff
Z Doradus 1,271[9] L/Teff Located in the Large Magellanic Cloud
LGGS J004312.43+413747.1 1,270[7] L/Teff Located in the Andromeda Galaxy
BO Crucis 1,250[8] L/Teff
LGGS J004514.91+413735.0 1,250[7] L/Teff Located in the Andromeda Galaxy
LGGS J004428.12+415502.9 1,240[7] L/Teff Located in the Andromeda Galaxy
RSGC1-F09 1,230[3] L/Teff Located in the open cluster RSGC1.
SMC 5092 (PMMR 9) 1,216[9] L/Teff Located in the Small Magellanic Cloud
LGGS J004125.23+411208.9 1,200[7] L/Teff Located in the Andromeda Galaxy
HV 2532 (WOH S287) 1,195[9] L/Teff Located in the Small Magellanic Cloud
HV 2084 (PMMR 186) 1,187[9] L/Teff Located in the Small Magellanic Cloud
NML Cygni 1,183[25] L/Teff
LGGS J004524.97+420727.2 1,170[7] L/Teff Located in the Andromeda Galaxy
RW Cephei 1,158[8] L/Teff RW Cep is variable both in brightness (by at least a factor of 3) and spectral type (observed from G8 to M0), thus probably also in diameter. Because the spectral type and temperature at maximum luminosity are not known, the quoted size is just an estimate.
W60 B90 (WOH S264) 1,149[26]–2,555[2] L/Teff Located in the Large Magellanic Cloud
LGGS J004047.22+404445.5 1,140[7] L/Teff Located in the Andromeda Galaxy
LGGS J004035.08+404522.3 1,140[7] L/Teff Located in the Andromeda Galaxy
SW Cephei 1,131[27] L/Teff
LGGS J004124.80+411634.7 1,130[7] L/Teff Located in the Andromeda Galaxy
LGGS J013233.77+302718.8 1,129[24] L/Teff Located in the Triangulum Galaxy
HV 2781 (WOH S470) 1,129[9] L/Teff Located in the Large Magellanic Cloud
RSGC1-F02 1,128[4] L/Teff Located in the open cluster RSGC1
SMC 56389 (PMMR 148) 1,128[9] L/Teff Located in the Small Magellanic Cloud
HV 2561(LMC 141430) 1,107[9] L/Teff Located in the Large Magellanic Cloud
LGGS J004107.11+411635.6 1,100[7] L/Teff Located in the Andromeda Galaxy
RSGC1-F08 1,087[3] L/Teff Located in the open cluster RSGC1.
LGGS J004031.00+404311.1 1,080[7] L/Teff Located in the Andromeda Galaxy
SMC 49478 (PMMR 115) 1,077[9] L/Teff Located in the Small Magellanic Cloud
Trumpler 27-1 1,073[27] L/Teff Located in the massive possible open cluster Trumpler 27
HV 897 (WOH S161) 1,073[9] L/Teff Located in the Large Magellanic Cloud
SMC 20133 (PMMR 41) 1,072[9] L/Teff Located in the Small Magellanic Cloud
LMC 174714 1,072[9] L/Teff Located in the Large Magellanic Cloud
LGGS J004531.13+414825.7 1,070[7] L/Teff Located in the Andromeda Galaxy
HV 11262 (PMMR 16) 1,067[9] L/Teff Located in the Small Magellanic Cloud
Orbit of Jupiter 1,064-1,173 Reported for reference
V766 Centauri Aa (HR 5171 Aa) 1,060–1,160[28] L/Teff
SMC 25879 (PMMR 54) 1,053[9] L/Teff Located in the Small Magellanic Cloud
RSGC1-F05 1,047[3] L/Teff Located in the open cluster RSGC1.
