Jump to content

List of largest stars

Page semi-protected
From Wikipedia, the free encyclopedia
(Redirected from List of largest known stars)

Below are lists of the largest stars currently known, ordered by radius and separated into categories by galaxy. The unit of measurement used is the radius of the Sun (approximately 695,700 km; 432,300 mi).[1]

The Sun, the orbit of Earth, Jupiter, and Neptune, compared to four stars (Pistol Star, Rho Cassiopeiae, Betelgeuse, and VY Canis Majoris)

Overview

Although red supergiants are often considered the largest stars, some other star types have been found to temporarily increase significantly in radius, such as during LBV eruptions or luminous red novae. Luminous red novae appear to expand extremely rapidly, reaching thousands to tens of thousands of solar radii within only a few months, significantly larger than the largest red supergiants.[2]

Some studies use models that predict high-accreting Population III or Population I supermassive stars (SMSs) in the very early universe could have evolved "red supergiant protostars". These protostars are thought to have accretion rates larger than the rate of contraction, resulting in lower temperatures but with radii reaching up to many tens of thousands of R, comparable to some of the largest known black holes.[3][4][5]

Angular diameters

The angular diameters of stars can be measured directly using stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test indirect methods of finding stellar radii. Only a few supergiants can be occulted by the Moon, including Antares and 119 Tauri. Examples of eclipsing binaries are Epsilon Aurigae (Almaaz), VV Cephei, and V766 Centauri (HR 5171). Angular diameter measurements can be inconsistent because the boundary of the very tenuous atmosphere (opacity) differs depending on the wavelength of light in which the star is observed.[citation needed]

Uncertainties remain with the membership and order of the lists, especially when deriving various parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or be within a large range of values. Values for stellar radii vary significantly in different sources and for different observation methods.[citation needed]

All the sizes stated in these lists have inaccuracies and may be disputed. The lists are still a work in progress and parameters are prone to change.

Caveats

Various issues exist in determining accurate radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions; these include:

  • Stellar radii or diameters are usually derived only approximately using the Stefan–Boltzmann law for the deduced stellar luminosity and effective surface temperature.
  • Stellar distances, and their errors, for most stars, remain uncertain or poorly determined.
  • Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years as variable stars. This makes adopted luminosities poorly known and may significantly change the quoted radii.
  • Other direct methods for determining stellar radii rely on lunar occultations or from eclipses in binary systems. This is only possible for a very small number of stars.
  • Many distance estimates for red supergiants come from stellar cluster or association membership, because it is difficult to calculate accurate distances for red supergiants that are not part of any cluster or association.
  • In these lists are some examples of extremely distant extragalactic stars, which may have slightly different properties and natures than the currently largest known stars in the Milky Way. For example, some red supergiants in the Magellanic Clouds are suspected to have slightly different limiting temperatures and luminosities. Such stars may exceed accepted limits by undergoing large eruptions or changing their spectral types over just a few months (or potentially years).[6][7]

Lists

The following lists show the largest known stars based on the host galaxy.

Milky Way

Magellanic Clouds

List of the largest known stars in the Magellanic Clouds
Star name Solar radii
(Sun = 1)
Galaxy Method[a] Notes
Theoretical limit of star size (Large Magellanic Cloud) ≳1,550[9] L/Teff Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of 3545 K.
Reported for reference
HV 888 1,477[102]–1,584[103] Large Magellanic Cloud L/Teff
HD 269551 A 1,439[104] Large Magellanic Cloud L/Teff
HV 12463 1,420[104] Large Magellanic Cloud L/Teff
IRAS 05280–6910 1,367[105] Large Magellanic Cloud L/Teff The most reddened object in the Large Magellanic Cloud.[103]
MSX LMC 597 1,278[106]–1,444[103] Large Magellanic Cloud L/Teff
OGLE BRIGHT-LMC-LPV-52 1,275[104]–1,384[106] Large Magellanic Cloud
HV 2834 1,253[106] Large Magellanic Cloud L/Teff
LMC 145013 1,243[104] Large Magellanic Cloud L/Teff
IRAS 05346-6949 1,211[107] Large Magellanic Cloud L/Teff It has an estimated mass-loss rate of 0.0017 M (566 Earths) per year, the highest for any star.[107]
HV 5618 1,163[104] Large Magellanic Cloud L/Teff
HV 2242 1,160[108] – 1,180[104] Large Magellanic Cloud L/Teff
LMC 25320 1,156[104] Large Magellanic Cloud L/Teff
SMC 18592 1,129[104] Small Magellanic Cloud L/Teff
MSX SMC 018 1,119[107] Small Magellanic Cloud L/Teff
LMC252 1,117[104]–1,164[106] Large Magellanic Cloud
LMC045 1,112[104] Large Magellanic Cloud L/Teff
SP77 21-12 1,103[104] Large Magellanic Cloud L/Teff
MSX LMC 810 1,104[106] Large Magellanic Cloud L/Teff
WOH S338 1,100[108] Large Magellanic Cloud L/Teff
LMC 136042 1,092[104] Large Magellanic Cloud L/Teff
LMC 175188 1,090[104]–1,317[106] Large Magellanic Cloud
IRAS 04516-6902 1,085[105] Large Magellanic Cloud L/Teff
WOH S274 1,071[104] Large Magellanic Cloud L/Teff
[W60] D44 1,063[104] Large Magellanic Cloud L/Teff
HV 12233 1,057[104] Large Magellanic Cloud L/Teff
MSX LMC 589 1,051[106] Large Magellanic Cloud L/Teff
Theoretical limit of star size (Small Magellanic Cloud) ≳1,050[9] L/Teff Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of 3850 K.
Reported for reference
MSX LMC 947 1,050[106] Large Magellanic Cloud L/Teff
LMC 144217 1,039[104] Large Magellanic Cloud
SP77 31-18 1,038[104] Large Magellanic Cloud L/Teff
IRAS 05402-6956 1,032[105] Large Magellanic Cloud L/Teff
IRAS 04509-6922 1,027[105]–1,187[106] Large Magellanic Cloud L/Teff
HV 2255 1,027[104]–1,236[106] Large Magellanic Cloud
TRM 36 1,019[104] Large Magellanic Cloud L/Teff
LMC 175549 1,005[104] Large Magellanic Cloud L/Teff
TRM 89 1,004[104]–1,526[106] Large Magellanic Cloud
B90 (WOH S264) 1000+70
−80
 – 1,210[109]
Large Magellanic Cloud L/Teff Has an unusually high metallicity and velocity.[109] Often referred to as its SIMBAD designation [W60] B90.
Discrepancy in radius is caused by a potential underestimation of the effective temperature measured from the Titanium(II) oxide bands.
HV 2450 1,000+2
−1
[110]–1,071[110]
Large Magellanic Cloud L/Teff A yellow hypergiant.
LMC 149767 994[104] Large Magellanic Cloud L/Teff
UCAC2 2674864 (HV 2834) 990+115
−100
[111]
Large Magellanic Cloud L/Teff
HV 996 988[104]–1,176[106] Large Magellanic Cloud
W61 8–88 986[104] Large Magellanic Cloud L/Teff
HV 2362 982[104] – 1,030[108] Large Magellanic Cloud L/Teff
MG73 59 979[112] Large Magellanic Cloud L/Teff A yellow supergiant.
HD 268757 979[112] Large Magellanic Cloud L/Teff A G8 yellow hypergiant.
SMC 56389 976[104] Small Magellanic Cloud L/Teff
LMC 136404 974[104] Large Magellanic Cloud L/Teff
SP77 46-32 973[104]–1,133[106] Large Magellanic Cloud
HV 2084 967[104]–1,083[106] Small Magellanic Cloud
WOH S74 965[104]–1,014[106] Large Magellanic Cloud L/Teff
SMC 10889 963[104] Small Magellanic Cloud L/Teff
TRM 67 951[104] Large Magellanic Cloud L/Teff
LHA 120-S 26 951[104] Large Magellanic Cloud L/Teff
LMC 139413 951[104] Large Magellanic Cloud L/Teff
TRM 87 947[104] Large Magellanic Cloud L/Teff
LMC 148035 947[104] Large Magellanic Cloud L/Teff
HV 12802 946[104]–1,377[106] Large Magellanic Cloud
SMC 018136 945[104] Small Magellanic Cloud L/Teff
LMC 142202 943[104] Large Magellanic Cloud L/Teff
LMC 147199 939[104] – 990[108] Large Magellanic Cloud L/Teff
SP77 37-24 936[104] Large Magellanic Cloud L/Teff
LMC 148381 932[104] Large Magellanic Cloud L/Teff
LMC 23095 926[106] – 1,280[104] Large Magellanic Cloud L/Teff
SP77 31-16 923±28[110] Large Magellanic Cloud L/Teff A yellow hypergiant.
LMC 170452 920[104] Large Magellanic Cloud L/Teff
SP77 44-5 918[104] Large Magellanic Cloud L/Teff
LMC 66778 915[104] – 990[108] Large Magellanic Cloud L/Teff
NGC371 R20 913[113] Small Magellanic Cloud L/Teff
LMC 150040 911[104] Large Magellanic Cloud L/Teff
HV 2236 911[104]–971[106] Large Magellanic Cloud L/Teff
TRM 108 906[104] Large Magellanic Cloud L/Teff
LMC 169142 902[104] Large Magellanic Cloud L/Teff
WOH S457 902±45[114] Large Magellanic Cloud L/Teff
IRAS 04498-6842 (LI-LMC 60) 898[105] – 1,137[106] – 1,765,[103] 1,224[104] Large Magellanic Cloud L/Teff Lower value derived from fitting models that assume the star's effective temperature to be 3,400 K. Higher value based on the measured effective temperature from van Loon et al. (2005). A newer paper estimates parameters that would result in a radius of 1,765 R.[103]
LMC 135720 898[104] Large Magellanic Cloud L/Teff
SMC 81961 892[104] Small Magellanic Cloud L/Teff
SP77 44-19 891[104]–1,297[106] Large Magellanic Cloud L/Teff
SP77 45–49 890[104] Large Magellanic Cloud L/Teff
LMC 175464 892[106]–982[104] Large Magellanic Cloud
SMC 49478 888[104] Small Magellanic Cloud L/Teff
HV 12185 890+55
−65
[111]
Large Magellanic Cloud L/Teff
SP77 45–53 885[106]–981[104] Large Magellanic Cloud
LMC 170079 882[104] Large Magellanic Cloud L/Teff
SMC 5092 880[104] Small Magellanic Cloud L/Teff
HV 12793 880+45
−65
[111]
Large Magellanic Cloud L/Teff
W61 21–22 877[104] Large Magellanic Cloud L/Teff
SP77 35-1 877[104] Large Magellanic Cloud L/Teff
UCAC3 43-23216 873[104] Large Magellanic Cloud L/Teff
HV 11423 872[104] Small Magellanic Cloud L/Teff
WOH S57 875+70
−60
[111]
Large Magellanic Cloud L/Teff
SP77 53-3 870[104] Large Magellanic Cloud L/Teff
SP77 36-14 870[104] Large Magellanic Cloud L/Teff
SP77 31-19 870[104] Large Magellanic Cloud L/Teff
LMC 158646 865[104] Large Magellanic Cloud L/Teff
SP77 31-20 864[104] Large Magellanic Cloud L/Teff
LMC 113364 864[104] Large Magellanic Cloud L/Teff
SMC 83202 864[104] Small Magellanic Cloud L/Teff
LMC 175746 863[104] Large Magellanic Cloud L/Teff
LMC207 863[104] Large Magellanic Cloud L/Teff
SP77 29-8 858[104] Large Magellanic Cloud L/Teff
SP77 54-38 859[106]–911[104] Large Magellanic Cloud
LMC 174714 855[104]–965[106] Large Magellanic Cloud
LMC 176135 854[104] Large Magellanic Cloud L/Teff
LMC178 845[104] Large Magellanic Cloud L/Teff
SP77 31-26 845[104] Large Magellanic Cloud L/Teff
LMC 106201 844[104] Large Magellanic Cloud L/Teff
SP77 48-13 838[104] Large Magellanic Cloud L/Teff
MSX LMC 1318 837[104] Large Magellanic Cloud L/Teff
SP77 28-13 835[104] Large Magellanic Cloud L/Teff
LMC 143898 833[104] Large Magellanic Cloud L/Teff
TYC 9161-866-1 833[104] Large Magellanic Cloud L/Teff
SMC 59803 829[104] Small Magellanic Cloud L/Teff
LMC 157401 828[104] Large Magellanic Cloud L/Teff
SP77 39-22 828[104] Large Magellanic Cloud L/Teff
WOH S52 828[104] Large Magellanic Cloud L/Teff
SP77 30-22 826[104] Large Magellanic Cloud L/Teff
LMC 145728 826[104] Large Magellanic Cloud L/Teff
LMC 169049 825[104] Large Magellanic Cloud L/Teff
SP77 46-34 825[104] Large Magellanic Cloud L/Teff
LMC 177997 825[106]–867[104] Large Magellanic Cloud
SP77 28-2 825±60[111] Large Magellanic Cloud L/Teff
SP77 22-9 823[104] – 850[108] Large Magellanic Cloud L/Teff
Z Doradus 824±108[114]–956[106] Large Magellanic Cloud L/Teff
WOH S421 822[104]–840[106] Large Magellanic Cloud
LMC 72727 822[104] Large Magellanic Cloud L/Teff
SP77 37-28 821[104] Large Magellanic Cloud L/Teff
MSX LMC 575 816[104]–933[106] Large Magellanic Cloud
LMC 143035 815[104] Large Magellanic Cloud L/Teff
WOH S49 815[104] Large Magellanic Cloud L/Teff
SP77 52-28 812[104] Large Magellanic Cloud L/Teff
SHV 0520422-693821 808[104] Large Magellanic Cloud L/Teff
HD 268850 808[106]–898[104] Large Magellanic Cloud
SMC 20133 809[106]–835[104] Small Magellanic Cloud
SMC 25888 804[104] Small Magellanic Cloud L/Teff
SP77 55-20 803[104] Large Magellanic Cloud L/Teff
WOH G64 ~800[115] Large Magellanic Cloud L/Teff Surrounded by a large torus-shaped dust envelope.[116][117] Transitioned from a red supergiant into a yellow hypergiant after a potential 30 year long outburst.[115] Previously estimated to be 1,540[118][111][119][103][120] ± 77[118] R
PGMW 1058 800[104] Large Magellanic Cloud L/Teff
LMC 145112 798[104] Large Magellanic Cloud L/Teff
SMC 47757 795[104] Small Magellanic Cloud L/Teff
LMC 175709 794[104] Large Magellanic Cloud L/Teff
SMC 46497 794[104] Small Magellanic Cloud L/Teff
WOH S60 789[104] Large Magellanic Cloud L/Teff
WOH S102 789[104] Large Magellanic Cloud L/Teff
LMC 164709 787[104] Large Magellanic Cloud L/Teff
SP77 31-28 787[104] Large Magellanic Cloud L/Teff
TRM 73 787[106]–816[104] Large Magellanic Cloud
SP77 31-21 784[104] Large Magellanic Cloud L/Teff
SMC 8930 784[104] Small Magellanic Cloud L/Teff
PMMR 62 784[104] Small Magellanic Cloud L/Teff
SP77 46-31 782[104] Large Magellanic Cloud L/Teff
LMC211 780[104] Large Magellanic Cloud L/Teff
LMC 140403 778[104] Large Magellanic Cloud L/Teff
LMC 134383 778[104]–803[106] Large Magellanic Cloud L/Teff
SP77 47-11 778[104] Large Magellanic Cloud L/Teff
SP77 40-7 778[104] – 810[108] Large Magellanic Cloud L/Teff
W61 19–24 780+50
−70
[111]
Large Magellanic Cloud L/Teff
WOH S28 780[108] Large Magellanic Cloud L/Teff
LMC 141568 776[104] Large Magellanic Cloud L/Teff
SP77 51-2 776[104] Large Magellanic Cloud L/Teff
SP77 31–43 773[104] Large Magellanic Cloud L/Teff
MSX LMC 833 773[104]–849[106] Large Magellanic Cloud
SP77 52-32 772[104] Large Magellanic Cloud L/Teff
SP77 22-10 767[104] Large Magellanic Cloud L/Teff
SP77 48-6 768[121] Large Magellanic Cloud L/Teff
SMC 12322 765[104] Small Magellanic Cloud L/Teff
WOH S517 764[104] Large Magellanic Cloud L/Teff
WOH S183 763[104] Large Magellanic Cloud L/Teff
LMC256 762[104] Large Magellanic Cloud L/Teff
LMC 154311 762[104] Large Magellanic Cloud L/Teff
LMC 119219 762[104] Large Magellanic Cloud L/Teff
WOH S452 762±275[114] Large Magellanic Cloud L/Teff
MSX SMC 024 761[106] Large Magellanic Cloud L/Teff
WOH S282 758[104] Large Magellanic Cloud L/Teff
LMC 64048 758[104] Large Magellanic Cloud L/Teff
PGMW 3160 758[104] Large Magellanic Cloud L/Teff
WOH S438 757±211[114] Large Magellanic Cloud L/Teff
LMC 61753 755[104] Large Magellanic Cloud L/Teff
LMC 140296 754[104] Large Magellanic Cloud L/Teff
WOH S478 753[104] Large Magellanic Cloud L/Teff
LMC 139027 751[104] – 790[108] Large Magellanic Cloud L/Teff
SP77 45-16 749[104] – 800[108] Large Magellanic Cloud L/Teff
SP77 37-20 749[104] Large Magellanic Cloud L/Teff
SP77 54-27 750[108] – 758[104] – 800[108] Large Magellanic Cloud L/Teff
LMC 155529 747[104] Large Magellanic Cloud L/Teff
LMC 143877 746[104] Large Magellanic Cloud L/Teff
SMC 64663 745[104] Small Magellanic Cloud L/Teff
WOH G302 745[104] Large Magellanic Cloud L/Teff
TRM 65 743[104] Large Magellanic Cloud L/Teff
HV 12149 741[104]–767[106] Small Magellanic Cloud
SMC 50840 740[104] Small Magellanic Cloud L/Teff
SMC 46662 740[104]–874[106] Small Magellanic Cloud
SP77 29-11 738[104] Large Magellanic Cloud L/Teff
SMC 30616 737[104] Small Magellanic Cloud L/Teff
LMC 162635 736[104] Large Magellanic Cloud L/Teff
SP77 39-17 736[104] – 760[108] Large Magellanic Cloud L/Teff
LMC 163466 734[104] Large Magellanic Cloud L/Teff
HV 2310 734[106] Large Magellanic Cloud L/Teff
HD 269723 734±17,[110] 814[112]–829[121] Large Magellanic Cloud L/Teff A yellow hypergiant.
SP77 44-17 732[104] Large Magellanic Cloud L/Teff
SP77 38-5a 732[104] Large Magellanic Cloud L/Teff
LMC 67982 730[104] Large Magellanic Cloud L/Teff
LHA 120-S 129 730[104] Large Magellanic Cloud L/Teff
PMMR 64 730+75
−65
[111]
Small Magellanic Cloud L/Teff
SP77 51-15 727[104] Large Magellanic Cloud L/Teff
LMC 168757 725[104] Large Magellanic Cloud L/Teff
LMC 163007 725[104] Large Magellanic Cloud L/Teff
W61 8–14 724[104] Large Magellanic Cloud L/Teff
IRAS 05425-6914 724[104] Large Magellanic Cloud L/Teff
SMC 55188 724[104] Small Magellanic Cloud L/Teff
SP77 44-13 721[104] Large Magellanic Cloud L/Teff
MSX LMC 905 719[104] Large Magellanic Cloud L/Teff
LMC 147928 719[104] Large Magellanic Cloud L/Teff
LH 43-15 719[104] – 740[108] Large Magellanic Cloud L/Teff
PMMR 116 717[121] Small Magellanic Cloud L/Teff
LMC 123778 715[104] Large Magellanic Cloud L/Teff
WOH S314 714[104] Large Magellanic Cloud L/Teff
SP77 61-23 713[104] Large Magellanic Cloud L/Teff
WOH S230 713[104] Large Magellanic Cloud L/Teff
LMC 150396 710[104] Large Magellanic Cloud L/Teff
SP77 48-17 709[104] Large Magellanic Cloud L/Teff
LMC 165242 707[104] Large Magellanic Cloud L/Teff
SP77 51-19 707[104] Large Magellanic Cloud L/Teff
LMC 170539 707[104] Large Magellanic Cloud L/Teff
LMC 154729 705[104] Large Magellanic Cloud L/Teff
OGLE BRIGHT-LMC-LPV-101 703[104] Large Magellanic Cloud L/Teff
MSX SMC 055 702[113]1,557+215
−130
[106]
Small Magellanic Cloud L/Teff A super-AGB candidate.
LMC 168290 702[104] Large Magellanic Cloud L/Teff
LMC180 702[104] Large Magellanic Cloud L/Teff
SP77 45-2 702[104] Large Magellanic Cloud L/Teff
SP77 48-6 700+29
−28
[110]
Large Magellanic Cloud L/Teff A yellow hypergiant.
The following well-known stars are listed for the purpose of comparison.
HV 2112 675 – 1,193[122] Small Magellanic Cloud L/Teff It has been previously considered to be a possible Thorne–Żytkow object.[122]
HV 11417 673[106]–798[104] Small Magellanic Cloud L/Teff Candidate Thorne-Zytkow object.[122]
HD 269953 647[112]–720[121] Large Magellanic Cloud L/Teff A yellow hypergiant.
HD 271182 621[123] Large Magellanic Cloud L/Teff A yellow hypergiant.
HD 33579 471[121] Large Magellanic Cloud L/Teff The brightest star in the Large Magellanic Cloud.
S Doradus 100[124] Large Magellanic Cloud L/Teff A luminous blue variable in the S Doradus instability strip.
HD 37974 99[125] Large Magellanic Cloud L/Teff An unusual blue hypergiant with a large dusty disk.[125]
R136a1 42.7+1.6
−0.9
[126]
Large Magellanic Cloud L/Teff One of the most luminous and most massive stars.
BAT 99-98 37.5[127] Large Magellanic Cloud L/Teff One of the most luminous and most massive stars.
HD 5980 A 24[128] Small Magellanic Cloud L/Teff A luminous blue variable and one of the most luminous stars.

Andromeda (M31) and Triangulum (M33) galaxies

List of the largest known stars in Andromeda and Triangulum galaxies
Star name Solar radii
(Sun = 1)
Galaxy Method[a] Notes
Theoretical limit of star size (M31) ≳1,750[9] L/Teff Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of 3625 K.
Reported for reference
LGGS J013339.28+303118.8 1,566[129] Triangulum Galaxy L/Teff
Theoretical limit of star size (M33) ≳1,500[9] L/Teff Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of 3605 K.
Reported for reference
LGGS J004428.48+415130.9 1,410[130] Andromeda Galaxy L/Teff
LGGS J013418.56+303808.6 1,363[129] Triangulum Galaxy L/Teff
LGGS J013414.27+303417.7 1,342[129]–1,479[104] Triangulum Galaxy L/Teff
LGGS J004514.91+413735.0 1,324[104] Andromeda Galaxy L/Teff
LGGS J004125.23+411208.9 1,302[104] Andromeda Galaxy L/Teff
LGGS J013350.62+303230.3 1,283[104] Triangulum Galaxy L/Teff
LGGS J004312.43+413747.1 1,279[104] Andromeda Galaxy L/Teff
LGGS J003951.33+405303.7 1,272[104] Andromeda Galaxy L/Teff
LGGS J013416.52+305155.4 1,227[104] Triangulum Galaxy L/Teff
LGGS J004416.83+411933.2 1,209[104] Andromeda Galaxy L/Teff
LGGS J004531.13+414825.7 1,201[104] Andromeda Galaxy L/Teff
2MASS J01343365+3046547 1,196[104] Triangulum Galaxy L/Teff
LGGS J013409.63+303907.6 1,182[104] Triangulum Galaxy L/Teff
LGGS J004133.18+411217.2 1,180[104] Andromeda Galaxy L/Teff
LGGS J004455.90+413035.2 1,172[104] Andromeda Galaxy L/Teff
LGGS J013352.96+303816.0 1,163[104] Andromeda Galaxy L/Teff
LGGS J004047.22+404445.5 1,162[104] Andromeda Galaxy L/Teff
LGGS J004254.18+414033.6 1,154[104] Andromeda Galaxy L/Teff
LGGS J004428.48+415130.9 1,130[104] Andromeda Galaxy L/Teff
LGGS J013414.27+303417.7 1,129[129] Triangulum Galaxy L/Teff
LGGS J004035.08+404522.3 1,122[104] Andromeda Galaxy L/Teff
LGGS J013341.98+302102.0 1,119[104] Triangulum Galaxy L/Teff
LGGS J013307.37+304543.2 1,119[104] Triangulum Galaxy L/Teff
LGGS J004218.33+412633.9 1,111[104] Andromeda Galaxy L/Teff
LGGS J004102.54+403426.5 1,108[104] Andromeda Galaxy L/Teff
LGGS J013335.90+303344.5 1,104[104] Triangulum Galaxy L/Teff
LGGS J013358.54+303419.9 1,103[104] Triangulum Galaxy L/Teff
LGGS J013414.49+303511.6 1,102[104] Triangulum Galaxy L/Teff
LGGS J013336.64+303532.3 1,102[104]–1,408[129] Triangulum Galaxy L/Teff
LGGS J004259.34+413726.0 1,094[104] Andromeda Galaxy L/Teff
LGGS J004509.98+414627.5 1,089[104] Andromeda Galaxy L/Teff
LGGS J013241.94+302047.5 1,083[104] Triangulum Galaxy L/Teff
LGGS J004034.74+404459.6 1,078[104] Andromeda Galaxy L/Teff
LGGS J004059.50+404542.6 1,071[104] Andromeda Galaxy L/Teff
LGGS J013430.75+303218.8 1,067[104] Triangulum Galaxy L/Teff
LGGS J013412.27+305314.1 1,063[104]–1,066[129] Triangulum Galaxy L/Teff
LGGS J013328.17+304741.5 1,063[104] Triangulum Galaxy L/Teff
LGGS J004524.97+420727.2 1,059[104] Andromeda Galaxy L/Teff
LGGS J013233.77+302718.8 1,058[104]–1,129[129] Triangulum Galaxy L/Teff
LGGS J004125.72+411212.7 1,058[104] Andromeda Galaxy L/Teff
LGGS J004114.18+403759.8 1,058[104] Andromeda Galaxy L/Teff
LGGS J013307.60+304259.0 1,051[104] Triangulum Galaxy L/Teff
LGGS J004103.67+410211.8 1,047[104] Andromeda Galaxy L/Teff
LGGS J013305.48+303138.5 1,046[104] Triangulum Galaxy L/Teff
LGGS J004442.41+412649.5 1,040[104] Andromeda Galaxy L/Teff
LGGS J013403.87+303753.2 1,040[104] Triangulum Galaxy L/Teff
LGGS J013351.47+303640.3 1,034[104] Triangulum Galaxy L/Teff
LGGS J004306.62+413806.2 1,028[104] Andromeda Galaxy L/Teff
LGGS J013303.54+303201.2 1,027[104]–1,131[129] Triangulum Galaxy L/Teff
LGGS J004234.41+405855.9 1,023[104] Andromeda Galaxy L/Teff
LGGS J004051.31+404421.7 1,022[104] Andromeda Galaxy L/Teff
LGGS J004031.00+404311.1 1,011[104] Andromeda Galaxy L/Teff
LGGS J013406.20+303913.6 1,009[104] Triangulum Galaxy L/Teff
LGGS J013344.10+304425.1 1,007[104] Triangulum Galaxy L/Teff
LGGS J004307.36+405852.2 1,007[104] Andromeda Galaxy L/Teff
LGGS J013407.13+303929.5 994[104] Triangulum Galaxy L/Teff
LGGS J013312.35+303033.9 993[104] Triangulum Galaxy L/Teff
LGGS J013330.05+303145.9 988[104] Triangulum Galaxy L/Teff
LGGS J013350.84+304403.1 984[104] Triangulum Galaxy L/Teff
LGGS J013329.47+301848.3 981[104] Triangulum Galaxy L/Teff
LGGS J004148.74+410843.0 981[104] Andromeda Galaxy L/Teff
LGGS J004415.76+411750.7 977[104] Andromeda Galaxy L/Teff
LGGS J004127.44+411240.7 977[104] Andromeda Galaxy L/Teff
LGGS J013312.75+303946.1 975[104] Triangulum Galaxy L/Teff
LGGS J004027.36+410444.9 973[104] Andromeda Galaxy L/Teff
LGGS J013434.35+302627.3 973[104] Triangulum Galaxy L/Teff
LGGS J013423.29+305655.0 993[104]–972[129] Triangulum Galaxy L/Teff
LGGS J013319.13+303642.5 970[104] Triangulum Galaxy L/Teff
LGGS J004305.77+410742.5 969[104] Andromeda Galaxy L/Teff
LGGS J013403.73+304202.4 965[104]–1,032[129] Triangulum Galaxy L/Teff
LGGS J004346.10+411138.8 962[104] Andromeda Galaxy L/Teff
LGGS J004419.20+412343.7 959[104] Andromeda Galaxy L/Teff
LGGS J013353.91+302641.8 959[104]–1,008[129] Triangulum Galaxy L/Teff
LGGS J013315.23+305329.0 958[104] Triangulum Galaxy L/Teff
LGGS J013315.23+305329.0 956[129] Triangulum Galaxy L/Teff
LGGS J004138.35+412320.7 954[104] Andromeda Galaxy L/Teff
LGGS J004419.45+411749.5 950[104] Andromeda Galaxy L/Teff
LGGS J013413.95+303339.6 948[104] Triangulum Galaxy L/Teff
LGGS J013336.42+303530.9 947[104] Triangulum Galaxy L/Teff
LGGS J004047.82+410936.4 943[104] Andromeda Galaxy L/Teff
LGGS J013258.18+303606.3 943[104] Triangulum Galaxy L/Teff
LGGS J004447.74+413050.0 938[104] Andromeda Galaxy L/Teff
2MASS J01343131+3046088 938[104] Triangulum Galaxy L/Teff
LGGS J004346.18+411515.0 936[104] Andromeda Galaxy L/Teff
LGGS J004304.62+410348.4 936[104] Andromeda Galaxy L/Teff
LGGS J004458.28+413154.3 933[104] Andromeda Galaxy L/Teff
LGGS J004102.82+410422.3 933[104] Andromeda Galaxy L/Teff
LGGS J013344.33+303636.0 932[104] Triangulum Galaxy L/Teff
LGGS J004631.49+421133.1 932[104] Andromeda Galaxy L/Teff
LGGS J013321.44+304045.4 932[104]–1,015[129] Triangulum Galaxy L/Teff
LGGS J013358.04+304900.1 931[104] Triangulum Galaxy L/Teff
LGGS J013314.31+302952.9 1,067[104]–930[129] Triangulum Galaxy L/Teff
LGGS J013315.97+303153.7 929[104] Triangulum Galaxy L/Teff
LGGS J004126.14+403346.5 927[104] Andromeda Galaxy L/Teff
LGGS J004347.31+411203.6 925[104] Andromeda Galaxy L/Teff
LGGS J004252.78+405627.5 923[104] Andromeda Galaxy L/Teff
LGGS J013411.54+303312.6 918[104] Triangulum Galaxy L/Teff
LGGS J013357.08+303817.8 918[104] Triangulum Galaxy L/Teff
LGGS J003943.89+402104.6 917[104] Andromeda Galaxy L/Teff
LGGS J004503.35+413026.3 916[104] Andromeda Galaxy L/Teff
LGGS J013338.97+303828.9 915[104] Triangulum Galaxy L/Teff
LGGS J013330.27+303510.6 915[104] Triangulum Galaxy L/Teff
LGGS J004033.06+404303.1 912[104] Andromeda Galaxy L/Teff
LGGS J004357.15+411136.6 911[104] Andromeda Galaxy L/Teff
LGGS J004406.60+411536.6 911[104] Andromeda Galaxy L/Teff
LGGS J013312.38+302453.2 911[104]–952[129] Triangulum Galaxy L/Teff
LGGS J004451.76+420006.0 911[104] Andromeda Galaxy L/Teff
LGGS J013322.82+301910.9 934[104]–911[129] Triangulum Galaxy L/Teff
LGGS J013355.56+304120.9 908[104] Triangulum Galaxy L/Teff
LGGS J004034.40+403627.4 907[104] Andromeda Galaxy L/Teff
LGGS J003910.56+402545.6 906[104] Andromeda Galaxy L/Teff
LGGS J004142.43+411814.1 906[104] Andromeda Galaxy L/Teff
LGGS J013316.57+303051.9 902[104] Triangulum Galaxy L/Teff
LGGS J013245.59+303518.7 900[104] Triangulum Galaxy L/Teff
LGGS J004034.67+404322.5 898[104] Andromeda Galaxy L/Teff
LGGS J004027.65+405126.7 898[104] Andromeda Galaxy L/Teff
LGGS J004322.75+411101.8 895[104] Andromeda Galaxy L/Teff
LGGS J004116.47+410813.7 895[104] Andromeda Galaxy L/Teff
LGGS J013306.33+303208.2 894[104] Triangulum Galaxy L/Teff
LGGS J004039.12+404252.3 894[104] Andromeda Galaxy L/Teff
LGGS J004433.96+415414.8 893[104] Andromeda Galaxy L/Teff
LGGS J013454.31+304109.8 891[129] Triangulum Galaxy L/Teff
LGGS J004030.64+404246.2 890[104] Andromeda Galaxy L/Teff
LGGS J004252.67+413615.2 889[104] Andromeda Galaxy L/Teff
LGGS J013349.94+302928.8 888[104] Triangulum Galaxy L/Teff
2MASS J01335010+3039106 886[104] Triangulum Galaxy L/Teff
LGGS J013357.37+304558.7 886[104] Triangulum Galaxy L/Teff
LGGS J013338.77+303532.9 885[104] Triangulum Galaxy L/Teff
LGGS J013359.20+303212.1 884[104] Triangulum Galaxy L/Teff
LGGS J013340.42+303131.3 880[104] Triangulum Galaxy L/Teff
LGGS J004511.40+413717.8 880[104] Andromeda Galaxy L/Teff
LGGS J013352.16+303902.2 880[104] Triangulum Galaxy L/Teff
LGGS J004219.25+405116.4 880[104] Andromeda Galaxy L/Teff
LGGS J004331.90+411145.0 880[104] Andromeda Galaxy L/Teff
2MASS J01333718+3038206 879[104] Triangulum Galaxy L/Teff
LGGS J013415.42+302816.4 876[104] Triangulum Galaxy L/Teff
LGGS J013345.01+302105.1 876[104] Triangulum Galaxy L/Teff
LGGS J004107.23+411636.8 870[104] Andromeda Galaxy L/Teff
LGGS J013417.83+303356.0 867[104] Triangulum Galaxy L/Teff
LGGS J004120.25+403838.1 867[104] Andromeda Galaxy L/Teff
LGGS J004402.38+412114.9 866[104] Andromeda Galaxy L/Teff
2MASS J01334194+3038565 866[104] Triangulum Galaxy L/Teff
LGGS J013309.10+303017.8 865[104]–933[129] Triangulum Galaxy L/Teff
LGGS J004429.36+412307.8 862[104] Andromeda Galaxy L/Teff
LGGS J013310.20+303314.4 861[104] Triangulum Galaxy L/Teff
LGGS J004404.60+412729.8 860[104] Andromeda Galaxy L/Teff
LGGS J003907.69+402859.5 860[104] Andromeda Galaxy L/Teff
LGGS J004219.64+412736.1 859[104] Andromeda Galaxy L/Teff
LGGS J003949.31+402049.1 859[104] Andromeda Galaxy L/Teff
LGGS J013310.16+302726.3 855[104] Triangulum Galaxy L/Teff
LGGS J004036.97+403412.4 855[104] Andromeda Galaxy L/Teff
LGGS J013343.68+304450.7 855[104] Triangulum Galaxy L/Teff
LGGS J013409.10+303351.8 854[104] Triangulum Galaxy L/Teff
LGGS J013407.11+303918.7 854[104] Triangulum Galaxy L/Teff
LGGS J004107.11+411635.6 854[104] Andromeda Galaxy L/Teff
LGGS J013400.01+304622.2 852[104] Triangulum Galaxy L/Teff
LGGS J013327.14+303917.4 851[104] Andromeda Galaxy L/Teff
LGGS J013339.79+304032.2 850[104] Triangulum Galaxy L/Teff
LGGS J004501.30+413922.5 850[104] Andromeda Galaxy L/Teff
LGGS J004450.87+412924.3 850[104] Andromeda Galaxy L/Teff
LGGS J004040.69+405908.1 850[104] Andromeda Galaxy L/Teff
LGGS J003942.92+402051.1 850[104] Andromeda Galaxy L/Teff
2MASS J01335092+3040481 850[104] Triangulum Galaxy L/Teff
LGGS J013315.19+305319.8 847[104] Triangulum Galaxy L/Teff
LGGS J013416.89+305158.3 845[104]–920[129] Triangulum Galaxy L/Teff
LGGS J004415.17+415640.6 845[104] Andromeda Galaxy L/Teff
LGGS J004424.94+412322.3 844[104] Andromeda Galaxy L/Teff
LGGS J013331.93+301952.9 838[104] Triangulum Galaxy L/Teff
LGGS J004406.16+414846.4 836[104] Andromeda Galaxy L/Teff
LGGS J013445.65+303235.4 835[104] Triangulum Galaxy L/Teff
LGGS J004109.39+404901.9 834[104] Andromeda Galaxy L/Teff
LGGS J004423.83+414928.6 833[104] Andromeda Galaxy L/Teff
LGGS J013242.31+302113.9 833[129] Triangulum Galaxy L/Teff
LGGS J004030.48+404051.1 833[104] Andromeda Galaxy L/Teff
LGGS J004118.29+404940.3 832[104] Andromeda Galaxy L/Teff