WX Piscium 1,044[29] L/Teff
WOH G371 (LMC 146126) 1,043[9] L/Teff Located in the Large Magellanic Cloud
WOH S327 (LMC 142202) 1,043[9] L/Teff Located in the Large Magellanic Cloud
V358 Cassiopeiae 1,043[30] AD A red hypergiant star in the constellation of Cassiopeia.[17]
LGGS J004114.18+403759.8 1,040[7] L/Teff Located in the Andromeda Galaxy
ST Cephei 1,037[27] L/Teff
IM Cassiopeiae 1,030[27] L/Teff
LGGS J004125.72+411212.7 1,020[7] L/Teff Located in the Andromeda Galaxy
LGGS J004059.50+404542.6 1,020[7] L/Teff Located in the Andromeda Galaxy
HV 986 (WOH S368) 1,010[31] L/Teff Located in the Large Magellanic Cloud
KW Sagittarii 1,009±142[32] AD
VV Cephei A 1,000[33] EB VV Cep A is a highly distorted star in a close binary system, losing mass to the secondary for at least part of its orbit. Data from the most recent eclipse has cast additional doubt on the accepted model of the system. Older estimates give up to 1,900 R[20]
RW Cygni 1,000[27] L/Teff
The following stars with sizes below 1,000 solar radii are kept here for comparison
Mu Cephei (Herschel's "Garnet Star") 972[34]-1,650[35] L/Teff and AD Prototype of the obsolete class of the Mu Cephei variables and also one of reddest stars in the night sky in terms of the B-V color index.[36] Other estimates have given as high as 1,650 R based on angular diameter.
Betelgeuse (Alpha Orionis) 887[37] AD Star with the third largest apparent size after R Doradus and the Sun. Brightest red supergiant in the night sky. Another estimate gives 955±217 R[38]
UY Scuti 755[27] L/Teff Used to be the largest known star based on a higher distance.[32][39]
Antares A (Alpha Scorpii A) 707[6] (varies by 19%)[40] AD Antares was originally calculated to be over 850 R,[41][42] but those estimates are likely to have been affected by asymmetry of the atmosphere of the star.[43]
V354 Cephei 685[27]-1,520[20] L/Teff
KY Cygni 672[27]-1,420[20] L/Teff
119 Tauri (CE Tauri) 587-593[44] (-608[45]) AD Can be occulted by the Moon, allowing accurate determination of its apparent diameter.
V382 Carinae (x Carinae) 485 ± 40[46] AD Yellow hypergiant, one of the rarest types of a star.
V509 Cassiopeiae 400–900[47] AD Yellow hypergiant, one of the rarest types of a star.
V1427 Aquilae 400–450[28] DSKE V1427 Aquilae may be a yellow hypergiant or a much less luminous star.
CW Leonis 390[48]-826[25] L/Teff Prototype of carbon stars. CW Leo was mistakenly identified as the claimed planet "Nibiru" or "Planet X".
Inner limits of the asteroid belt 380 Reported for reference
AH Scorpii 360[27] L/Teff AH Sco is a variable by nearly 3 magnitudes in the visual range, and an estimated 20% in total luminosity. The variation in diameter is not clear because the temperature also varies.
V1302 Aquilae 357[49] L/Teff A yellow hypergiant that has increased its temperature into the LBV range. De beck et al. 2010 calculates 1,342 R based on a much cooler temperature.[25]
Mira A (Omicron Ceti) 332-402[50] AD Prototype Mira variable. De beck et al. 2010 calculates 541 R.[25]
Pistol Star 306[51] AD Blue hypergiant, among the most massive and luminous stars known.
R Doradus 298[52] AD Star with the second largest apparent size after the Sun.
Orbit of Mars 297-358 Reported for reference
La Superba (Y Canum Venaticorum) 289[6] AD Referred to as La Superba by Angelo Secchi. Currently one of the coolest and reddest stars.
Sun's red giant phase 256[53] At this point, the Sun will engulf Mercury and Venus, and possibly the Earth although it will move away from its orbit since the Sun will lose a third of its mass. During the helium burning phase, it will shrink to 10 R but will later grow again and become an unstable AGB star, and then a white dwarf after making a planetary nebula.[54][55] Reported for reference
Rho Cassiopeiae 242[6] AD Yellow hypergiant, one of the rarest types of a star.
Eta Carinae A ~240[56] Previously thought to be the most massive single star, but in 2005 it was realized to be a binary system. During the Great Eruption, the size was much larger at around 1,400 R.[57] η Car is calculated to be between 60 R and 881 R.[58]
Orbit of Earth 215 (211-219) Reported for reference
Solar System Habitable Zone 200-520[59] (uncertain) Reported for reference
Orbit of Venus 154-157 Reported for reference
Epsilon Aurigae A (Almaaz A) 143-358[60] AD ε Aurigae was incorrectly claimed in 1970 as the largest star with a size between 2,000 R and 3,000 R,[61] even though it later turned out not to be an infrared light star but rather a dusk torus surrounding the system.