LGGS J013414.17+304701.9 831[104] Triangulum Galaxy L/Teff
LGGS J013328.89+303058.0 831[104] Triangulum Galaxy L/Teff
LGGS J004107.70+403702.3 831[104] Andromeda Galaxy L/Teff
LGGS J003925.67+404111.8 831[104] Andromeda Galaxy L/Teff
LGGS J004306.95+410038.2 826[104] Andromeda Galaxy L/Teff
LGGS J013408.81+304637.8 826[104] Triangulum Galaxy L/Teff
LGGS J013345.22+303138.2 826[104] Triangulum Galaxy L/Teff
LGGS J003950.65+402531.8 825[104] Andromeda Galaxy L/Teff
LGGS J013427.65+305642.4 825[129] Triangulum Galaxy L/Teff
LGGS J013500.04+303703.8 823[104] Triangulum Galaxy L/Teff
LGGS J004108.42+410655.3 822[104] Andromeda Galaxy L/Teff
LGGS J013340.77+302108.7 821[104]–820[129] Triangulum Galaxy L/Teff
LGGS J004458.57+412925.1 821[104] Andromeda Galaxy L/Teff
LGGS J013309.97+302727.5 973[104] Triangulum Galaxy L/Teff
LGGS J004124.81+411206.1 819[104] Andromeda Galaxy L/Teff
LGGS J013401.65+303128.7 819[104] Triangulum Galaxy L/Teff
LGGS J013455.65+304349.0 816[104] Triangulum Galaxy L/Teff
LGGS J013310.60+302301.8 816[104] Triangulum Galaxy L/Teff
LGGS J004544.71+414331.9 815[104] Andromeda Galaxy L/Teff
LGGS J004119.35+410836.4 813[104] Andromeda Galaxy L/Teff
LGGS J013436.65+304517.1 814[104]–812[129] Triangulum Galaxy L/Teff
LGGS J013301.79+303954.3 812[104] Triangulum Galaxy L/Teff
LGGS J013328.85+310041.7 810[104]–909[129] Triangulum Galaxy L/Teff
LGGS J013401.08+303432.2 809[104] Triangulum Galaxy L/Teff
LGGS J004036.45+403613.1 808[104] Andromeda Galaxy L/Teff
LGGS J004521.53+413758.6 807[104] Andromeda Galaxy L/Teff
LGGS J004432.38+415149.9 807[104] Andromeda Galaxy L/Teff
LGGS J013306.95+303506.1 807[129] Triangulum Galaxy L/Teff Contradictory classification in literature, it has been considered a candidate LBV, a RSG or a BSG.
LGGS J013242.26+302114.1 807[104] Triangulum Galaxy L/Teff
LGGS J013321.94+304112.0 806[104]–829[129] Triangulum Galaxy L/Teff
LGGS J013304.56+303043.2 804[104] Triangulum Galaxy L/Teff
LGGS J004331.73+414223.0 803[104] Andromeda Galaxy L/Teff
LGGS J004044.17+410729.0 803[104] Andromeda Galaxy L/Teff
LGGS J013352.83+305605.2 803[104] Triangulum Galaxy L/Teff
LGGS J013343.30+303318.9 873[104]–803[129] Triangulum Galaxy L/Teff
LGGS J013342.61+303534.7 800[104] Triangulum Galaxy L/Teff
LGGS J013326.90+310054.2 800[104]–909[129] Triangulum Galaxy L/Teff
LGGS J013300.94+303404.3 798[104] Triangulum Galaxy L/Teff
LGGS J013416.06+303730.0 798[104] Triangulum Galaxy L/Teff
LGGS J004503.83+413737.0 797[104] Andromeda Galaxy L/Teff
LGGS J004503.83+413737.0 797[104] Andromeda Galaxy L/Teff
LGGS J004438.83+415253.0 794[104] Andromeda Galaxy L/Teff
LGGS J004235.88+405442.2 794[104] Andromeda Galaxy L/Teff
LGGS J004335.28+410959.7 794[104] Andromeda Galaxy L/Teff
LGGS J013402.32+303828.4 793[104] Triangulum Galaxy L/Teff
LGGS J004125.55+405034.8 792[104] Andromeda Galaxy L/Teff
LGGS J013507.43+304132.6 791[104] Triangulum Galaxy L/Teff
LGGS J013353.25+303918.7 791[104] Triangulum Galaxy L/Teff
LGGS J004308.71+410604.5 790[104] Andromeda Galaxy L/Teff
LGGS J013417.17+304826.6 789[104] Triangulum Galaxy L/Teff
LGGS J013310.71+302714.9 789[104]–884[129] Triangulum Galaxy L/Teff
LGGS J013432.36+304159.0 788[104] Triangulum Galaxy L/Teff
LGGS J004356.23+414641.8 788[104] Andromeda Galaxy L/Teff
LGGS J013340.77+302108.7 788[104] Triangulum Galaxy L/Teff
LGGS J013346.61+304125.4 786[104] Triangulum Galaxy L/Teff
LGGS J004447.08+412801.7 785[104] Andromeda Galaxy L/Teff
LGGS J004255.95+404857.5 785[131] Andromeda Galaxy L/Teff
LGGS J013231.91+302329.1 783[104] Triangulum Galaxy L/Teff
LGGS J004110.32+410433.4 782[104] Andromeda Galaxy L/Teff
LGGS J004159.06+405718.7 780[104] Andromeda Galaxy L/Teff
LGGS J004241.10+413142.3 775[104] Andromeda Galaxy L/Teff
LGGS J013401.88+303858.3 776[129] Triangulum Galaxy L/Teff
LGGS J013445.12+305858.9 773[104] Triangulum Galaxy L/Teff
LGGS J004030.92+404329.3 773[104] Andromeda Galaxy L/Teff
LGGS J013359.57+303413.5 771[104] Triangulum Galaxy L/Teff
LGGS J004353.97+411255.6 771[104] Andromeda Galaxy L/Teff
LGGS J004029.03+403412.6 770[104] Andromeda Galaxy L/Teff
LGGS J004526.24+420047.5 767[104] Andromeda Galaxy L/Teff
LGGS J013348.44+302029.8 767[104] Triangulum Galaxy L/Teff
LGGS J004552.15+421003.5 767[104] Andromeda Galaxy L/Teff
LGGS J013320.75+303204.8 764[104] Triangulum Galaxy L/Teff
LGGS J013416.28+303353.5 763[104]–801[129] Triangulum Galaxy L/Teff
LGGS J013357.91+303338.9 763[104] Triangulum Galaxy L/Teff
LGGS J013253.14+303515.3 762[104] Triangulum Galaxy L/Teff
LGGS J004051.18+403053.4 762[104] Andromeda Galaxy L/Teff
LGGS J013402.57+303746.3 762[104] Triangulum Galaxy L/Teff
LGGS J013352.15+304006.4 762[104] Triangulum Galaxy L/Teff
LGGS J004427.07+415203.0 762[104] Andromeda Galaxy L/Teff
LGGS J004233.23+405917.0 762[104] Andromeda Galaxy L/Teff
LGGS J004156.96+405720.8 761[104] Andromeda Galaxy L/Teff
LGGS J004117.14+410843.7 761[104] Andromeda Galaxy L/Teff
LGGS J004124.80+411634.7 760, 1,205, 1,240[131] Andromeda Galaxy L/Teff
LGGS J004109.61+404920.4 761[104] Andromeda Galaxy L/Teff
LGGS J003930.09+402313.0 759[104] Andromeda Galaxy L/Teff
LGGS J013324.71+303423.7 758[104] Triangulum Galaxy L/Teff
LGGS J013317.40+303210.8 758[104] Triangulum Galaxy L/Teff
LGGS J013411.83+304631.0 756[104] Triangulum Galaxy L/Teff
LGGS J004417.75+420039.1 755[104] Andromeda Galaxy L/Teff
LGGS J004454.50+413007.8 755[104] Andromeda Galaxy L/Teff
LGGS J013348.77+304526.8 754[104] Triangulum Galaxy L/Teff
LGGS J004019.69+404912.2 754[104] Andromeda Galaxy L/Teff
LGGS J004340.32+411157.1 753[104] Andromeda Galaxy L/Teff
LGGS J013304.02+303215.2 753[104] Triangulum Galaxy L/Teff
LGGS J013409.16+303846.9 752[104] Triangulum Galaxy L/Teff
LGGS J013459.81+304156.9 751[104]–765[129] Triangulum Galaxy L/Teff
LGGS J013334.82+302029.1 751[104]–930[129] Triangulum Galaxy L/Teff
LGGS J013400.71+303422.3 750[104] Triangulum Galaxy L/Teff
LGGS J004224.65+412623.7 749[104] Andromeda Galaxy L/Teff
LGGS J013414.88+303401.2 749[104] Triangulum Galaxy L/Teff
LGGS J004343.33+414529.5 749[104] Andromeda Galaxy L/Teff
LGGS J004034.76+403648.9 749[104] Andromeda Galaxy L/Teff
LGGS J013353.53+303418.7 749[104] Triangulum Galaxy L/Teff
LGGS J004501.84+420259.2 747[104] Andromeda Galaxy L/Teff
LGGS J013409.70+303916.2 744[104] Triangulum Galaxy L/Teff
LGGS J013345.71+303609.8 744[104] Triangulum Galaxy L/Teff
LGGS J004342.75+411442.8 743[104] Andromeda Galaxy L/Teff
LGGS J013333.32+303147.2 741[104] Triangulum Galaxy L/Teff
LGGS J013338.97+303506.1 741[104] Triangulum Galaxy L/Teff
LGGS J013303.61+302841.5 741[104] Triangulum Galaxy L/Teff
LGGS J004201.12+412516.0 737[104] Andromeda Galaxy L/Teff
LGGS J004341.35+411213.8 734[104] Andromeda Galaxy L/Teff
LGGS J013438.76+304608.1 734[104] Triangulum Galaxy L/Teff
LGGS J013402.33+301749.2 734[104]–786[129] Triangulum Galaxy L/Teff
2MASS J01334180+3040207 732[104] Triangulum Galaxy L/Teff
LGGS J013354.32+301724.6 732[104]–854[129] Triangulum Galaxy L/Teff
LGGS J013334.23+303400.3 732[104] Triangulum Galaxy L/Teff
LGGS J013357.60+304113.3 730[104] Triangulum Galaxy L/Teff
LGGS J004614.57+421117.4 730[104] Andromeda Galaxy L/Teff
LGGS J004120.96+404125.3 730[104] Andromeda Galaxy L/Teff
LGGS J004228.46+405519.0 728[104] Andromeda Galaxy L/Teff
LGGS J004024.52+404444.8 728[104] Andromeda Galaxy L/Teff
LGGS J013349.75+304459.8 727[104] Triangulum Galaxy L/Teff
LGGS J013306.88+303004.6 727[104] Triangulum Galaxy L/Teff
LGGS J004358.00+412114.1 727[104] Andromeda Galaxy L/Teff
LGGS J004147.27+411537.8 727[104] Andromeda Galaxy L/Teff
LGGS J013407.23+304158.8 725[104]–833[129] Triangulum Galaxy L/Teff
LGGS J004519.82+415531.9 725[104] Andromeda Galaxy L/Teff
LGGS J004410.84+411538.8 725[104] Andromeda Galaxy L/Teff
LGGS J013407.38+305935.0 724[104] Triangulum Galaxy L/Teff
LGGS J004438.75+415553.6 724[104] Andromeda Galaxy L/Teff
LGGS J004324.16+411228.3 723[104] Andromeda Galaxy L/Teff
LGGS J004059.58+403815.6 723[104] Andromeda Galaxy L/Teff
LGGS J013327.40+304126.4 721[104] Triangulum Galaxy L/Teff
LGGS J013243.72+301912.5 721[104]–783[129] Triangulum Galaxy L/Teff
Gaia DR3 303379932695513216 720[104] Triangulum Galaxy L/Teff
LGGS J004558.92+414642.1 720[104] Andromeda Galaxy L/Teff
LGGS J004103.46+403633.2 717[104] Andromeda Galaxy L/Teff
LGGS J013324.89+301754.3 717[104] Triangulum Galaxy L/Teff
LGGS J004015.18+405947.7 716[104] Andromeda Galaxy L/Teff
LGGS J013414.53+303557.7 715[104] Triangulum Galaxy L/Teff
LGGS J013351.89+303853.5 715[104] Triangulum Galaxy L/Teff
LGGS J004458.82+413050.4 715[104] Andromeda Galaxy L/Teff
LGGS J013352.51+303942.2 715[104] Triangulum Galaxy L/Teff
LGGS J004124.91+411133.1 715[104] Andromeda Galaxy L/Teff
LGGS J004604.18+415135.4 713[104] Andromeda Galaxy L/Teff
LGGS J013305.17+303119.8 711[104] Triangulum Galaxy L/Teff
LGGS J004517.25+413948.2 711[104] Andromeda Galaxy L/Teff
LGGS J013349.86+303246.1 710[132]–795[129] Triangulum Galaxy L/Teff A yellow supergiant.
2MASS J01335929+3034435 709[104] Triangulum Galaxy L/Teff
LGGS J004230.32+405624.1 708[104] Andromeda Galaxy L/Teff
LGGS J004101.02+403506.1 708[104] Andromeda Galaxy L/Teff
LGGS J004119.21+411237.2 707[104] Andromeda Galaxy L/Teff
LGGS J004606.25+415018.9 707[104] Andromeda Galaxy L/Teff
LGGS J013442.05+304540.2 707[104]–707[129] Triangulum Galaxy L/Teff
LGGS J013431.84+302721.5 707[104]–717[129] Triangulum Galaxy L/Teff
LGGS J013304.68+304456.0 707[104]–739[129] Triangulum Galaxy L/Teff
LGGS J004432.27+415158.4 705[104] Andromeda Galaxy L/Teff
2MASS J01335131+3039149 704[104] Triangulum Galaxy L/Teff
LGGS J013339.46+302113.0 703[104]–748[129] Triangulum Galaxy L/Teff
LGGS J003935.36+401946.4 703[104] Andromeda Galaxy L/Teff
LGGS J013343.03+303433.5 702[104] Triangulum Galaxy L/Teff
LGGS J004505.87+413452.3 702[104] Andromeda Galaxy L/Teff
LGGS J013414.18+305248.0 701[104]–731[129] Triangulum Galaxy L/Teff
LGGS J013402.53+304107.7 701[104]–749[129] Triangulum Galaxy L/Teff
LGGS J013340.80+304248.5 701[104]–814[129] Triangulum Galaxy L/Teff
LGGS J013312.59+303252.5 701[104] Triangulum Galaxy L/Teff
The following well-known stars are listed for the purpose of comparison.
Var 83 150[133] Triangulum Galaxy L/Teff A luminous blue variable and one of the most luminous stars in M33.

Other galaxies (within the Local Group)

List of the largest known stars in other galaxies (within the Local Group)
Star name Solar radii
(Sun = 1)
Galaxy Method[a] Notes
Sextans A 10 995±130[134] Sextans A L/Teff
NGC 6822-RSG 19 930[135] NGC 6822 L/Teff
WLM 02 883+284
−167
[136]
WLM L/Teff
Sextans A 5 870±145[134] Sextans A L/Teff
NGC 6822-RSG 26 868[135] NGC 6822 L/Teff
NGC 6822-RSG 12 839[135] NGC 6822 L/Teff
Leo A 7 785[137] Leo A L/Teff
NGC 6822-RSG 9 765[135] NGC 6822 L/Teff
NGC 6822-RSG 6 714[135] NGC 6822 L/Teff
Sextans A 7 710±100[134] Sextans A L/Teff
The following well-known stars are listed for the purpose of comparison.
NGC 6822-WR 12 3.79[138] NGC 6822 L/Teff A Wolf-Rayet star, one of the hottest known stars.