Deneb (Alpha Cygni) 99.84[6] AD Prototype Alpha Cygni variable.
Peony Star 92[62] AD Candidate for most luminous star in the Milky Way.
Canopus (Alpha Carinae) 71[63] AD Second brightest star in the night sky.
Orbit of Mercury 66-100 Reported for reference
LBV 1806-20 46-145[64] L/Teff Formerly a candidate for the most luminous star in the Milky Way with 40 million L,[65] but the luminosity has been revised later only 2 million L.[66][67]
Aldebaran (Alpha Tauri) 43.06[6] AD Fourteenth brightest star in the night sky
Polaris (Alpha Ursae Minoris) 37.5[68] AD The current northern pole star.
R136a1 28.8[69]-35.4[70] AD Also on record as the most massive and luminous star known (315 M and 8.71 million L).
Arcturus (Alpha Boötis) 24.25[6] AD Brightest star in the northern celestial hemisphere.
HDE 226868 20-22[71] The supergiant companion of black hole Cygnus X-1. The black hole is around 500,000 times smaller than the star.
Sun 1 The largest object in the Solar System.
Reported for reference
  1. ^ Methods for calculating the radius:
    • AD: radius determined from angular diameter and distance
    • L/Teff: radius calculated from bolometric luminosity and effective temperature
    • DSKE: radius calculated using the disk emission
    • EB: radius determined from observations of the eclipsing binary

See also


  1. ^ Levesque, Emily M.; Massey, Philip; Olsen, K.A.G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal. 645 (2): 1102–1117. arXiv:astro-ph/0603596. Bibcode:2006ApJ...645.1102L. doi:10.1086/504417. S2CID 5150686.
  2. ^ a b c d e f g h i j k l m n o p Ren, Yi; Jiang, Bi-Wei (2020-07-20). "On the Granulation and Irregular Variation of Red Supergiants". The Astrophysical Journal. 898 (1): 24. doi:10.3847/1538-4357/ab9c17. ISSN 1538-4357.
  3. ^ a b c d e Fok, Thomas K. T; Nakashima, Jun-ichi; Yung, Bosco H. K; Hsia, Chih-Hao; Deguchi, Shuji (2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal. 760 (1): 65. arXiv:1209.6427. Bibcode:2012ApJ...760...65F. doi:10.1088/0004-637X/760/1/65. S2CID 53393926.
  4. ^ a b c Humphreys, Roberta M.; Helmel, Greta; Jones, Terry J.; Gordon, Michael S. (August 2020). "Exploring the Mass Loss Histories of the Red Supergiants": arXiv:2008.01108. arXiv:2008.01108. Cite journal requires |journal= (help)
  5. ^ Fawley, W. M; Cohen, M (1974). "The open cluster NGC 7419 and its M7 supergiant IRC +60375". Astrophysical Journal. 193: 367. Bibcode:1974ApJ...193..367F. doi:10.1086/153171.
  6. ^ a b c d e f g Cruzalèbes, P.; Petrov, R. G.; Robbe-Dubois, S.; Varga, J.; Burtscher, L.; Allouche, F.; Berio, P.; Hofmann, K. H.; Hron, J.; Jaffe, W.; Lagarde, S.; Lopez, B.; Matter, A.; Meilland, A.; Meisenheimer, K.; Millour, F.; Schertl, D. (2019). "A catalogue of stellar diameters and fluxes for mid-infrared interferometry". Monthly Notices of the Royal Astronomical Society. 490 (3): 3158–3176. arXiv:1910.00542. Bibcode:2019MNRAS.490.3158C. doi:10.1093/mnras/stz2803. S2CID 203610229.
  7. ^ a b c d e f g h i j k l m n o p Massey, Philip; Evans, Kate Anne (2016). "The Red Supergiant Content of M31". The Astrophysical Journal. 826 (2): 224. arXiv:1605.07900. Bibcode:2016ApJ...826..224M. doi:10.3847/0004-637X/826/2/224. S2CID 27871527.
  8. ^ a b c Stassun K.G.; et al. (October 2019). "The revised TESS Input Catalog and Candidate Target List". The Astronomical Journal. 158 (4): 138. arXiv:1905.10694. Bibcode:2019AJ....158..138S. doi:10.3847/1538-3881/ab3467. S2CID 166227927.
  9. ^ a b c d e f g h i j k l m n o p q r s Dicenzo, Brooke; Levesque, Emily M. (April 2019). "Atomic Absorption Line Diagnostics for the Physical Properties of Red Supergiants". The Astronomical Journal. 157 (4): 167. arXiv:1902.01862. Bibcode:2019AJ....157..167D. doi:10.3847/1538-3881/ab01cb. S2CID 119076156.
  10. ^ Levesque, E. M.; Massey, P.; Plez, B.; Olsen, K. A. G. (2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". The Astronomical Journal. 137 (6): 4744. arXiv:0903.2260. Bibcode:2009AJ....137.4744L. doi:10.1088/0004-6256/137/6/4744. S2CID 18074349.
  11. ^ Ohnaka, K.; Driebe, T.; Hofmann, K. H.; Weigelt, G.; Wittkowski, M. (2009). "Resolving the dusty torus and the mystery surrounding LMC red supergiant WOH G64". Proceedings of the International Astronomical Union. 4: 454–458. Bibcode:2009IAUS..256..454O. doi:10.1017/S1743921308028858.
  12. ^ Wright, N. J.; Wesson, R.; Drew, J. E.; Barentsen, G.; Barlow, M. J.; Walsh, J. R.; Zijlstra, A.; Drake, J. J.; Eisloffel, J.; Farnhill, H. J. (16 October 2013). "The ionized nebula surrounding the red supergiant W26 in Westerlund 1". Monthly Notices of the Royal Astronomical Society: Letters. 437 (1): L1–L5. arXiv:1309.4086. Bibcode:2014MNRAS.437L...1W. doi:10.1093/mnrasl/slt127. S2CID 14889377.
  13. ^ a b Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy & Astrophysics. 540: L12. arXiv:1203.5194. Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126. S2CID 54044968.
  14. ^ Alcolea, J; Bujarrabal, V; Planesas, P; Teyssier, D; Cernicharo, J; De Beck, E; Decin, L; Dominik, C; Justtanont, K; De Koter, A; Marston, A. P; Melnick, G; Menten, K. M; Neufeld, D. A; Olofsson, H; Schmidt, M; Schöier, F. L; Szczerba, R; Waters, L. B. F. M (2013). "HIFISTARSHerschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star". Astronomy & Astrophysics. 559: A93. arXiv:1310.2400. Bibcode:2013A&A...559A..93A. doi:10.1051/0004-6361/201321683. S2CID 55758451.
  15. ^ Monnier, J. D; Millan-Gabet, R; Tuthill, P. G; Traub, W. A; Carleton, N. P; Coudé Du Foresto, V; Danchi, W. C; Lacasse, M. G; Morel, S; Perrin, G; Porro, I. L; Schloerb, F. P; Townes, C. H (2004). "High-Resolution Imaging of Dust Shells by Using Keck Aperture Masking and the IOTA Interferometer". The Astrophysical Journal. 605 (1): 436–461. arXiv:astro-ph/0401363. Bibcode:2004ApJ...605..436M. doi:10.1086/382218. S2CID 7851916.
  16. ^ Massey, Philip; Levesque, Emily M.; Plez, Bertrand (August 2006). "Bringing VY Canis Majoris Down to Size: An Improved Determination of Its Effective Temperature". The Astrophysical Journal. 646 (2): 1203–1208. arXiv:astro-ph/0604253. doi:10.1086/505025. S2CID 14314968.
  17. ^ a b McDonald, I.; Zijlstra, A. A.; Boyer, M. L. (2012). "Fundamental Parameters and Infrared Excesses of Hipparcos Stars". Monthly Notices of the Royal Astronomical Society. 427 (1): 343–57. arXiv:1208.2037. Bibcode:2012MNRAS.427..343M. doi:10.1111/j.1365-2966.2012.21873.x. S2CID 118665352.
  18. ^ Steven R. Goldman; Jacco Th. van Loon (2016). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity". Monthly Notices of the Royal Astronomical Society. 465 (1): 403–433. arXiv:1610.05761. Bibcode:2017MNRAS.465..403G. doi:10.1093/mnras/stw2708. S2CID 11352637.
  19. ^ Norris, Ryan P. (2019). Seeing Stars Like Never Before: A Long-term Interferometric Imaging Survey of Red Supergiants (PDF) (PhD). Georgia State University.