Outside the Local Group (inside the Virgo supercluster)

List of the largest known stars in galaxies outside the Local Group inside the Virgo supercluster
Star name Solar radii
(Sun = 1)
Galaxy Group Method[a] Notes
NGC 1313-310 1,668+168
−190
[139]
NGC 1313 [TSK2008] 236[140] L/Teff Luminosity has not yet been constrained well enough yet to confirm its extreme properties, and further observations are needed to show that it is a single, uncontaminated star. Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-125 1,504+176
−157
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 247-154 1,503+79
−75
[139]
NGC 247 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 7793-34 1,392+157
−160
[139]
NGC 7793 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 55-40 1,286 +116
−106
[139]
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 2403 V14 1,260[141] NGC 2403 M81 Group L/Teff A F-type luminous blue variable.
NGC 300-154 1,200 +123
−111
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-114 1,181 +123
−111
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-199 1,181 +120
−109
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-153 1,173 +120
−109
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-150 1,167 +119
−107
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 253-2006 1,167 +75
−70
[139]
Sculptor Galaxy Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
SPIRITS 14atl 1,134–1,477[142] Messier 83 Centaurus A/M83 Group L/Teff
NGC 300-59 1,133 +146
−129
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 7793-86 1,127 +94
−109
[139]
NGC 7793 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-263 1,108 +113
−102
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 247-447 1,101 +58
−56
[139]
NGC 247 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
SPIRITS 15ahp 1,098[142] NGC 2403 M81 Group L/Teff
NGC 300-240 1,088 +112
−101
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 7793-86 1,078 +69
−64
[139]
NGC 7793 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-173 1,063 +84
−77
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-340 1,036 +105
−95
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-346 1,023 +139
−128
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 247-533 1,004 +66
−62
[139]
NGC 247 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-351 992 +115
−102
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-524 987 +77
−72
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 55-135 964 +99
−89
[139]
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 55-93 955 +49
−47
[139]
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 7793-539 948[139] NGC 7793 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 55-87 948 +109
−98
[139]
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 55-146 921 +49
−46
[139]
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-273 921 +94
−85
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-186 915 +72
−65
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 55-200 905 +59
−55
[139]
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 55-152 895 +58
−54
[139]
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-413 861 +66
−61
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 55-174 856 +65
−61
[139]
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
M81 10584-25-2 851[141] Messier 81 M81 Group L/Teff
M81 10584-13-3 843[141] Messier 81 M81 Group L/Teff
NGC 55-75 836 +81
−111
[139]
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-545 824 +104
−93
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 247-2912 821 +54
−51
[139]
NGC 247 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 55-216 801 +102
−89
[139]
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 247-1471 798 +52
−48
[139]
NGC 247 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-499 796 +89
−108
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-379 744 +56
−52
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-838 744 +57
−53
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 55-149 738 +47
−55
[139]
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 55-194 730 +46
−44
[139]
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
[GKE2015] 7 729[143] NGC 300 NGC 55 Group L/Teff
NGC 55-270 728 +38
−36
[139]
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-1047 724 +65
−59
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 247-3231 719 +56
−51
[139]
NGC 247 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 247-2966 719 +56
−52
[139]
NGC 247 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 55-245 717 +55
−50
[139]
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-1068 716 +64
−58
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
NGC 300-1081 712 +54
−51
[139]
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[139]
The following well-known stars are listed for the purpose of comparison.
NGC 2363-V1 194356[144] NGC 2366 M81 Group L/Teff
[HMR2016] N4038 13068 124-885[145] NGC 4038 NGC 4038 Group L/Teff
[HMR2016] N4038 46842 88-815[146] NGC 4038 NGC 4038 Group L/Teff

Outside the Virgo supercluster

Note that this list does not include the candidate JWST dark stars, with estimated radii of up to 61 astronomical units (13,000 R)[147] or Quasi-stars, with theoretical models suggesting that they could reach radii of up to 40,700 solar radii (189 au).[148]

Star name Solar radii
(Sun = 1)
Galaxy Group Method[a] Notes
Quyllur 965[149] ACT-CL J0102-4915 L/Teff Likely the first red supergiant star at cosmological distances and is also discovered by James Webb Space Telescope.
The following well-known stars are listed for the purpose of comparison.
Godzilla 430–2,365[150] Sunburst galaxy PSZ1 G311.65-18.48 L/Teff The most luminous known star.[151]
Mothra 271[152] LS1 MACS J0416.1-2403 L/Teff A binary star at cosmological distances.

Transient events

During some transient events, such as red novae or LBV eruptions the star's radius can increase by a significant amount.

List of largest stars during transient events
Star or transient event name Solar radii
(Sun = 1)
Year Galaxy Group Method Notes
AT 2017jfs >33,000[153] 2017 NGC 4470 L/Teff
SNhunt151 16,700[154] 2014 UGC 3165 LDC 331 L/Teff
SN 2015bh 16,400±2,600[155] 2015 NGC 2770 LDC 616 L/Teff
AT 2018hso 10,350[156] 2018 NGC 3729 M109 Group L/Teff
AT 2023clx 6,800[157] 2023 NGC 3799 nest 101314 L/Teff
M51 OT2019-1 5,500[158] 2019 Whirlpool Galaxy M51 Group L/Teff
η Carinae 4,319 – 6,032[87] 1845 Milky Way Local Group L/Teff During the outburst, the star became the second brightest star in sky, reaching an apparent magnitude of between −0.8 and −1.0.[159]
AT 2010dn 4,130[160] 2010 NGC 3180 LDC 743 L/Teff
SN 2011fh 3,980[161] 2011 NGC 4806 Abell 3528 L/Teff
AT 2014ej 3,600[162] 2014 NGC 7552 Grus Quartet L/Teff
V838 Monocerotis 3,190[77] 2002 Milky Way Local Group L/Teff
SN2008S 3,020[160] 2008 NGC 6946 NGC 6946 Group L/Teff
SNhunt120 2,900[163][162] 2012 NGC 5775 Virgo Cluster L/Teff
AT 2017be 2,000[164] 2017 NGC 2537 L/Teff
PHL 293B star 1,348 – 1,463[165] 2002 PHL 293B L/Teff
SNhunt248 ~850[166] 2014 NGC 5806 NGC 5846 Group L/Teff
R71 500[167] 2012 Large Magellanic Cloud Local Group L/Teff
SN 2000ch 500[168] 2000 NGC 3432 LDC 743 L/Teff
Godzilla 430 – 2,365[150] 2015 Sunburst galaxy ?
AT 2016blu ~330[169] 2012 – 2022 NGC 4559 Coma I Group L/Teff 19 outbursts were detected between 2012 and 2022. The star was likely relatively stable the decade before since no outbursts were detected from 1999 – 2009.[169]

SN Progenitors

List of largest supernova progenitors
Star or supernova name Solar radii
(Sun = 1)
Year Galaxy Group Method Notes
SN 2020faa 1,000[170] 2020 2MASS J14470904+7244157 L/Teff
SN 2023ixf 912+227
−222
[171]1,060±30[172]
2023 Pinwheel galaxy M101 Group L/Teff
SN 2020jfo 700±10[173] 2020 Messier 61 Virgo Cluster L/Teff
SN 2023axu 417±28[174] 2023 NGC 2283 L/Teff
SN 2021agco 78.37+25.59
−19.94
[175]
2021 UGC 3855 LDC 506 L/Teff Nearest ultrastripped supernova known.

Largest stars by apparent size

The following list include the largest stars by their apparent size (angular diameter) as seen from Earth. The unit of measurement is the milliarcsecond (mas), equivalent to 10×10−3 arcseconds. Stars with angular diameters larger than 13 milliarcseconds are included.

List of largest stars by apparent size (angular diameter)
Name Angular diameter
(mas)
Angular diameter type[g] Distance
(light-years)
Spectral type[176] Notes
Sun 2,000,000 0.000016 G2V The largest star by angular diameter.
R Doradus 51.18±1.24[81] LD

179±10[81]

M8III:e The largest star by angular diameter apart from the Sun.
Betelgeuse
(α Orionis)
42.28±0.43[68] LD

408–540+98
−49
[68]

M1-M2Ia-Iab
Antares
(α Scorpii A)
37.31±0.09[177] LD 553.5±93.9[178] M1.5Iab
Mira
(ο Ceti)
28.9±0.3 – 34.9±0.4[179] Ross 299±33[178] M5-M9IIIe The angular diameter vary during Mira's pulsations.
Gacrux
(γ Crucis)
24.7[92] ? 88.6±0.4[178] M3.5III
Rasalgethi
(α Herculis)
23.95±5.03[82] Est 359±52[178] M5Ib-II
R Hydrae 23.7±1[16] ? 482±33[16] M6-9e
Arcturus
(α Boötis)
21.06±0.17[180] LD 36.8[180] K1.5IIIFe-0.5
π1 Gruis 21[181] ? 535[181] S5,7
Aldebaran
(α Tauri)
20.58[182]–21.1[183] LD 65.3±1[184] K5+III
GY Aquilae 20.46[16] ? 1108±98[16] M8
R Lyrae 18.016±0.224[183] LD 310+10
−7
[185]
M4.5III
Scheat
(β Pegasi)
16.75±0.24[186] Ross 196±2[178] M2.5II-III
Gorgonea Tertia
(ρ Persei)
16.555±0.166[183] LD 308±7[178] M4+IIIa
SW Virginis 16.11±0.13–16.8±0.34[187] UD 527±46.9[188] M7III:
R Aquarii 15.61±0.8 – 16.59±1.03[187] LD 711+39
−36
[189]
M6.5–M8.5e
g Herculis 15.2±0.5 – 19.09±0.19[187] LD 385±10[185] M6-III
RS Cancri 15.1±0.5 – 17.2±0.4[183] LD 490±40[190] M6S
Tejat
(μ Geminorum)
15.118±0.151[183] LD 230±10[178] M3IIIab
R Leonis Minoris 14.4±0.87[187] LD 942+33
−47
[185]
M6.5-9e
S Cephei 14.29±2.28[187] LD 1591+49
−46
[185]
C7,3e
T Cassiopeiae 14.22±0.73[187] LD 893+49
−46
[185]
M7-9e
μ Cephei (Herschel's Garnet Star) 14.11 ± 0.6[191] 3060+460
−130
[192]
M2Ia
Mirach
(β Andromedae)
13.749±0.137[183] LD 199±9[193] M0+IIIa
Menkar
(α Ceti)
13.238±0.056[183] LD 249±8[178] M1.5IIIa Other measurements include 12.2±0.04 mas.[194]
V Cygni 13.1±0.208 – 14.84±2.37[187] LD 1747+163
−137
[185]
C7,4eJ

See also

Notes

  1. ^ a b c d e f Methods for calculating the radius:
  2. ^ a b c d e f At the J2000 epoch
  3. ^ Using an angular diameter of 7.8±0.64 milliarcseconds[20] and a distance of 1610+130
    −110
     parsecs.
    [21]
  4. ^ Using an angular diameter of 14.11±0.6 milliarcseconds and a distance of 940+140
    −40
     parsecs.
  5. ^ Luminosities are calculated using the apparent bolometric magnitude and distances in the following equation:
    100.4 • (4.74−(mbol+5−5 • log(dist)))
  6. ^ Calculated using a distance of 432 parsecs and an angular diameter of 2.31 milliarcseconds.
  7. ^ Legend:
    UD=Uniform disk diameter
    LD=Limb-darkened diameter
    Ross=Rosseland diameter
    Est = Estimated using distance and physical radius

References

  1. ^ Mamajek, E. E.; Prsa, A.; Torres, G.; Harmanec, P.; Asplund, M.; Bennett, P. D.; Capitaine, N.; Christensen-Dalsgaard, J.; Depagne, E.; Folkner, W. M.; Haberreiter, M. (October 2015). "IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties". arXiv:1510.07674 [astro-ph.SR].
  2. ^ Rau, A.; Kulkarni, S. R.; Ofek, E. O.; Yan, L. (2007). "Spitzer Observations of the New Luminous Red Nova M85 OT2006-1". The Astrophysical Journal. 659 (2): 1536–1540. arXiv:astro-ph/0612161. Bibcode:2007ApJ...659.1536R. doi:10.1086/512672. S2CID 8913778.
  3. ^ Haemmerlé, Lionel; Woods, T. E.; Klessen, Ralf S.; Heger, Alexander; Whalen, Daniel J. (2018). "The evolution of supermassive Population III stars". Monthly Notices of the Royal Astronomical Society. 474 (2): 2757–2773. arXiv:1705.09301. doi:10.1093/mnras/stx2919.
  4. ^ Herrington, Nicholas P.; Whalen, Daniel J.; Woods, Tyrone E. (2023). "Modelling supermassive primordial stars with <SCP>mesa</SCP>". Monthly Notices of the Royal Astronomical Society. 521: 463–473. arXiv:2208.00008. doi:10.1093/mnras/stad572.
  5. ^ Haemmerlé, L.; Klessen, R. S.; Mayer, L.; Zwick, L. (2021). "Maximum accretion rate of supermassive stars". Astronomy & Astrophysics. 652: L7. arXiv:2105.13373. Bibcode:2021A&A...652L...7H. doi:10.1051/0004-6361/202141376. S2CID 235247984.
  6. ^ Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (July 2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal. 645 (2): 1102–1117. arXiv:astro-ph/0603596. Bibcode:2006ApJ...645.1102L. doi:10.1086/504417. ISSN 0004-637X. S2CID 5150686.
  7. ^ Ren, Yi; Jiang, Bi-Wei (July 2020). "On the Granulation and Irregular Variation of Red Supergiants". The Astrophysical Journal. 898 (1): 24. arXiv:2006.06605. Bibcode:2020ApJ...898...24R. doi:10.3847/1538-4357/ab9c17. ISSN 0004-637X. S2CID 250739134.
  8. ^ a b c d e f "HORIZONS Web-Interface". ssd.jpl.nasa.gov. Retrieved 25 September 2021.
  9. ^ a b c d e Healy, Sarah; Horiuchi, Shunsaku; Ashall, Chris (5 December 2024). "The Red Supergiant Problem: As Seen from the Local Group's Red Supergiant Populations". arXiv:2412.04386 [astro-ph.SR].
  10. ^ a b c d e f g h i j k l m n o p q r s t u v Humphreys, Roberta M.; Helmel, Greta; Jones, Terry J.; Gordon, Michael S. (August 2020). "Exploring the Mass Loss Histories of the Red Supergiants". The Astronomical Journal. 160 (3): 145. arXiv:2008.01108. Bibcode:2020AJ....160..145H. doi:10.3847/1538-3881/abab15. S2CID 220961677.
  11. ^ a b Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (April 2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy and Astrophysics. 540: L12. arXiv:1203.5194. Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126. ISSN 0004-6361. S2CID 54044968.
  12. ^ a b Alcolea, J.; Bujarrabal, V.; Planesas, P.; Teyssier, D.; Cernicharo, J.; De Beck, E.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Melnick, G.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M. (November 2013). "HIFISTARS Herschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star". Astronomy & Astrophysics. 559: 25. arXiv:1310.2400. Bibcode:2013A&A...559A..93A. doi:10.1051/0004-6361/201321683. ISSN 0004-6361. S2CID 263787323.
  13. ^ Gordon, Michael S.; Jones, Terry J.; Humphreys, Roberta M.; Ertel, Steve; Hinz, Philip M.; Hoffman, William F.; Stone, Jordan; Spalding, Eckhart; Vaz, Amali (February 2019). "Thermal Emission in the Southwest Clump of VY CMa". The Astronomical Journal. 157 (2): 57. arXiv:1811.05998. Bibcode:2019AJ....157...57G. doi:10.3847/1538-3881/aaf5cb. S2CID 119044678.
  14. ^ Nguyen, Thinh H.; Guinan, Edward F. (11 January 2022). "Stars on the Verge: Analyses of the Complex Light Variations of the Hyper-luminous Red Supergiant VY Canis Majoris: On the Nature of the Star's "Great Dimming" Episodes". Research Notes of the AAS. 6 (1): 12. Bibcode:2022RNAAS...6...12N. doi:10.3847/2515-5172/ac4991. ISSN 2515-5172.
  15. ^ a b Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Hauschildt, P. H. (June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy and Astrophysics. 554: A76. arXiv:1305.6179. Bibcode:2013A&A...554A..76A. doi:10.1051/0004-6361/201220920. ISSN 0004-6361. S2CID 73575062.
  16. ^ a b c d e f g h Montargès, M.; et al. (5 January 2023). "The VLT/SPHERE view of the ATOMIUM cool evolved star sample. I. Overview: Sample characterization through polarization analysis". Astronomy and Astrophysics. 671: A96. arXiv:2301.02081. Bibcode:2023A&A...671A..96M. doi:10.1051/0004-6361/202245398. S2CID 255440600.
  17. ^ a b c d e f g Norris, Ryan Patrick (13 December 2019). Seeing stars like never before: A long-term interferometric imaging survey of red supergiants. Physics and Astronomy Dissertations (Thesis). Georgia State University. Bibcode:2019PhDT........63N. doi:10.57709/15009706.
  18. ^ a b Tabernero, H. M.; Dorda, R.; Negueruela, I.; Marfil, E. (February 2021). "The nature of VX Sagitarii: Is it a TŻO, a RSG, or a high-mass AGB star?". Astronomy & Astrophysics. 646: A98. arXiv:2011.09184. Bibcode:2021A&A...646A..98T. doi:10.1051/0004-6361/202039236. ISSN 0004-6361. S2CID 241206934.
  19. ^ a b c d e Wing, Robert F. (September 2009). The Biggest Stars of All. The Biggest, Baddest, Coolest Stars ASP Conference Series. Vol. 412. p. 113. Bibcode:2009ASPC..412..113W. S2CID 117001990.
  20. ^ a b Richichi, A.; Percheron, I.; Khristoforova, M. (1 February 2005). "CHARM2: An updated Catalog of High Angular Resolution Measurements". Astronomy & Astrophysics. 431 (2): 773–777. Bibcode:2005A&A...431..773R. doi:10.1051/0004-6361:20042039. ISSN 0004-6361. Data about NML Cygni (IRC +40448) is found here at VizieR.
  21. ^ Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.; Brunthaler, A. (2012). "The distance and size of the red hypergiant NML Cygni from VLBA and VLA astrometry" (PDF). Astronomy & Astrophysics. 544: A42. arXiv:1207.1850. Bibcode:2012A&A...544A..42Z. doi:10.1051/0004-6361/201219587. S2CID 55509287.
  22. ^ Fok, Thomas K. T.; Nakashima, Jun-ichi; Yung, Bosco H. K.; Hsia, Chih-Hao; Deguchi, Shuji (November 2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal. 760 (1): 65. arXiv:1209.6427. Bibcode:2012ApJ...760...65F. doi:10.1088/0004-637X/760/1/65. ISSN 0004-637X. S2CID 53393926.
  23. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc Healy, Sarah; Horiuchi, Shunsaku; Molla, Marta Colomer; Milisavljevic, Dan; Tseng, Jeff; Bergin, Faith; Weil, Kathryn; Tanaka, Masaomi (23 March 2024). "Red Supergiant Candidates for Multimessenger Monitoring of the Next Galactic Supernova". Monthly Notices of the Royal Astronomical Society. 529 (4): 3630–3650. arXiv:2307.08785. Bibcode:2024MNRAS.529.3630H. doi:10.1093/mnras/stae738. ISSN 0035-8711.
  24. ^ Kusuno, K.; Asaki, Y.; Imai, H.; Oyama, T. (2013). "Distance and Proper Motion Measurement of the Red Supergiant, Pz Cas, in Very Long Baseline Interferometry H2O Maser Astrometry". The Astrophysical Journal. 774 (2): 107. arXiv:1308.3580. Bibcode:2013ApJ...774..107K. doi:10.1088/0004-637X/774/2/107. S2CID 118867155.
  25. ^ a b c d e Ryan Norris. "Student Science at NMT: Learning Optical Interferometry Through Projects on Evolved Stars" (PDF). CHARA.
  26. ^ Josselin, E.; Plez, B. (July 2007). "Atmospheric dynamics and the mass loss process in red supergiant stars". Astronomy & Astrophysics. 469 (2): 671–680. arXiv:0705.0266. Bibcode:2007A&A...469..671J. doi:10.1051/0004-6361:20066353. ISSN 0004-6361. S2CID 17789027.
  27. ^ a b c d e f Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (August 2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not As Cool As We Thought". The Astrophysical Journal. 628 (2): 973–985. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901. ISSN 0004-637X. S2CID 15109583.
  28. ^ "Mu Cephei | aavso". www.aavso.org. Retrieved 6 October 2024.
  29. ^ a b c d Arévalo, Aura de Las Estrellas Ramírez (July 2018). The Red Supergiants in the Supermassive Stellar Cluster Westerlund 1 (text thesis). University of São Paulo. doi:10.11606/D.14.2019.tde-12092018-161841.
  30. ^ Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D. M. -A.; Kamiński, T. (January 2014). "IRC −10414: a bow-shock-producing red supergiant star". Monthly Notices of the Royal Astronomical Society. 437 (1): 843–856. arXiv:1310.2245. Bibcode:2014MNRAS.437..843G. doi:10.1093/mnras/stt1943. ISSN 0035-8711.
  31. ^ a b c d e f g h i j k Vallenari, A.; Brown, A. G. A.; Prusti, T. (13 June 2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. 674. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. hdl:10902/30704. ISSN 0004-6361. S2CID 244398875.
  32. ^ Tsuboi, Masato; Kitamura, Yoshimi; Tsutsumi, Takahiro; Miyawaki, Ryosuke; Miyoshi, Makoto; Miyazaki, Atsushi (April 2020). "Sub-millimeter detection of a Galactic center cool star IRS 7 by ALMA". Publications of the Astronomical Society of Japan. 72 (2): 36. arXiv:2002.01620. Bibcode:2020PASJ...72...36T. doi:10.1093/pasj/psaa013. ISSN 0004-6264.
  33. ^ Guerço, Rafael; Smith, Verne V; Cunha, Katia; Ekström, Sylvia; Abia, Carlos; Plez, Bertrand; Meynet, Georges; Ramirez, Solange V; Prantzos, Nikos; Sellgren, Kris; Hayes, Cristian R; Majewski, Steven R (13 September 2022). "Evidence of deep mixing in IRS 7, a cool massive supergiant member of the Galactic nuclear star cluster". Monthly Notices of the Royal Astronomical Society. 516 (2): 2801–2811. arXiv:2208.10529. doi:10.1093/mnras/stac2393. ISSN 0035-8711.
  34. ^ Rodríguez-Coira, G.; Gravity Collaboration (2021). "The Molecular Layer of GCIRS7". New Horizons in Galactic Center Astronomy and Beyond. 528: 397. Bibcode:2021ASPC..528..397R.
  35. ^ Van Loon, J. Th.; Cioni, M.-R. L.; Zijlstra, A. A.; Loup, C. (18 April 2005). "An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars". Astronomy and Astrophysics. 438 (1): 273–289. arXiv:astro-ph/0504379. Bibcode:2005A&A...438..273V. doi:10.1051/0004-6361:20042555. S2CID 16724272.
  36. ^ "GCVS: "==WY Vel"". VizieR. General Catalogue of Variable Stars @ Centre de données astronomiques de Strasbourg. Retrieved 11 February 2024.
  37. ^ Norris, Ryan (27 February 2021). "An Interferometric Imaging Survey of Red Supergiant Stars". The 20.5Th Cambridge Workshop on Cool Stars: 263. Bibcode:2021csss.confE.263N. doi:10.5281/zenodo.4567641.
  38. ^ a b Anugu, Narsireddy; Gies, Douglas R.; Roettenbacher, Rachael M.; Monnier, John D.; Montargés, Miguel; Mérand, Antoine; Baron, Fabien; Schaefer, Gail H.; Shepard, Katherine A.; Kraus, Stefan; Anderson, Matthew D.; Codron, Isabelle; Gardner, Tyler; Gutierrez, Mayra; Köhler, Rainer (September 2024). "Time Evolution Images of the Hypergiant RW Cephei during the Rebrightening Phase Following the Great Dimming". The Astrophysical Journal Letters. 973 (1): L5. arXiv:2408.11906. Bibcode:2024ApJ...973L...5A. doi:10.3847/2041-8213/ad736c. ISSN 2041-8205.
  39. ^ Davies, B.; Figer, D. F.; Law, C. J.; Kudritzki, R. P.; Najarro, F.; Herrero, A.; MacKenty, J. W. (2008). "The Cool Supergiant Population of the Massive Young Star Cluster RSGC1". The Astrophysical Journal. 676 (2): 1016–1028. arXiv:0711.4757. Bibcode:2008ApJ...676.1016D. doi:10.1086/527350. S2CID 15639297.
  40. ^ Decin, Leen; Richards, Anita M. S.; Marchant, Pablo; Sana, Hugues (2024). "ALMA detection of CO rotational line emission in red supergiant stars of the massive young star cluster RSGC1". Astronomy & Astrophysics. 681: A17. arXiv:2303.09385. doi:10.1051/0004-6361/202244635.
  41. ^ Massalkhi, S.; Agúndez, M.; Cernicharo, J. (August 2019). "Study of CS, SiO, and SiS abundances in carbon star envelopes: assessing their role as gas-phase precursors of dust". Astronomy & Astrophysics. 628: A62. arXiv:1906.09461. Bibcode:2019A&A...628A..62M. doi:10.1051/0004-6361/201935069. ISSN 0004-6361. PMC 6739229. PMID 31511746.
  42. ^ van Genderen, A. M.; Lobel, A.; Nieuwenhuijzen, H.; Henry, G. W.; De Jager, C.; Blown, E.; Di Scala, G.; Van Ballegoij, E. J. (2019). "Pulsations, eruptions, and evolution of four yellow hypergiants". Astronomy and Astrophysics. 631: A48. arXiv:1910.02460. Bibcode:2019A&A...631A..48V. doi:10.1051/0004-6361/201834358. S2CID 203836020.
  43. ^ a b c d Comerón, F.; Djupvik, A. A.; Schneider, N.; Pasquali, A. (27 September 2020). "The historical record of massive star formation in Cygnus". Astronomy & Astrophysics. 2009: A62. arXiv:2009.12779. Bibcode:2020A&A...644A..62C. doi:10.1051/0004-6361/202039188. S2CID 221970180.
  44. ^ Turner, David G.; Rohanizadegan, Mina; Berdnikov, Leonid N.; Pastukhova, Elena N. (November 2006). "The Long-Term Behavior of the Semiregular M Supergiant Variable BC Cygni". Publications of the Astronomical Society of the Pacific. 118 (849): 1533–1544. Bibcode:2006PASP..118.1533T. doi:10.1086/508905. ISSN 0004-6280. S2CID 121309425.
  45. ^ Messineo, Maria; Figer, Donald F.; Kudritzki, Rolf-Peter; Zhu, Qingfeng; Menten, Karl M.; Ivanov, Valentin D.; Chen, C. -H. Rosie (2021). "New Infrared Spectral Indices of Luminous Cold Stars: From Early K to M Types". The Astronomical Journal. 162 (5): 187. arXiv:2107.03707. Bibcode:2021AJ....162..187M. doi:10.3847/1538-3881/ac116b. S2CID 235765247.
  46. ^ a b c d Bergeat, J.; Chevallier, L. (January 2005). "The mass loss of C-rich giants". Astronomy and Astrophysics. 429: 235–246. arXiv:astro-ph/0601366. Bibcode:2005A&A...429..235B. doi:10.1051/0004-6361:20041280. S2CID 56424665.
  47. ^ González-Torà, G.; Wittkowski, M.; Davies, B.; Plez, B. (19 December 2023). "The effect of winds on atmospheric layers of red supergiants II. Modelling VLTI/GRAVITY and MATISSE observations of AH Sco, KW Sgr, V602 Car, CK Car and V460 Car". Astronomy & Astrophysics. 683: A19. arXiv:2312.12521. doi:10.1051/0004-6361/202348047. ISSN 0004-6361.
  48. ^ Hopkins, Jeffrey L.; Bennett, Philip D.; Pollmann, Ernst (2015). "VV Cephei Eclipse Campaign 2017/19". The Society for Astronomical Sciences 34th Annual Symposium on Telescope Science. Published by Society for Astronomical Sciences. 34: 83. Bibcode:2015SASS...34...83H.
  49. ^ Wright, K. O. (1 April 1977). "The System of VV Cephei Derived from an Analysis of the Hα Line". Journal of the Royal Astronomical Society of Canada. 71: 152. Bibcode:1977JRASC..71..152W. ISSN 0035-872X.
  50. ^ Hack, M.; Engin, S.; Yilmaz, N.; Sedmak, G.; Rusconi, L.; Boehm, C. (1 November 1992). "Spectroscopic study of the atmospheric eclipsing binary VV Cephei". Astronomy and Astrophysics Supplement Series. 95: 589–601. Bibcode:1992A&AS...95..589H. ISSN 0365-0138.
  51. ^ a b De, Kishalay; Mereminskiy, Ilya; Soria, Roberto; Conroy, Charlie; Kara, Erin; Anand, Shreya; Ashley, Michael C. B.; Boyer, Martha L.; Chakrabarty, Deepto; Grefenstette, Brian; Hankins, Matthew J.; Hillenbrand, Lynne A.; Jencson, Jacob E.; Karambelkar, Viraj; Kasliwal, Mansi M. (1 August 2022). "SRGA J181414.6-225604: A New Galactic Symbiotic X-Ray Binary Outburst Triggered by an Intense Mass-loss Episode of a Heavily Obscured Mira Variable". The Astrophysical Journal. 935 (1): 36. arXiv:2205.09139. Bibcode:2022ApJ...935...36D. doi:10.3847/1538-4357/ac7c6e. ISSN 0004-637X. S2CID 248887540.
  52. ^ a b Siderud, Emelie (2020). Dust emission modelling of AGB stars.
  53. ^ a b Messineo, Maria (18 January 2023). "Identification of late-type Class I stars using Gaia DR3 Apsis parameters". Astronomy & Astrophysics. 671: A148. arXiv:2301.07415. Bibcode:2023A&A...671A.148M. doi:10.1051/0004-6361/202245587. S2CID 256486848.
  54. ^ a b c d e f g h i j k l Ramstedt, S.; Olofsson, H. (25 May 2014). "The 12CO/13CO ratio in AGB stars of different chemical type. Connection to the 12C/13C ratio and the evolution along the AGB". Astronomy and Astrophysics. 566: A145. arXiv:1405.6404. Bibcode:2014A&A...566A.145R. doi:10.1051/0004-6361/201423721. ISSN 0004-6361. S2CID 59125036.