  20. ^ a b c d Table 4 in Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not as Cool as We Thought". The Astrophysical Journal. 628 (2): 973–985. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901. S2CID 15109583.
  21. ^ De Jager, C; Nieuwenhuijzen, H; Van Der Hucht, K. A (1988). "Mass loss rates in the Hertzsprung-Russell diagram". Astronomy and Astrophysics Supplement Series. 72: 259. Bibcode:1988A&AS...72..259D. ISSN 0365-0138.
  22. ^ Allan, Andrew; Groh, Jose; Mehner, Andrea; Smith, Nathan; Boian, Ioana; Farrell, Eoin; Andrews, Jennifer (2020-08-01). "The possible disappearance of a massive star in the low metallicity galaxy PHL 293B". Monthly Notices of the Royal Astronomical Society. 496 (2): 1902–1908. arXiv:2003.02242. doi:10.1093/mnras/staa1629. ISSN 0035-8711.
  23. ^ a b Bergeat, J.; Chevallier, L. (2005). "The mass loss of C-rich giants". Astronomy and Astrophysics. 429: 235–246. arXiv:astro-ph/0601366. Bibcode:2005A&A...429..235B. doi:10.1051/0004-6361:20041280. S2CID 56424665.
  24. ^ a b Maria R. Drout; Philip Massey; Georges Meynet (2012). "The yellow and red supergiants of M33". The Astrophysical Journal. 750 (2): 97. arXiv:1203.0247. doi:10.1088/0004-637X/750/2/97. S2CID 119160120.
  25. ^ a b c d De Beck, E.; Decin, L.; De Koter, A.; Justanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M. (2010). "Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: Derivation of mass-loss rate formulae". Astronomy and Astrophysics. 523: A18. arXiv:1008.1083. Bibcode:2010A&A...523A..18D. doi:10.1051/0004-6361/200913771. S2CID 16131273.
  26. ^ Groenewegen, Martin A. T.; Sloan, Greg C. (January 2018). "Luminosities and mass-loss rates of Local Group AGB stars and Red Supergiants". Astronomy & Astrophysics. 609: A114. arXiv:1711.07803. doi:10.1051/0004-6361/201731089. ISSN 0004-6361.
  27. ^ a b c d e f g h i Messineo, M.; Brown, A. G. A. (2019). "A Catalog of Known Galactic K-M Stars of Class I Candidate Red Supergiants in Gaia DR2". The Astronomical Journal. 158 (1): 20. arXiv:1905.03744. Bibcode:2019AJ....158...20M. doi:10.3847/1538-3881/ab1cbd. S2CID 148571616.
  28. ^ a b van Genderen, A. M.; Lobel, A.; Nieuwenhuijzen, H.; Henry, G. W.; De Jager, C.; Blown, E.; Di Scala, G.; Van Ballegoij, E. J. (2019). "Pulsations, eruptions, and evolution of four yellow hypergiants". Astronomy and Astrophysics. 631: A48. arXiv:1910.02460. Bibcode:2019A&A...631A..48V. doi:10.1051/0004-6361/201834358. S2CID 203836020.
  29. ^ Schöier, F. L; Ramstedt, S; Olofsson, H; Lindqvist, M; Bieging, J. H; Marvel, K. B (2013). "The abundance of HCN in circumstellar envelopes of AGB stars of different chemical type". Astronomy & Astrophysics. 550: A78. arXiv:1301.2129. Bibcode:2013A&A...550A..78S. doi:10.1051/0004-6361/201220400. S2CID 96447896.
  30. ^ Bourgés, L.; Lafrasse, S.; Mella, G.; Chesneau, O.; Bouquin, J. L.; Duvert, G.; Chelli, A.; Delfosse, X. (May 2014). "The JMMC Stellar Diameters Catalog v2 (JSDC): A New Release Based on SearchCal Improvements". Astronomical Data Analysis Software and Systems XXIII. 485: 223. Bibcode:2014ASPC..485..223B. ISSN 1050-3390.
  31. ^ Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand (2007). "Late‐Type Red Supergiants: Too Cool for the Magellanic Clouds?". The Astrophysical Journal. 667: 202–212. doi:10.1086/520797. S2CID 119170317.
  32. ^ a b Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Hauschildt, P. H. (6 June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy & Astrophysics. 554: A76. doi:10.1051/0004-6361/201220920.