  55. ^ a b c d e f g h i Danilovich, T.; Teyssier, D.; Justtanont, K.; Olofsson, H.; Cerrigone, L.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Castro-Carrizo, A.; García-Lario, P.; Marston, A. (1 September 2015). "New observations and models of circumstellar CO line emission of AGB stars in the Herschel SUCCESS programme". Astronomy & Astrophysics. 581: A60. arXiv:1506.09065. Bibcode:2015A&A...581A..60D. doi:10.1051/0004-6361/201526705. ISSN 0004-6361.
  56. ^ a b Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N. L. J.; González-Alfonso, E.; Neufeld, D.; De Ridder, J.; Agúndez, M.; Blommaert, J. A. D. L.; Khouri, T. (April 2016). "Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars". Astronomy and Astrophysics. 588: A124. arXiv:1601.07017. Bibcode:2016A&A...588A.124L. doi:10.1051/0004-6361/201527049. ISSN 0004-6361. S2CID 62787287.
  57. ^ Natale, G.; Rea, N.; Lazzati, D.; Perna, R.; Torres, D. F.; Girart, J. M. (25 January 2017). "Dust Radiative Transfer Modeling of the Infrared Ring around the Magnetar SGR 1900+14". The Astrophysical Journal. 837 (1): 10. arXiv:1701.07442. Bibcode:2017ApJ...837....9N. doi:10.3847/1538-4357/aa5c82. S2CID 119213779.
  58. ^ a b Schöier, F. L.; Ramstedt, S.; Olofsson, H.; Lindqvist, M.; Bieging, J. H.; Marvel, K. B. (February 2013). "The abundance of HCN in circumstellar envelopes of AGB stars of different chemical types". Astronomy & Astrophysics. 550: A78. arXiv:1301.2129. Bibcode:2013A&A...550A..78S. doi:10.1051/0004-6361/201220400. ISSN 0004-6361.
  59. ^ a b c d Van Belle, G. T.; Thompson, R. R.; Creech-Eakman, M. J. (2002). "Angular Size Measurements of Mira Variable Stars at 2.2 Microns. II". The Astronomical Journal. 124 (3): 1706–1715. arXiv:astro-ph/0210167. Bibcode:2002AJ....124.1706V. doi:10.1086/342282. S2CID 33832649.
  60. ^ Decin, L.; Hony, S.; de Koter, A.; Molenberghs, G.; Dehaes, S.; Markwick-Kemper, F. (30 July 2007). "The variable mass loss of the AGB star WX Piscium as traced by the CO J = 1-0 through 7-6 lines and the dust emission". Astronomy & Astrophysics. 475 (1): 233–242. arXiv:0708.4107. doi:10.1051/0004-6361:20077737. ISSN 0004-6361.
  61. ^ a b Blum, R. D.; Ramírez, Solange V.; Sellgren, K.; Olsen, K. (3 July 2003). "Really Cool Stars and the Star Formation History at the Galactic Center". The Astrophysical Journal. 597 (1): 323–346. arXiv:astro-ph/0307291. Bibcode:2003ApJ...597..323B. doi:10.1086/378380. ISSN 0004-637X. S2CID 5664467.
  62. ^ Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E.; Thureau, N.; ten Brummelaar, T. A.; Ridgway, S. T. (April 2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging". The Astrophysical Journal. 785 (1): 46. arXiv:1405.4032. Bibcode:2014ApJ...785...46B. doi:10.1088/0004-637X/785/1/46. ISSN 0004-637X. S2CID 17085548.
  63. ^ Asaki, Yoshiharu; Maud, Luke T.; Francke, Harold; Nagai, Hiroshi; Petry, Dirk; Fomalont, Edward B.; Humphreys, Elizabeth; Richards, Anita M. S.; Wong, Ka Tat; Dent, William; Hirota, Akihiko; Fernandez, Jose Miguel; Takahashi, Satoko; Hales, Antonio S. (November 2023). "ALMA High-frequency Long Baseline Campaign in 2021: Highest Angular Resolution Submillimeter Wave Images for the Carbon-rich Star R Lep". The Astrophysical Journal. 958 (1): 86. arXiv:2310.09664. Bibcode:2023ApJ...958...86A. doi:10.3847/1538-4357/acf619. ISSN 0004-637X.
  64. ^ Wallstrom, S. H. J.; et al. (7 December 2023). "ATOMIUM: Molecular inventory of 17 oxygen-rich evolved stars observed with ALMA". Astronomy & Astrophysics. 681: A50. arXiv:2312.03467. doi:10.1051/0004-6361/202347632.
  65. ^ Ohnaka, K.; Hofmann, K. -H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (July 2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy and Astrophysics. 555: A24. arXiv:1304.4800. Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063. ISSN 0004-6361. S2CID 56396587.
  66. ^ a b c d e Hoffleit, D.; Warren, W. H. Jr. (November 1995). "VizieR Online Data Catalog: Bright Star Catalogue, 5th Revised Ed. (Hoffleit+, 1991)". VizieR Online Data Catalog: V/50. Bibcode:1995yCat.5050....0H.
  67. ^ Mittag, M.; Schröder, K. -P.; Perdelwitz, V.; Jack, D.; Schmitt, J. H. M. M. (1 January 2023), "Chromospheric activity and photospheric variation of α Ori during the great dimming event in 2020", Astronomy and Astrophysics, 669: A9, arXiv:2211.04967, Bibcode:2023A&A...669A...9M, doi:10.1051/0004-6361/202244924, ISSN 0004-6361
  68. ^ a b c Joyce, Meridith; Leung, Shing-Chi; Molnár, László; Ireland, Michael; Kobayashi, Chiaki; Nomoto, Ken'ichi (October 2020). "Standing on the Shoulders of Giants: New Mass and Distance Estimates for Betelgeuse through Combined Evolutionary, Asteroseismic, and Hydrodynamic Simulations with MESA". The Astrophysical Journal. 902 (1): 63. arXiv:2006.09837. Bibcode:2020ApJ...902...63J. doi:10.3847/1538-4357/abb8db. ISSN 0004-637X. S2CID 221507952.
  69. ^ MacLeod, Morgan; Blunt, Sarah; De Rosa, Robert J.; Dupree, Andrea K.; Granzer, Thomas; Harper, Graham M.; Huang, Caroline D.; Leiner, Emily M.; Loeb, Abraham (17 September 2024). "Radial Velocity and Astrometric Evidence for a Close Companion to Betelgeuse". arXiv:2409.11332 [astro-ph.SR].
  70. ^ Mittag, M.; Schröder, K. -P.; Perdelwitz, V.; Jack, D.; Schmitt, J. H. M. M. (January 2023). "Chromospheric activity and photospheric variation of α Ori during the great dimming event in 2020". Astronomy & Astrophysics. 669: 18. arXiv:2211.04967. Bibcode:2023A&A...669A...9M. doi:10.1051/0004-6361/202244924. ISSN 0004-6361. S2CID 253406622.
  71. ^ Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. (June 2018). "The convective photosphere of the red supergiant CE Tau. I. VLTI/PIONIER H-band interferometric imaging". Astronomy & Astrophysics. 614: A12. arXiv:1802.06086. Bibcode:2018A&A...614A..12M. doi:10.1051/0004-6361/201731471. ISSN 0004-6361. S2CID 118950270.
  72. ^ Anugu, Narsireddy; et al. (7 August 2024). "CHARA Near-Infrared Imaging of the Yellow Hypergiant Star ρ Cassiopeiae: Convection Cells and Circumstellar Envelope". The Astrophysical Journal. 974 (1): 113. arXiv:2408.02756v2. Bibcode:2024ApJ...974..113A. doi:10.3847/1538-4357/ad6b2b.
  73. ^ Schmidt, M. R.; He, J. H.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Justtanont, K.; Teyssier, D.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Marston, A. P.; Sobolev, A. M. (August 2016). "Herschel /HIFI observations of the circumstellar ammonia lines in IRC+10216". Astronomy & Astrophysics. 592: A131. arXiv:1606.01878. Bibcode:2016A&A...592A.131S. doi:10.1051/0004-6361/201527290. ISSN 0004-6361. PMC 5217166. PMID 28065983.
  74. ^ Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. (1 October 2012). "The hypergiant HR 8752 evolving through the yellow evolutionary void". Astronomy and Astrophysics. 546: A105. Bibcode:2012A&A...546A.105N. doi:10.1051/0004-6361/201117166. ISSN 0004-6361.
  75. ^ Groenewegen, M. A. T. (2020). "Analysing the spectral energy distributions of Galactic classical Cepheids". Astronomy and Astrophysics. 635: A33. arXiv:2002.02186. Bibcode:2020A&A...635A..33G. doi:10.1051/0004-6361/201937060. S2CID 211043995.
  76. ^ Kamiński, Tomek; Tylenda, Romuald; Kiljan, Aleksandra; Schmidt, Mirek; Lisiecki, Krzysztof; Melis, Carl; Frankowski, Adam; Joshi, Vishal; Menten, Karl M. (1 November 2021). "V838 Monocerotis as seen by ALMA: A remnant of a binary merger in a triple system". Astronomy & Astrophysics. 655: A32. arXiv:2106.07427. Bibcode:2021A&A...655A..32K. doi:10.1051/0004-6361/202141526. ISSN 0004-6361. S2CID 235422695.
  77. ^ a b Tylenda, R. (1 June 2005). "Evolution of V838 Monocerotis during and after the 2002 eruption". Astronomy & Astrophysics. 436 (3): 1009–1020. arXiv:astro-ph/0502060. Bibcode:2005A&A...436.1009T. doi:10.1051/0004-6361:20052800. ISSN 0004-6361. S2CID 3566688.
  78. ^ Najarro, Francisco; Figer, Don F.; Hillier, D. John; Geballe, T. R.; Kudritzki, Rolf P. (February 2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal. 691 (2): 1816–1827. arXiv:0809.3185. Bibcode:2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816. ISSN 0004-637X. S2CID 15473563.
  79. ^ Libert, Y.; Gerard, E.; Le Bertre, T. (10 September 2007). "The formation of a detached shell around the carbon star Y CVn". Monthly Notices of the Royal Astronomical Society. 380 (3): 1161–1171. arXiv:0706.4211. Bibcode:2007MNRAS.380.1161L. doi:10.1111/j.1365-2966.2007.12154.x.
  80. ^ Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H.; Ohnaka, K.; Richichi, A.; Schertl, D.; Schöller, M.; Scholz, M.; Weigelt, G.; Wittkowski, M.; Wood, P. R. (July 2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics. 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode:2004A&A...421..703W. doi:10.1051/0004-6361:20035826. ISSN 0004-6361. S2CID 17009595.
  81. ^ a b c Ohnaka, Keiichi; Weigelt, Gerd; Hofmann, Karl-Heinz (24 September 2019). "Infrared interferometric three-dimensional diagnosis of the atmospheric dynamics of the AGB star R Dor with VLTI/AMBER". The Astrophysical Journal. 883 (1): 89. arXiv:1908.06997. Bibcode:2019ApJ...883...89O. doi:10.3847/1538-4357/ab3d2a. ISSN 1538-4357. S2CID 201103617.
  82. ^ a b Moravveji, Ehsan; Guinan, Edward F.; Khosroshahi, Habib; Wasatonic, Rick (December 2013). "The Age and Mass of the α Herculis Triple-star System from a MESA Grid of Rotating Stars with 1.3". The Astronomical Journal. 146 (6): 148. arXiv:1308.1632. Bibcode:2013AJ....146..148M. doi:10.1088/0004-6256/146/6/148. ISSN 0004-6256. S2CID 117872505.
  83. ^ Clark, J. S.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Urbaneja, M. A.; Howarth, I. D. (May 2012). "On the nature of the galactic early-B hypergiants". Astronomy & Astrophysics. 541: A145. arXiv:1202.3991. Bibcode:2012A&A...541A.145C. doi:10.1051/0004-6361/201117472. ISSN 0004-6361. S2CID 11978733.
  84. ^ Harper, Graham M.; Bennett, Philip D.; Brown, Alexander; Ayres, Thomas R.; Ohnaka, Keiichi; Griffin, Elizabeth (2022). "HST STIS Observations of ζ Aurigae A's Irradiated Atmosphere". The Astronomical Journal. 164 (1): 16. Bibcode:2022AJ....164...16H. doi:10.3847/1538-3881/ac6feb. S2CID 250101470.
  85. ^ a b McDonald, I.; Zijlstra, A. A.; Watson, R. A. (1 October 2017), "Fundamental parameters and infrared excesses of Tycho-Gaia stars", Monthly Notices of the Royal Astronomical Society, 471 (1): 770–791, arXiv:1706.02208, Bibcode:2017MNRAS.471..770M, doi:10.1093/mnras/stx1433, ISSN 0035-8711 Note: See VizieR catalogue
  86. ^ Gull, Theodore R.; Hillier, D. John; Hartman, Henrik; Corcoran, Michael F.; Damineli, Augusto; Espinoza-Galeas, David; Hamaguchi, Kenji; Navarete, Felipe; Nielsen, Krister; Madura, Thomas; Moffat, Anthony F. J.; Morris, Patrick; Richardson, Noel D.; Russell, Christopher M. P.; Stevens, Ian R. (1 July 2022). "Eta Carinae: an evolving view of the central binary, its interacting winds and its foreground ejecta". The Astrophysical Journal. 933 (2): 175. arXiv:2205.15116. Bibcode:2022ApJ...933..175G. doi:10.3847/1538-4357/ac74c2. ISSN 0004-637X.
  87. ^ a b Davidson, Kris (5 February 2020). "Radiation-Driven Stellar Eruptions". Galaxies. 8 (1): 10. arXiv:2009.02340. Bibcode:2020Galax...8...10D. doi:10.3390/galaxies8010010. ISSN 2075-4434.
  88. ^ Chesneau, O.; Dessart, L.; Mourard, D.; Bério, Ph.; Buil, Ch.; Bonneau, D.; Borges Fernandes, M.; Clausse, J. M.; Delaa, O.; Marcotto, A.; Meilland, A.; Millour, F.; Nardetto, N.; Perraut, K.; Roussel, A. (October 2010). "Time, spatial, and spectral resolution of the Hαline-formation region of Deneb and Rigel with the VEGA/CHARA interferometer". Astronomy and Astrophysics. 521: A5. arXiv:1007.2095. doi:10.1051/0004-6361/201014509. ISSN 0004-6361.
  89. ^ Schiller, F.; Przybilla, N. (March 2008). "Quantitative spectroscopy of Deneb". Astronomy and Astrophysics. 479 (3): 849–858. arXiv:0712.0040. Bibcode:2008A&A...479..849S. doi:10.1051/0004-6361:20078590. ISSN 0004-6361. S2CID 103635615.
  90. ^ a b Baines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.; Zavala, R. T.; Benson, James A.; Hutter, Donald J.; Tycner, Christopher; van Belle, Gerard T. (20 December 2017). "Fundamental Parameters of 87 Stars from the Navy Precision Optical Interferometer". The Astronomical Journal. 155 (1): 30. arXiv:1712.08109. Bibcode:2018AJ....155...30B. doi:10.3847/1538-3881/aa9d8b. ISSN 1538-3881.
  91. ^ Souza, A. Domiciano de; Zorec, J.; Millour, F.; Bouquin, J.-B. Le; Spang, A.; Vakili, F. (1 October 2021). "Refined fundamental parameters of Canopus from combined near-IR interferometry and spectral energy distribution". Astronomy & Astrophysics. 654: A19. arXiv:2109.07153. Bibcode:2021A&A...654A..19D. doi:10.1051/0004-6361/202140478. ISSN 0004-6361. S2CID 237513623.
  92. ^ a b Nielsen, Krister E.; Airapetian, Vladimir S.; Carpenter, Kenneth G.; Rau, Gioia (1 August 2023). "The Advanced Spectral Library: The Evolution of Chromospheric Wind Characteristics from Noncoronal to Hybrid Giant Stars". The Astrophysical Journal. 953 (1): 16. Bibcode:2023ApJ...953...16N. doi:10.3847/1538-4357/acdcf1. ISSN 0004-637X.
  93. ^ Evans, Nancy Remage; Schaefer, Gail H.; Gallenne, Alexandre; Torres, Guillermo; Horch, Elliott P.; Anderson, Richard I.; Monnier, John D.; Roettenbacher, Rachael M.; Baron, Fabien; Anugu, Narsireddy; Davidson, James W.; Kervella, Pierre; Bras, Garance; Proffitt, Charles; Mérand, Antoine (1 August 2024). "The Orbit and Dynamical Mass of Polaris: Observations with the CHARA Array". The Astrophysical Journal. 971 (2): 190. arXiv:2407.09641. Bibcode:2024ApJ...971..190E. doi:10.3847/1538-4357/ad5e7a. ISSN 0004-637X.
  94. ^ Hatzes, A. P.; Cochran, W. D.; Endl, M.; Guenther, E. W.; MacQueen, P.; Hartmann, M.; Zechmeister, M.; Han, I.; Lee, B.-C.; Walker, G. a. H.; Yang, S.; Larson, A. M.; Kim, K.-M.; D. E. Mkrtichian; Döllinger, M. (1 August 2015). "Long-lived, long-period radial velocity variations in Aldebaran: A planetary companion and stellar activity". Astronomy & Astrophysics. 580: A31. arXiv:1505.03454. Bibcode:2015A&A...580A..31H. doi:10.1051/0004-6361/201425519. ISSN 0004-6361. S2CID 53324086.
  95. ^ Ramirez, I.; Prieto, C. Allende (20 December 2011). "Fundamental Parameters and Chemical Composition of Arcturus". The Astrophysical Journal. 743 (2): 135. arXiv:1109.4425. Bibcode:2011ApJ...743..135R. doi:10.1088/0004-637X/743/2/135. ISSN 0004-637X. S2CID 119186472.
  96. ^ Tkachenko, A.; et al. (May 2016), "Stellar modelling of Spica, a high-mass spectroscopic binary with a β Cep variable primary component", Monthly Notices of the Royal Astronomical Society, 458 (2): 1964–1976, arXiv:1601.08069, Bibcode:2016MNRAS.458.1964T, doi:10.1093/mnras/stw255, S2CID 26945389
  97. ^ McAlister, H. A.; ten Brummelaar, T. A.; Gies; Huang; Bagnuolo, Jr.; Shure; Sturmann; Sturmann; Turner; Taylor; Berger; Baines; Grundstrom; Ogden; Ridgway; Van Belle; et al. (2005). "First Results from the CHARA Array. I. An Interferometric and Spectroscopic Study of the Fast Rotator Alpha Leonis (Regulus)". The Astrophysical Journal. 628 (1): 439–452. arXiv:astro-ph/0501261. Bibcode:2005ApJ...628..439M. doi:10.1086/430730. S2CID 6776360.
  98. ^ Monnier, J. D.; Che, Xiao; Zhao, Ming; Ekström, S.; Maestro, V.; Aufdenberg, Jason; Baron, F.; Georgy, C.; Kraus, S.; McAlister, H.; Pedretti, E. (December 2012). "Resolving Vega and the Inclination Controversy with CHARA/MIRC". The Astrophysical Journal. 761 (1): L3. arXiv:1211.6055. Bibcode:2012ApJ...761L...3M. doi:10.1088/2041-8205/761/1/L3. ISSN 0004-637X. S2CID 17950155.
  99. ^ Bouchaud, K.; Domiciano de Souza, A.; Rieutord, M.; Reese, D. R.; Kervella, P. (1 January 2020). "A realistic two-dimensional model of Altair". Astronomy and Astrophysics. 633: A78. arXiv:1912.03138. Bibcode:2020A&A...633A..78B. doi:10.1051/0004-6361/201936830. ISSN 0004-6361.
  100. ^ Davis, J.; et al. (October 2010). "The Angular Diameter and Fundamental Parameters of Sirius A". Publications of the Astronomical Society of Australia. 28: 58–65. arXiv:1010.3790. doi:10.1071/AS10010.
  101. ^ Akeson, Rachel; Beichman, Charles; Kervella, Pierre; Fomalont, Edward; Benedict, G. Fritz (14 June 2021). "Precision Millimeter Astrometry of the α Centauri AB System". The Astronomical Journal. 162 (1): 14. arXiv:2104.10086. Bibcode:2021AJ....162...14A. doi:10.3847/1538-3881/abfaff. ISSN 0004-6256.
  102. ^ Kamath, D.; Wood, P. R.; Van Winckel, H. (1 December 2015). "Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud". Monthly Notices of the Royal Astronomical Society. 454 (2): 1468–1502. arXiv:1508.00670. doi:10.1093/mnras/stv1202. ISSN 0035-8711.
  103. ^ a b c d e f Beasor, Emma R.; Smith, Nathan (1 May 2022). "The Extreme Scarcity of Dust-enshrouded Red Supergiants: Consequences for Producing Stripped Stars via Winds". The Astrophysical Journal. 933 (1): 41. arXiv:2205.02207. Bibcode:2022ApJ...933...41B. doi:10.3847/1538-4357/ac6dcf. S2CID 248512934.
  104. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du dv dw dx dy dz ea eb ec ed ee ef eg eh ei ej ek el em en eo ep eq er es et eu ev ew ex ey ez fa fb fc fd fe ff fg fh fi fj fk fl fm fn fo fp fq fr fs ft fu fv fw fx fy fz ga gb gc gd ge gf gg gh gi gj gk gl gm gn go gp gq gr gs gt gu gv gw gx gy gz ha hb hc hd he hf hg hh hi hj hk hl hm hn ho hp hq hr hs ht hu hv hw hx hy hz ia ib ic id ie if ig ih ii ij ik il im in io ip iq ir is it iu iv iw ix iy iz ja jb jc jd je jf jg jh ji jj jk jl jm jn jo jp jq jr js jt ju jv jw jx jy jz ka kb kc kd ke kf kg kh ki kj kk kl km kn ko kp kq kr ks kt ku kv kw kx ky kz la lb lc ld le lf lg lh li lj lk ll lm ln lo lp lq lr ls lt lu lv lw lx ly lz ma mb mc md me mf mg mh mi mj mk ml mm mn mo mp mq mr ms mt mu mv mw mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh oi oj ok ol om on oo op oq or os ot ou ov ow ox oy oz pa pb pc pd pe pf pg ph pi pj pk pl pm pn po pp pq pr ps pt pu pv pw px py pz qa qb qc qd qe qf qg qh qi qj qk ql qm qn qo qp qq qr qs qt qu qv qw qx qy qz ra rb rc rd re rf rg rh ri rj rk rl rm rn ro rp rq rr rs rt ru rv rw rx ry rz sa sb sc sd se sf sg sh si sj sk sl sm sn so sp sq sr ss st su sv sw sx sy sz Massey, Philip; Neugent, Kathryn F.; Ekstrom, Sylvia; Georgy, Cyril; Georges, Meynet (2023). "The Time-Averaged Mass-Loss Rates of Red Supergiants As Revealed by their Luminosity Functions in M31 and M33". The Astrophysical Journal. 942 (2): 35. arXiv:2211.14147. Bibcode:2023ApJ...942...69M. doi:10.3847/1538-4357/aca665. S2CID 254018399.
  105. ^ a b c d e Goldman, Steven R.; van Loon, Jacco Th.; Zijlstra, Albert A.; Green, James A.; Wood, Peter R.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Matsuura, Mikako; Groenewegen, Martin A. T.; Gómez, José F. (11 February 2017). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity". Monthly Notices of the Royal Astronomical Society. 465 (1): 403–433. arXiv:1610.05761. Bibcode:2017MNRAS.465..403G. doi:10.1093/mnras/stw2708. ISSN 0035-8711.
  106. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am Groenewegen, M. A. T.; Sloan, G. C. (January 2018). "Luminosities and mass-loss rates of Local Group AGB stars and red supergiants". Astronomy & Astrophysics. 609: A114. arXiv:1711.07803. Bibcode:2018A&A...609A.114G. doi:10.1051/0004-6361/201731089. ISSN 0004-6361. S2CID 59327105.
  107. ^ a b c University, Keele (December 2017). Research, Keele University (doctoral thesis). Keele University.
  108. ^ a b c d e f g h i j k l m n Neugent, Kathryn F.; Levesque, Emily M.; Massey, Philip; Morrell, Nidia I.; Drout, Maria R. (8 September 2020). "The Red Supergiant Binary Fraction of the Large Magellanic Cloud". The Astrophysical Journal. 900 (2): 118. arXiv:2007.15852. Bibcode:2020ApJ...900..118N. doi:10.3847/1538-4357/ababaa. ISSN 1538-4357.
  109. ^ a b Munoz-Sanchez, G.; de Wit, S.; Bonanos, A. Z.; Antoniadas, K.; Boutsia, K.; Boumis, P.; Christodoulou, E.; Kalitsounaki, M.; Udalski, A. (21 May 2024). "Episodic mass loss in the very luminous red supergiant [W60] B90 in the Large Magellanic Cloud". Astronomy & Astrophysics. 690: A99. arXiv:2405.11019. Bibcode:2024A&A...690A..99M. doi:10.1051/0004-6361/202450737.
  110. ^ a b c d e Chen, Kaitlyn M.; Dorn-Wallenstein, Trevor Z. (March 2024). "A Spectroscopic Hunt for Post-red Supergiants in the Large Magellanic Cloud. I. Preliminary Results". Research Notes of the AAS. 8 (3): 75. arXiv:2403.08048. Bibcode:2024RNAAS...8...75C. doi:10.3847/2515-5172/ad32bb. ISSN 2515-5172. S2CID 268378990.
  111. ^ a b c d e f g h de Wit, S.; Bonanos, A.Z.; Tramper, F.; Yang, M.; Maravelias, G.; Boutsia, K.; Britavskiy, N.; Zapartas, E. (2023). "Properties of luminous red supergiant stars in the Magellanic Clouds". Astronomy and Astrophysics. 669: 17. arXiv:2209.11239. Bibcode:2023A&A...669A..86D. doi:10.1051/0004-6361/202243394. S2CID 252519285.
  112. ^ a b c d Martin, John C.; Humphreys, Roberta M. (30 October 2023). "A Census of the Most Luminous Stars. I. The Upper HR Diagram for the Large Magellanic Cloud". The Astronomical Journal. 166 (5): 214. Bibcode:2023AJ....166..214M. doi:10.3847/1538-3881/ad011e. ISSN 0004-6256.
  113. ^ a b García-Hernández, D. A.; Manchando, A.; Lambert, D. L.; Plez, B.; García-Lario, P.; D'Antona, F.; Lugaro, M.; Karakas, A. I.; van Raai, M. A. (8 October 2009). "Rb-Rich Asymptotic Giant Branch Stars in the Magellanic Clouds". The Astrophysical Journal Letters. 705 (1): L31–L35. arXiv:0909.4391. Bibcode:2009ApJ...705L..31G. doi:10.1088/0004-637X/705/1/L31. hdl:1885/29244. ISSN 0004-637X. S2CID 17864885.
  114. ^ a b c d Britavskyi, N.; Lennon, D. J.; Patrick, L. R.; Evans, C. J.; Herrero, A.; Langer, N.; van Loon, J. Th.; Clark, J. S.; Schneider, F. R. N.; Almeida, L. A.; Sana, H.; de Koter, A.; Taylor, W. D. (26 February 2019). "The VLT-FLAMES Tarantula Survey. XXX. Red stragglers in the clusters Hodge 301 and SL 639". Astronomy & Astrophysics. 624: 13. arXiv:1902.09891. Bibcode:2019A&A...624A.128B. doi:10.1051/0004-6361/201834564. S2CID 244683559.
  115. ^ a b Munoz-Sanchez, G.; et al. (28 November 2024). "The dramatic transition of the extreme Red Supergiant WOH G64 to a Yellow Hypergiant". arXiv:2411.19329 [astro-ph.SR].
  116. ^ Ohnaka, K.; Driebe, T.; Hofmann, K. -H.; Weigelt, T.; Wittkowski, M. (16 April 2008). "Spatially resolved dusty torus toward the red supergiant WOH G64 in the Large Magellanic Cloud". Astronomy and Astrophysics. 484 (2): 371–379. arXiv:0803.3823. Bibcode:2008A&A...484..371O. doi:10.1051/0004-6361:200809469. ISSN 0004-6361. S2CID 10451475.
  117. ^ Ohnaka, Keiichi; Driebe, Thomas; Hofmann, Karl-Heinz; Weigelt, Gerd; Wittkowski, Markus (March 2009). "Resolving the dusty torus and the mystery surrounding LMC red supergiant WOH G64". Proceedings of the International Astronomical Union. 256: 454–458. Bibcode:2009IAUS..256..454O. doi:10.1017/S1743921308028858. ISSN 1743-9213. S2CID 120287846.
  118. ^ a b Levesque, Emily M.; Massey, Philip; Plez, Bertrand; Olsen, Knut A. G. (2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". The Astronomical Journal. 137 (6): 4744. arXiv:0903.2260. Bibcode:2009AJ....137.4744L. doi:10.1088/0004-6256/137/6/4744. S2CID 18074349.
  119. ^ Levesque, E. M. (June 2010). The Physical Properties of Red Supergiants. Hot and Cool: Bridging Gaps in Massive Star Evolution ASP Conference Series. Vol. 425. p. 103. arXiv:0911.4720. Bibcode:2010ASPC..425..103L. S2CID 8921166.
  120. ^ Steven R. Goldman; Jacco Th. van Loon (2016). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity". Monthly Notices of the Royal Astronomical Society. 465 (1): 403–433. arXiv:1610.05761. Bibcode:2017MNRAS.465..403G. doi:10.1093/mnras/stw2708. S2CID 11352637.
  121. ^ a b c d e Dorn-Wallenstein, Trevor Z.; Levesque, Emily M.; Davenport, James R. A.; Neugent, Kathryn F.; Morris, Brett M.; Bostroem, K. Azalee (1 November 2022). "The Properties of Fast Yellow Pulsating Supergiants: FYPS Point the Way to Missing Red Supergiants". The Astrophysical Journal. 940 (1): 27. arXiv:2206.11917. Bibcode:2022ApJ...940...27D. doi:10.3847/1538-4357/ac79b2. ISSN 0004-637X.
  122. ^ a b c Beasor, Emma R; Davies, Ben; Cabrera-Ziri, Ivan; Hurst, Georgia (21 September 2018). "A critical re-evaluation of the Thorne–Żytkow object candidate HV 2112". Monthly Notices of the Royal Astronomical Society. 479 (3): 3101–3105. arXiv:1806.07399. Bibcode:2018MNRAS.479.3101B. doi:10.1093/mnras/sty1744. ISSN 0035-8711.
  123. ^ Glatzel, Wolfgang; Kraus, Michaela (23 March 2024). "Instabilities in the yellow hypergiant domain". Monthly Notices of the Royal Astronomical Society. 529 (4): 4947–4957. arXiv:2403.14315. doi:10.1093/mnras/stae861. ISSN 0035-8711.
  124. ^ Lamers, H. J. G. L. M. (1 January 1995). "Observations and Interpretation of Luminous Blue Variables". IAU Colloq. 155: Astrophysical Applications of Stellar Pulsation. 83: 176. Bibcode:1995ASPC...83..176L.
  125. ^ a b Kastner, Joel H.; Buchanan, Catherine L.; Sargent, B.; Forrest, W. J. (10 February 2006). "Spitzer Spectroscopy of Dusty Disks around B[e] Hypergiants in the Large Magellanic Cloud". The Astrophysical Journal. 638 (1): L29–L32. Bibcode:2006ApJ...638L..29K. doi:10.1086/500804. ISSN 0004-637X. S2CID 121769413.
  126. ^ Brands, Sarah A.; Koter, Alex de; Bestenlehner, Joachim M.; Crowther, Paul A.; Sundqvist, Jon O.; Puls, Joachim; Caballero-Nieves, Saida M.; Abdul-Masih, Michael; Driessen, Florian A.; García, Miriam; Geen, Sam; Gräfener, Götz; Hawcroft, Calum; Kaper, Lex; Keszthelyi, Zsolt (1 July 2022). "The R136 star cluster dissected with Hubble Space Telescope/STIS – III. The most massive stars and their clumped winds". Astronomy & Astrophysics. 663: A36. arXiv:2202.11080. Bibcode:2022A&A...663A..36B. doi:10.1051/0004-6361/202142742. ISSN 0004-6361. S2CID 247025548.
  127. ^ Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W.-R. (May 2014). "The Wolf-Rayet stars in the Large Magellanic Cloud: A comprehensive analysis of the WN class⋆⋆⋆". Astronomy & Astrophysics. 565: A27. arXiv:1401.5474. Bibcode:2014A&A...565A..27H. doi:10.1051/0004-6361/201322696. ISSN 0004-6361. S2CID 55123954.
  128. ^ Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A. F. J.; Eldridge, J. J.; Pablo, H.; Oskinova, L. M.; Richardson, N. D. (July 2017). "Wolf-Rayet stars in the Small Magellanic Cloud: II. Analysis of the binaries". Astronomy & Astrophysics. 591: A22. arXiv:1604.01022. Bibcode:2016A&A...591A..22S. doi:10.1051/0004-6361/201527916. ISSN 0004-6361. S2CID 119255408.
  129. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as Drout, Maria R.; Massey, Philip; Meynet, Georges (April 2012). "THE YELLOW AND RED SUPERGIANTS OF M33*". The Astrophysical Journal. 750 (2): 97. arXiv:1203.0247. Bibcode:2012ApJ...750...97D. doi:10.1088/0004-637X/750/2/97. ISSN 0004-637X. S2CID 119160120.
  130. ^ Massey, Philip; Evans, Kate Anne (August 2016). "The Red Supergiant Content of M31*". The Astrophysical Journal. 826 (2): 224. arXiv:1605.07900. Bibcode:2016ApJ...826..224M. doi:10.3847/0004-637X/826/2/224. ISSN 0004-637X.
  131. ^ a b Massey, Philip; Silva, David R.; Levesque, Emily M.; Plez, Bertrand; Olsen, Knut A. G.; Clayton, Geoffrey C.; Meynet, Georges; Maeder, Andre (September 2009). "Red Supergiants in the Andromeda Galaxy (M31)". The Astrophysical Journal. 703 (1): 420–440. arXiv:0907.3767. Bibcode:2009ApJ...703..420M. doi:10.1088/0004-637X/703/1/420. S2CID 119293010. Retrieved 30 September 2023.
  132. ^ Kourniotis, M.; Bonanos, A. Z.; Yuan, W.; Macri, L. M.; Garcia-Alvarez, D.; Lee, C.-H. (1 May 2017). "Monitoring luminous yellow massive stars in M 33: new yellow hypergiant candidates". Astronomy & Astrophysics. 601: A76. arXiv:1612.06853. Bibcode:2017A&A...601A..76K. doi:10.1051/0004-6361/201629146. ISSN 0004-6361. S2CID 55559261.
  133. ^ Valeev, A. F.; Sholukhova, O.; Fabrika, S. (11 June 2009). "A new luminous variable in M33". Monthly Notices of the Royal Astronomical Society: Letters. 396 (1): L21–L25. arXiv:0903.5222. Bibcode:2009MNRAS.396L..21V. doi:10.1111/j.1745-3933.2009.00654.x. S2CID 14666975.
  134. ^ a b c Britavskiy, N. E.; Bonanos, A. Z.; Herrero, A.; Cerviño, M.; García-Álvarez, D.; Boyer, M. L.; Masseron, T.; Mehner, A.; McQuinn, K. B. W. (November 2019). "Physical parameters of red supergiants in dwarf irregular galaxies in the Local Group". Astronomy and Astrophysics. 631: A95. arXiv:1909.13378. Bibcode:2019A&A...631A..95B. doi:10.1051/0004-6361/201935212. ISSN 0004-6361. S2CID 203593402.
  135. ^ a b c d e Neugent, Kathryn (2022). "Locating Red Supergiants in the Galaxy NGC 6822". The Astronomical Journal. 163 (2): 70. arXiv:2112.03990. Bibcode:2022AJ....163...70D. doi:10.3847/1538-3881/ac410e.
  136. ^ González-Torà, Gemma; Davies, Ben; Kudritzki, Rolf-Peter; Plez, Bertrand (23 June 2021). "The temperatures of red supergiants in low-metallicity environments". Monthly Notices of the Royal Astronomical Society. 505 (3): 4422–4443. arXiv:2106.01807. doi:10.1093/mnras/stab1611. ISSN 0035-8711.
  137. ^ Jones, Olivia C.; Maclay, Matthew T.; Boyer, Martha L.; Meixner, Margaret; McDonald, Iain; Meskhidze, Helen (1 February 2018). "Near-infrared Stellar Populations in the Metal-poor, Dwarf Irregular Galaxies Sextans A and Leo A". The Astrophysical Journal. 854 (2): 117. arXiv:1712.06594. Bibcode:2018ApJ...854..117J. doi:10.3847/1538-4357/aaa542. ISSN 0004-637X. S2CID 119199303.
  138. ^ Abbott, Jay Brian (2004). "Quantitative spectroscopic studies of Wolf-Rayet stars in local group galaxies". Bibcode:2004PhDT.......161A. {{cite journal}}: Cite journal requires |journal= (help)
  139. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx de Wit, S.; Bonanos, A. Z.; Antoniadis, K.; Zapartas, E.; Ruiz, A.; Britavskiy, N.; Christodoulou, E.; De, K.; Maravelias, G. (19 February 2024), "Investigating episodic mass loss in evolved massive stars", Astronomy & Astrophysics, 689: A46, arXiv:2402.12442, doi:10.1051/0004-6361/202449607
  140. ^ "[TSK2008] 236". SIMBAD. Centre de données astronomiques de Strasbourg.
  141. ^ a b c Humphreys, Roberta M.; Stangl, Sarah; Gordon, Michael S.; Davidson, Kris; Grammer, Skyler H. (January 2019). "Luminous and Variable Stars in NGC 2403 and M81". The Astronomical Journal. 157 (1): 22. arXiv:1811.06559. Bibcode:2019AJ....157...22H. doi:10.3847/1538-3881/aaf1ac. ISSN 0004-6256. S2CID 119379139.
  142. ^ a b Bond, Howard E.; Jencson, Jacob E.; Whitelock, Patricia A.; Adams, Scott M.; Bally, John; Cody, Ann Marie; Gehrz, Robert D.; Kasliwal, Mansi M.; Masci, Frank J. (April 2022). "Hubble Space Telescope Imaging of Luminous Extragalactic Infrared Transients and Variables from the Spitzer Infrared Intensive Transients Survey*". The Astrophysical Journal. 928 (2): 158. arXiv:2202.11040. Bibcode:2022ApJ...928..158B. doi:10.3847/1538-4357/ac5832. ISSN 0004-637X.
  143. ^ Zachary, Gazak J.; Kudritzki, Rolf; Evans, Chris; Patrick, Lee; Davies, Ben; Bergemann, Maria; Plez, Bertand; Bresolin, Fabio; Bender, Ralf; Wegner, Michael; Bonanos, Alceste Z.; Williams, Stephen J. (2 June 2015). "Red Supergiants as Cosmic Abundance Probes: The Sculptor Galaxy NGC 300". The Astrophysical Journal. 805 (2): 9. arXiv:1505.00871. Bibcode:2015ApJ...805..182G. doi:10.1088/0004-637X/805/2/182. ISSN 0004-637X. S2CID 14681047.
  144. ^ Petit, V.; Drissen, L.; Crowther, P. A. (2005). "Quantitative analysis of STIS spectra of NGC 2363-V1". The Fate of the Most Massive Stars. 332: 159. Bibcode:2005ASPC..332..157P.
  145. ^ "[HMR2016] N4038 13068". SIMBAD. Centre de données astronomiques de Strasbourg.
  146. ^ "[HMR2016] N4038 46842". SIMBAD. Centre de données astronomiques de Strasbourg.
  147. ^ Ilie, Cosmin; Paulin, Jillian; Freese, Katherine (25 July 2023). "Supermassive Dark Star candidates seen by JWST". Proceedings of the National Academy of Sciences. 120 (30): e2305762120. arXiv:2304.01173. Bibcode:2023PNAS..12005762I. doi:10.1073/pnas.2305762120. ISSN 0027-8424. PMC 10372643. PMID 37433001.