  33. ^ Pollmann, E.; Bennett, P. D.; Vollmann, W.; Somogyi, P. (July 2018). "Periodic Hα Emission in the Eclipsing Binary VV Cephei". Information Bulletin on Variable Stars. 6249 (6249): 1. Bibcode:2018IBVS.6249....1P. doi:10.22444/IBVS.6249.
  34. ^ Montargès, M.; Homan, W.; Keller, D.; Clementel, N.; Shetye, S.; Decin, L.; Harper, G. M.; Royer, P.; Winters, J. M.; Le Bertre, T.; Richards, A. M. S. (2019). "NOEMA maps the CO J = 2 − 1 environment of the red supergiant μ Cep". Monthly Notices of the Royal Astronomical Society. 485 (2): 2417–2430. arXiv:1903.07129. Bibcode:2019MNRAS.485.2417M. doi:10.1093/mnras/stz397.
  35. ^ "Jim Kaler-Garnet star".
  36. ^ Ahad, Abdul (May 1, 2004). "The second 'Garnet Star' after Mu Cephei must be 119 Tauri!". Google Groups. Archived from the original on January 30, 2018. Retrieved January 30, 2018.
  37. ^ Dolan, Michelle M.; Mathews, Grant J.; Lam, Doan Duc; Lan, Nguyen Quynh; Herczeg, Gregory J.; Dearborn, David S. P. (2017). "Evolutionary Tracks for Betelgeuse". The Astrophysical Journal. 819 (1): 7. arXiv:1406.3143. Bibcode:2016ApJ...819....7D. doi:10.3847/0004-637X/819/1/7.
  38. ^ Neilson, H. R.; Lester, J. B.; Haubois, X. (December 2011). "Weighing Betelgeuse: Measuring the Mass of α Orionis from Stellar Limb-darkening". Astronomical Society of the Pacific. 9th Pacific Rim Conference on Stellar Astrophysics. Proceedings of a conference held at Lijiang, China in 14–20 April 2011. ASP Conference Series, Vol. 451: 117. arXiv:1109.4562. Bibcode:2010ASPC..425..103L.
  39. ^ Dorda, Ricardo; González-Fernández, Carlos; Negueruela, Ignacio (2016). "Characterisation of red supergiants in the Gaiaspectral range". Astronomy & Astrophysics. 595: A105. arXiv:1609.04063. Bibcode:2016A&A...595A.105D. doi:10.1051/0004-6361/201628422.
  40. ^ Mark J. Pecaut; Eric E. Mamajek & Eric J. Bubar (February 2012). "A Revised Age for Upper Scorpius and the Star Formation History among the F-type Members of the Scorpius-Centaurus OB Association". Astrophysical Journal. 746 (2): 154. arXiv:1112.1695. Bibcode:2012ApJ...746..154P. doi:10.1088/0004-637X/746/2/154.
  41. ^ Pugh, T.; Gray, D. F. (2013-02-01). "On the Six-year Period in the Radial Velocity of Antares A". The Astronomical Journal. 145 (2): 38. Bibcode:2013AJ....145...38P. doi:10.1088/0004-6256/145/2/38. ISSN 0004-6256.
  42. ^ Baade, R.; Reimers, D. (2007-10-01). "Multi-component absorption lines in the HST spectra of alpha Scorpii B". Astronomy and Astrophysics. 474 (1): 229–237. Bibcode:2007A&A...474..229B. doi:10.1051/0004-6361:20077308. ISSN 0004-6361.
  43. ^ Ohnaka, K.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy & Astrophysics. 555: A24. arXiv:1304.4800. Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063.
  44. ^ Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. (June 2018). "The convective photosphere of the red supergiant CE Tau. I. VLTI/PIONIER H-band interferometric imaging". Astronomy & Astrophysics. 614 (12): A12. arXiv:1802.06086. Bibcode:2018A&A...614A..12M. doi:10.1051/0004-6361/201731471. S2CID 118950270.
  45. ^ Parker, Greg (July 2, 2012). "The second reddest star in the sky – 119 Tauri, CE Tauri". New Forest Observatory. Archived from the original on August 25, 2018. Retrieved January 4, 2019.
  46. ^ Groenewegen, M. A. T. (March 2020). "Analysing the spectral energy distributions of Galactic classical Cepheids". Astronomy and Astrophysics. 635: A33. arXiv:2002.02186. Bibcode:2020A&A...635A..33G. doi:10.1051/0004-6361/201937060. S2CID 211043995.CS1 maint: date and year (link)
  47. ^ Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. (2012). "The hypergiant HR 8752 evolving through the yellow evolutionary void" (PDF). Astronomy & Astrophysics. 546: A105. Bibcode:2012A&A...546A.105N. doi:10.1051/0004-6361/201117166.
  48. ^ Men'shchikov1, A. B.; Balega, Y.; Blöcker, T.; Osterbart, R.; Weigelt, G. (2001). "Structure and physical properties of the rapidly evolving dusty envelope of IRC +10216 reconstructed by detailed two-dimensional radiative transfer modeling". Astronomy and Astrophysics. 392 (3): 921–929. arXiv:astro-ph/0206410. Bibcode:2002A&A...392..921M. doi:10.1051/0004-6361:20020954. S2CID 17557108.
  49. ^ Dinh-V.-Trung; Muller, Sébastien; Lim, Jeremy; Kwok, Sun; Muthu, C. (2009). "Probing the Mass-Loss History of the Yellow Hypergiant IRC+10420". The Astrophysical Journal. 697 (1): 409–419. arXiv:0903.3714. Bibcode:2009ApJ...697..409D. doi:10.1088/0004-637X/697/1/409. S2CID 16971892.
  50. ^ Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H.; et al. (2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics. 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode:2004A&A...421..703W. doi:10.1051/0004-6361:20035826. S2CID 17009595.
  51. ^ Najarro, F.; Figer, D. F.; Hillier, D. J.; Geballe, T. R.; Kudritzki, R. P. (2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal. 691 (2): 1816–1827. arXiv:0809.3185. Bibcode:2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816. S2CID 15473563.
  52. ^ Ohnaka, Keiichi; Weigelt, Gerd; Hofmann, Karl-Heinz (2019). "Infrared Interferometric Three-dimensional Diagnosis of the Atmospheric Dynamics of the AGB Star R Dor with VLTI/AMBER". The Astrophysical Journal. 883 (1): 89. arXiv:1908.06997. Bibcode:2019ApJ...883...89O. doi:10.3847/1538-4357/ab3d2a. S2CID 201103617.
  53. ^ Rybicki, K. R.; Denis, C. (2001). "On the Final Destiny of the Earth and the Solar System". Icarus. 151 (1): 130–137. Bibcode:2001Icar..151..130R. doi:10.1006/icar.2001.6591.
  54. ^ Schröder, K.-P.; Connon Smith, R. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x. S2CID 10073988.
  55. ^ Vassiliadis, E.; Wood, P.R. (1993). "Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss". The Astrophysical Journal. 413: 641. Bibcode:1993ApJ...413..641V. doi:10.1086/173033.
  56. ^ Gull, T. R.; Damineli, A. (2010). "JD13 – Eta Carinae in the Context of the Most Massive Stars". Proceedings of the International Astronomical Union. 5: 373–398. arXiv:0910.3158. Bibcode:2010HiA....15..373G. doi:10.1017/S1743921310009890. S2CID 1845338.
  57. ^ Smith, Nathan (2011). "Explosions triggered by violent binary-star collisions: Application to Eta Carinae and other eruptive transients". Monthly Notices of the Royal Astronomical Society. 415 (3): 2020–2024. arXiv:1010.3770. Bibcode:2011MNRAS.415.2020S. doi:10.1111/j.1365-2966.2011.18607.x. S2CID 119202050.
  58. ^ D. John Hillier; K. Davidson; K. Ishibashi; T. Gull (June 2001). "On the Nature of the Central Source in η Carinae". Astrophysical Journal. 553 (837): 837. Bibcode:2001ApJ...553..837H. doi:10.1086/320948.
  59. ^ Ramirez, Ramses; Kaltenegger, Lisa (2017). "A Volcanic Hydrogen Habitable Zone". The Astrophysical Journal Letters. 837 (1): L4. arXiv:1702.08618. Bibcode:2017ApJ...837L...4R. doi:10.3847/2041-8213/aa60c8. S2CID 119333468.