  148. ^ Ball, Warrick H.; Tout, Christopher A.; Żytkow, Anna N.; Eldridge, John J. (1 July 2011). "The structure and evolution of quasi-stars: The structure and evolution of quasi-stars". Monthly Notices of the Royal Astronomical Society. 414 (3): 2751–2762. arXiv:1102.5098. doi:10.1111/j.1365-2966.2011.18591.x. S2CID 119239346.
  149. ^ Diego, J. M.; et al. (2023). "JWST's PEARLS: A new lens model for ACT-CL J0102−4915, "El Gordo," and the first red supergiant star at cosmological distances discovered by JWST". Astronomy & Astrophysics. 672: A3. arXiv:2210.06514. Bibcode:2023A&A...672A...3D. doi:10.1051/0004-6361/202245238. S2CID 252873244.
  150. ^ a b Diego, J. M.; Pascale, M.; Kavanagh, B. J.; Kelly, P.; Dai, L.; Frye, B.; Broadhurst, T. (September 2022). "Godzilla, a monster lurks in the Sunburst galaxy". Astronomy & Astrophysics. 665: A134. arXiv:2203.08158. Bibcode:2022A&A...665A.134D. doi:10.1051/0004-6361/202243605. ISSN 0004-6361. S2CID 247476158.
  151. ^ "Scientists face down 'Godzilla', the most luminous star known". Nature. 610 (7930): 10. 6 October 2022. Bibcode:2022Natur.610T..10.. doi:10.1038/d41586-022-03054-3. ISSN 0028-0836.
  152. ^ Diego, J. M.; Sun, Bangzheng; Yan, Haojing; Furtak, Lukas J.; Zackrisson, Erik; Dai, Liang; Kelly, Patrick; Nonino, Mario; Adams, Nathan; Meena, Ashish K.; Willner, S. P.; Zitrin, Adi; Cohen, Seth H.; D'Silva, Jordan C. J.; Jansen, Rolf A. (19 September 2023). "JWST's PEARLS: Mothra, a new kaiju star at z=2.091 extremely magnified by MACS0416, and implications for dark matter models". Astronomy & Astrophysics. 679: A31. arXiv:2307.10363. Bibcode:2023A&A...679A..31D. doi:10.1051/0004-6361/202347556. ISSN 0004-6361. S2CID 259991552.
  153. ^ Pastorello, A.; Chen, T.-W.; Cai, Y.-Z.; Morales-Garoffolo, A.; Cano, Z.; Mason, E.; Barsukova, E. A.; Benetti, S.; Berton, M.; Bose, S.; Bufano, F.; Callis, E.; Cannizzaro, G.; Cartier, R.; Chen, Ping (May 2019). "The evolution of luminous red nova AT 2017jfs in NGC 4470". Astronomy & Astrophysics. 625: L8. arXiv:1906.00811. Bibcode:2019A&A...625L...8P. doi:10.1051/0004-6361/201935511. ISSN 0004-6361. S2CID 155703569.
  154. ^ Elias-Rosa, N.; Benetti, S.; Cappellaro, E.; Pastorello, A.; Terreran, G.; Morales-Garoffolo, A; Howerton, S. C.; Valenti, S.; Kankare, E.; Drake, A. J.; Djorgovski, S. G.; Tomasella, L.; Tartaglia, L.; Kangas, T.; Ochner, P.; Filippenko, A. V.; Ciabattari, F.; Geier, S.; Howell, D. A.; Isern, J.; Leonini, S.; Pignata, J.; Turatto, M. (9 January 2018). "SNhunt151: an explosive event inside a dense cocoon". Monthly Notices of the Royal Astronomical Society. 475 (2): 2614–2631. arXiv:1801.03040. Bibcode:2018MNRAS.475.2614E. doi:10.1093/mnras/sty009. ISSN 0035-8711. S2CID 119519504.
  155. ^ Elias-Rosa, N.; et al. (7 September 2016). "Dead or Alive? Long-term evolution of SN 2015bh (SNhunt275)". Monthly Notices of the Royal Astronomical Society. 463 (4): 3894–3920. arXiv:1606.09024. Bibcode:2016MNRAS.463.3894E. doi:10.1093/mnras/stw2253. ISSN 0035-8711. S2CID 119205955.
  156. ^ Cai, Y. -Z.; et al. (3 December 2019). "The transitional gap transient AT 2018hso: new insights into the luminous red nova phenomenon". Astronomy & Astrophysics. 631: 9. arXiv:1909.13147. Bibcode:2019A&A...632L...6C. doi:10.1051/0004-6361/201936749. ISSN 0004-6361. S2CID 203593575.
  157. ^ Charalampopoulos, P.; et al. (22 January 2024). "The fast transient AT 2023clx in the nearby LINER galaxy NGC 3799 as a tidal disruption of a very low-mass star". Astronomy & Astrophysics. 689: A350. arXiv:2401.11773v2. Bibcode:2024A&A...689A.350C. doi:10.1051/0004-6361/202449296.
  158. ^ Jencson, Jacob E.; Adams, Scott M.; Bond, Howard E.; van Dyk, Schuyler D.; Kasliwal, Mansi M.; Bally, John; Blagorodnova, Nadejda; De, Kishalay; Fremling, Christoffer; Yao, Yuhan; Fruchter, Andrew; Rubin, David; Barbarino, Cristina; Sollerman, Jesper; Miller, Adam A. (26 July 2019). "Discovery of an Intermediate-luminosity Red Transient in M51 and Its Likely Dust-obscured, Infrared-variable Progenitor". The Astrophysical Journal. 880 (2): L20. arXiv:1904.07857. Bibcode:2019ApJ...880L..20J. doi:10.3847/2041-8213/ab2c05. ISSN 2041-8213.
  159. ^ Smith, Nathan; Frew, David J. (2011). "A revised historical light curve of Eta Carinae and the timing of close periastron encounters". Monthly Notices of the Royal Astronomical Society. 415 (3): 2009–2019. arXiv:1010.3719. Bibcode:2011MNRAS.415.2009S. doi:10.1111/j.1365-2966.2011.18993.x. S2CID 118614725.
  160. ^ a b Cai Y. -Z.; et al. (27 October 2021). "Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions". Astronomy & Astrophysics. 654: 30. arXiv:2108.05087. Bibcode:2021A&A...654A.157C. doi:10.1051/0004-6361/202141078. ISSN 0004-6361. S2CID 236976052.
  161. ^ Pessi, Thallis; Prieto, Jose L.; Monard, Berto; Kochanek, Christopher S.; Bock, Greg; Drake, Andrew J.; Fox, Ori D.; Parker, Stuart; Stevance, Heloise F. (4 April 2022). "Unveiling the Nature of SN 2011fh: A Young and Massive Star Gives Rise to a Luminous SN 2009ip-like Event". The Astrophysical Journal. 928 (2): 21. arXiv:2110.09546. Bibcode:2022ApJ...928..138P. doi:10.3847/1538-4357/ac562d. ISSN 1538-4357. S2CID 239024685.
  162. ^ a b Soker, Noam; Kaplan, Noa (May 2021). "Explaining recently studied intermediate luminosity optical transients (ILOTs) with jet powering". Research in Astronomy and Astrophysics. 21 (4): 9. arXiv:2007.06472. Bibcode:2021RAA....21...90S. doi:10.1088/1674-4527/21/4/90. ISSN 1674-4527. S2CID 220496730.
  163. ^ Stritzinger, M. D; et al. (22 July 2020). "The Carnegie Supernova Project II. Observations of the intermediate-luminosity red transient SNhunt120". Astronomy & Astrophysics. 639: 17. arXiv:2005.00319. Bibcode:2020A&A...639A.103S. doi:10.1051/0004-6361/202038018. ISSN 0004-6361. S2CID 249866047.
  164. ^ Cai, Y. -Z; Pastorello, A.; Fraser, M.; Botticella, M. T.; Gall, C.; Arcavi, I.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Harmanen, J.; Hosseinzadeh, G.; Howell, D. A.; Isern, J.; Kangas, T.; Kankare, E.; Kuncarayakti, H.; Lundqvist, P.; Mattila, S.; McCully, C.; Reynolds, T. M.; Somero, A.; Stritzinger, M. D.; Terreran, G. (1 August 2018). "AT 2017be – a new member of the class of intermediate-luminosity red transients". Monthly Notices of the Royal Astronomical Society. 480 (3): 3424–3445. arXiv:1807.11676. Bibcode:2018MNRAS.480.3424C. doi:10.1093/mnras/sty2070. ISSN 0035-8711. S2CID 118946285.
  165. ^ Allan, Andrew P; Groh, Jose H; Mehner, Andrea; Smith, Nathan; Boian, Ioana; Farrell, Eoin J; Andrews, Jennifer E (1 August 2020). "The possible disappearance of a massive star in the low-metallicity galaxy PHL 293B". Monthly Notices of the Royal Astronomical Society. 496 (2): 1902–1908. arXiv:2003.02242. doi:10.1093/mnras/staa1629. ISSN 0035-8711.
  166. ^ Kankare, E.; Kotak, R.; Pastorello, A.; Fraser, M; Mattila, S.; Smartt, S. J.; Bruce, A.; Chambers, K. C.; Elias-Rosa, N.; Flewelling, H.; Fremling, C.; Harmanen, J.; Huber, M.; Jerkstand, A.; Kangas, T.; Kuncarayakti, H.; Magee, M.; Magnier, E.; Polshaw, J.; Smith, K. W.; Sollerman, J.; Tomasella, L. (7 September 2015). "On the triple peaks of SNHunt248 in NGC 5806". Astronomy & Astrophysics. 581: 7. arXiv:1508.04730. Bibcode:2015A&A...581L...4K. doi:10.1051/0004-6361/201526631. ISSN 0004-6361. S2CID 85321.
  167. ^ Mehner, A.; Baade, D.; Rivinius, T.; Lennon, D. J.; Martayan, C.; Stahl, O.; Štefl, S. (July 2013). "Broad-band spectroscopy of the ongoing large eruption of the luminous blue variable R71". Astronomy & Astrophysics. 555: A116. arXiv:1303.1367. Bibcode:2013A&A...555A.116M. doi:10.1051/0004-6361/201321323. ISSN 0004-6361. S2CID 67775752.
  168. ^ Aghakhanloo, Mojgan; Smith, Nathan; Milne, Peter; Andrews, Jennifer E.; Filippenko, Alexei V.; Jencson, Jacob E.; Sand, David J.; Van Dyk, Schuyler D.; Wyatt, Samuel; Zheng, WeiKang (28 February 2023). "Repeating periodic eruptions of the supernova impostor SN 2000ch". Monthly Notices of the Royal Astronomical Society. 521 (2): 1941–1957. arXiv:2212.00113. Bibcode:2023MNRAS.521.1941A. doi:10.1093/mnras/stad630. ISSN 0035-8711. S2CID 254125316.
  169. ^ a b Aghakhanloo, Mojgan; Smith, Nathan; Milne, Peter; Andrews, Jennifer E.; Van Dyck, Schuyler D.; Filippenko, Alexei V.; Jencson, Jacob E.; Lau, Ryan N.; Sand, David J.; Wyatt, Samuel; Zhang, WeiKang (7 September 2023). "Recurring outbursts of the supernova impostor AT 2016blu in NGC 4559". Monthly Notices of the Royal Astronomical Society. 526 (1): 456–472. arXiv:2212.09708. Bibcode:2023MNRAS.526..456A. doi:10.1093/mnras/stad2702. ISSN 0035-8711. S2CID 254854145.
  170. ^ Salmaso, I.; Cappellaro, E.; Tartaglia, L.; Benetti, S.; Botticella, M. T.; Elias-Rosa, M.; Pastorello, A.; Patat, F.; Reguitti, A.; Tomasella, L.; Valerin, G.; Yang, S. (May 2023). "Hidden shock powering the peak of SN 2020faa". Astronomy & Astrophysics. 673: 14. arXiv:2302.12527. Bibcode:2023A&A...673A.127S. doi:10.1051/0004-6361/202245781. ISSN 0004-6361. S2CID 257205910.
  171. ^ "Papers with Code - The Dusty and Extremely Red Progenitor of the Type II Supernova 2023ixf in Messier 101". astro.paperswithcode.com. Retrieved 25 November 2023.
  172. ^ Qin, Y.; Zhang, Keming; Bloom, J.; Sollerman, J.; Zimmerman, E.; Irani, I.; Schulze, S.; Gal-yam, A.; Kasliwal, M.; Coughlin, M.; Perley, D.; Fremling, C.; Kulkarni, S. (2024). "The Progenitor Star of SN 2023ixf: A Massive Red Supergiant with Enhanced, Episodic Pre-Supernova Mass Loss". Monthly Notices of the Royal Astronomical Society. 534: 271–280. arXiv:2309.10022. doi:10.1093/mnras/stae2012. S2CID 262054068.
  173. ^ Kilpatrick, Charles D.; et al. (29 June 2023). "EType II-P supernova progenitor star initial masses and SN 2020jfo: direct detection, light-curve properties, nebular spectroscopy, and local environment". Monthly Notices of the Royal Astronomical Society. 524 (2): 2161–2185. arXiv:2307.00550. Bibcode:2023MNRAS.524.2161K. doi:10.1093/mnras/stad1954. ISSN 0035-8711. S2CID 259306203.
  174. ^ Shrestha, Manisha; et al. (2024). "Evidence of weak circumstellar medium interaction in the Type II SN 2023axu". The Astrophysical Journal. 961 (2): 247. arXiv:2310.00162. Bibcode:2024ApJ...961..247S. doi:10.3847/1538-4357/ad11e1.
  175. ^ Yan, Shengyu; Wang, Xiaofeng; Gao, Xing; Zhang, Jujia; Brink, Thomas G.; Mo, Jun; Lin, Weili; Xiang, Danfeng; Ma, Xiaoran; Guo, Fangzhou; Tomasella, Lina; Benetti, Stefano; Cai, Yongzhi; Cappellaro, Enrico; Chen, Zhihao; Li, Zhitong; Pastorello, Andrea; Zhang, Tiangmeng (7 October 2023). "Discovery of the Closest Ultrastripped Supernova: SN 2021agco in UGC 3855". The Astrophysical Journal. 959 (2): L32. arXiv:2310.04827. Bibcode:2023ApJ...959L..32Y. doi:10.3847/2041-8213/ad0cc3.
  176. ^ SIMBAD.
  177. ^ Ohnaka, K.; Hofmann, K. -H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (1 July 2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy and Astrophysics. 555: A24. arXiv:1304.4800. Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063. ISSN 0004-6361.
  178. ^ a b c d e f g h van Leeuwen, F. (1 November 2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. ISSN 0004-6361.
  179. ^ Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K. -H.; Ohnaka, K.; Richichi, A.; Schertl, D.; Schöller, M.; Scholz, M.; Weigelt, G.; Wittkowski, M.; Wood, P. R. (1 July 2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy and Astrophysics. 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode:2004A&A...421..703W. doi:10.1051/0004-6361:20035826. ISSN 0004-6361.
  180. ^ a b Ramírez, I.; Allende Prieto, C. (1 December 2011). "Fundamental Parameters and Chemical Composition of Arcturus". The Astrophysical Journal. 743 (2): 135. arXiv:1109.4425. Bibcode:2011ApJ...743..135R. doi:10.1088/0004-637X/743/2/135. ISSN 0004-637X.
  181. ^ a b Wallstrom, S. H. J.; Danilovich, T.; Muller, H. S. P.; Gottlieb, C. A.; Maes, S.; Van de Sande, M.; Decin, L.; Richards, A. M. S.; Baudry, A.; Bolte, J.; Ceulemans, T.; De Ceuster, F.; de Koter, A.; Mellah, I. El; Esseldeurs, M. (6 December 2023). "ATOMIUM: Molecular inventory of 17 oxygen-rich evolved stars observed with ALMA". Astronomy & Astrophysics. 681: A50. arXiv:2312.03467. doi:10.1051/0004-6361/202347632. ISSN 0004-6361.
  182. ^ Soubiran, C.; Creevey, O. L.; Lagarde, N.; Brouillet, N.; Jofré, P.; Casamiquela, L.; Heiter, U.; Aguilera-Gómez, C.; Vitali, S.; Worley, C.; de Brito Silva, D. (1 February 2024). "Gaia FGK benchmark stars: Fundamental Teff and log g of the third version". Astronomy and Astrophysics. 682: A145. arXiv:2310.11302. Bibcode:2024A&A...682A.145S. doi:10.1051/0004-6361/202347136. ISSN 0004-6361. Note: See VizieR catalogue
  183. ^ a b c d e f g Mozurkewich, D.; Armstrong, J. T.; Hindsley, R. B.; Quirrenbach, A.; Hummel, C. A.; Hutter, D. J.; Johnston, K. J.; Hajian, A. R.; Elias II, Nicholas M.; Buscher, D. F.; Simon, R. S. (November 2003). "Angular Diameters of Stars from the Mark III Optical Interferometer". The Astronomical Journal. 126 (5): 2502–2520. Bibcode:2003AJ....126.2502M. doi:10.1086/378596. ISSN 0004-6256.
  184. ^ Gatewood, George (1 July 2008). "Astrometric Studies of Aldebaran, Arcturus, Vega, the Hyades, and Other Regions". The Astronomical Journal. 136 (1): 452–460. Bibcode:2008AJ....136..452G. doi:10.1088/0004-6256/136/1/452. ISSN 0004-6256.
  185. ^ a b c d e f Bailer-Jones, C. A. L.; Rybizki, J.; Fouesneau, M.; Demleitner, M.; Andrae, R. (2021). "Estimating Distances from Parallaxes. V. Geometric and Photogeometric Distances to 1.47 Billion Stars in Gaia Early Data Release 3". The Astronomical Journal. 161 (3): 147. arXiv:2012.05220. Bibcode:2021AJ....161..147B. doi:10.3847/1538-3881/abd806. S2CID 228063812. Data about this star can be seen here.
  186. ^ Arroyo-Torres, B.; et al. (June 2014). "VLTI/AMBER observations of cold giant stars: atmospheric structures and fundamental parameters". Astronomy & Astrophysics. 566: 11. arXiv:1404.7384. Bibcode:2014A&A...566A..88A. doi:10.1051/0004-6361/201323264. S2CID 16778588. A88.
  187. ^ a b c d e f g Richichi, A.; Percheron, I.; Khristoforova, M. (1 February 2005). "CHARM2: An updated Catalog of High Angular Resolution Measurements". Astronomy and Astrophysics. 431 (2): 773–777. Bibcode:2005A&A...431..773R. doi:10.1051/0004-6361:20042039. ISSN 0004-6361.
  188. ^ Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  189. ^ Min, Cheulhong; Matsumoto, Naoko; Kim, Mi Kyoung; Hirota, Tomoya; Shibata, Katsunori M.; Cho, Se-Hyung; Shizugami, Makoto; Honma, Mareki (1 April 2014). "Accurate Parallax Measurement toward the Symbiotic Star R Aquarii". Publications of the Astronomical Society of Japan. 66 (2): 38. arXiv:1401.5574. doi:10.1093/pasj/psu003. ISSN 2053-051X.
  190. ^ Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  191. ^ Perrin, G.; Ridgway, S. T.; Verhoelst, T.; Schuller, P. A.; Traub, W. A.; Millan-Gabet, R.; Lacasse, M. G. (1 June 2005). "Study of molecular layers in the atmosphere of the supergiant star μ Cep by interferometry in the K band". Astronomy & Astrophysics. 436 (1): 317–324. arXiv:astro-ph/0502415. Bibcode:2005A&A...436..317P. doi:10.1051/0004-6361:20042313. ISSN 0004-6361.
  192. ^ Davies, Ben; Beasor, Emma R. (2020). "The 'red supergiant problem': The upper luminosity boundary of Type II supernova progenitors". Monthly Notices of the Royal Astronomical Society. 493: 468–476. arXiv:2001.06020. doi:10.1093/mnras/staa174. Retrieved 3 October 2024.
  193. ^ "HD 6860 Overview". NASA Exoplanet Archive. Retrieved 7 June 2024.
  194. ^ Wittkowski, M.; et al. (December 2006), "Tests of stellar model atmospheres by optical interferometry. IV. VINCI interferometry and UVES spectroscopy of Menkar", Astronomy and Astrophysics, 460 (3): 855–864, arXiv:astro-ph/0610150, Bibcode:2006A&A...460..855W, doi:10.1051/0004-6361:20066032, S2CID 16525827