  60. ^ Kloppenborg, B.K.; Stencel, R.E.; Monnier, J.D.; Schaefer, G.H.; Baron, F.; Tycner, C.; Zavala, R.T.; Hutter, D.; Zhao, M.; Che, X.; Ten Brummelaar, T.A.; Farrington, C.D.; Parks, R.; McAlister, H. A.; Sturmann, J.; Sturmann, L.; Sallave-Goldfinger, P.J.; Turner, N.; Pedretti, E.; Thureau, N. (2015). "Interferometry of ɛ Aurigae: Characterization of the Asymmetric Eclipsing Disk". The Astrophysical Journal Supplement Series. 220 (1): 14. arXiv:1508.01909. Bibcode:2015ApJS..220...14K. doi:10.1088/0067-0049/220/1/14. S2CID 118575419.
  61. ^ "Ask Andy: The Biggest Star". Ottawa Citizen. Nov 27, 1970. p. 23.
  62. ^ Barniske, A.; Oskinova, L. M.; Hamann, W. -R. (2008). "Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas". Astronomy and Astrophysics. 486 (3): 971. arXiv:0807.2476. Bibcode:2008A&A...486..971B. doi:10.1051/0004-6361:200809568. S2CID 8074261.
  63. ^ Cruzalebes, P.; Jorissen, A.; Rabbia, Y.; Sacuto, S.; Chiavassa, A.; Pasquato, E.; Plez, B.; Eriksson, K.; Spang, A.; Chesneau, O. (2013). "Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER". Monthly Notices of the Royal Astronomical Society. 434 (1): 437–450. arXiv:1306.3288. Bibcode:2013MNRAS.434..437C. doi:10.1093/mnras/stt1037. S2CID 49573767.
  64. ^ Eikenberry, S. S.; Matthews, K.; Lavine, J. L.; Garske, M. A.; Hu, D.; Jackson, M. A.; Patel, S. G.; Barry, D. J.; Colonno, M. R.; Houck, J. R.; Wilson, J. C.; Corbel, S.; Smith, J. D. (2004). "Infrared Observations of the Candidate LBV 1806‐20 and Nearby Cluster Stars". The Astrophysical Journal. 616 (1): 506–518. arXiv:astro-ph/0404435. Bibcode:2004ApJ...616..506E. doi:10.1086/422180. S2CID 18042381.
  65. ^ Kennedy, Meghan. "LBV 1806-20 AB?". Archived from the original on 2017-11-13. Retrieved 2017-10-28.
  66. ^ Figer, D. F.; Najarro, F.; Kudritzki, R. P. (2004). "The Double-lined Spectrum of LBV 1806-20". The Astrophysical Journal. 610 (2): L109–L112. arXiv:astro-ph/0406316. Bibcode:2004ApJ...610L.109F. doi:10.1086/423306. S2CID 118975170.
  67. ^ Nazé, Y.; Rauw, G.; Hutsemékers, D. (2012). "The first X-ray survey of Galactic luminous blue variables". Astronomy & Astrophysics. 538 (47): A47. arXiv:1111.6375. Bibcode:2012A&A...538A..47N. doi:10.1051/0004-6361/201118040. S2CID 43688343.
  68. ^ Fadeyev, Y. A. (2015). "Evolutionary status of Polaris". Monthly Notices of the Royal Astronomical Society. 449 (1): 1011–1017. arXiv:1502.06463. Bibcode:2015MNRAS.449.1011F. doi:10.1093/mnras/stv412. S2CID 118517157.
  69. ^ Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W. -R. (2014). "The Wolf–Rayet stars in the Large Magellanic Cloud". Astronomy & Astrophysics. 565 (27): A27. arXiv:1401.5474. Bibcode:2014A&A...565A..27H. doi:10.1051/0004-6361/201322696. S2CID 55123954.
  70. ^ Crowther, P. A.; Schnurr, O.; Hirschi, R.; Yusof, N.; Parker, R. J.; Goodwin, S. P.; Kassim, H. A. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit". Monthly Notices of the Royal Astronomical Society. 408 (2): 731–751. arXiv:1007.3284. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x. S2CID 53001712.
  71. ^ Ziółkowski, J. (2005), "Evolutionary constraints on the masses of the components of HDE 226868/Cyg X-1 binary system", Monthly Notices of the Royal Astronomical Society, 358 (3): 851–859, arXiv:astro-ph/0501102, Bibcode:2005MNRAS.358..851Z, doi:10.1111/j.1365-2966.2005.08796.x, S2CID 119334761 Note: For radius, see Table 1 with d=2 kpc.

External links