Neuroenhancement: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m rythm > rhythm
updated with 1 item from 2021 in science and 1 item from 2022 in science and more (lead&air pollution), expanded (sleep, toys, Internet, glucose metabolism, +9 see alsos, +2 cats), ce
Line 1: Line 1:
'''Neuroenhancement''' or '''cognitive enhancement''' refers to the [[human enhancement|targeted enhancement and extension]] of [[cognition|cognitive]] and [[Affect (psychology)|affective]] abilities based on an understanding of their underlying [[neurobiology]] in [[health]]y persons who do not have any [[Mental disorder|mental illness]] and outcomes in experimental research.<ref name=Modafini/><ref name="A" /><ref name="B" /><ref name=C /><ref name=D /><ref name="E" /> As such, it can be thought of as an umbrella term that encompasses [[pharmacological]] and non-pharmacological methods of improving neurological functionality, especially interventions designed to [[Improvement|improve]] human form or functioning beyond what is necessary to sustain or restore good health, as well as the overarching ethico-legal discourse that accompanies these aims and practices.<ref name="Veit 2018 Cognitive">{{cite journal |last1=Veit |first1=Walter |date=2018 |title=Cognitive Enhancement and the Threat of Inequality |pages=404–410 |journal=Journal of Cognitive Enhancement |volume=2 |issue = 4|doi=10.1007/s41465-018-0108-x |s2cid=158643005 |doi-access=free }}</ref><ref name="10.1055/s-0035-1559640"/>
'''Neuroenhancement''' or '''cognitive enhancement''' refers to the [[human enhancement|targeted enhancement and extension]] of [[cognition|cognitive]] and [[Affect (psychology)|affective]] abilities based on an understanding of their underlying [[neurobiology]] in [[health]]y persons who do not have any [[Mental disorder|mental illness]] and outcomes in experimental research.<ref name=Modafini/><ref name="A" /><ref name="B" /><ref name=C /><ref name=D /><ref name="E" /> As such, it can be thought of as an umbrella term that encompasses [[pharmacological]] and non-pharmacological methods of improving neurological functionality, especially interventions designed to [[Improvement|improve]] human form or functioning beyond what is necessary to sustain or restore good health, as well as the overarching ethico-legal discourse that accompanies these aims and practices.<ref name="Veit 2018 Cognitive">{{cite journal |last1=Veit |first1=Walter |date=2018 |title=Cognitive Enhancement and the Threat of Inequality |pages=404–410 |journal=Journal of Cognitive Enhancement |volume=2 |issue = 4|doi=10.1007/s41465-018-0108-x |s2cid=158643005 |doi-access=free }}</ref><ref name="10.1055/s-0035-1559640"/>


Neuroenhancers reliably engender substantial cognitive, social, psychological, [[Mood (psychology)|mood]], or motor benefits beyond normal functioning in healthy individuals,<ref name="10.1055/s-0035-1559640"/> whilst causing few side effects, albeit broader definitions also include the use of psychoactive substances that are deemed unhealthy or to have substantial side effects. Pharmacological neuroenhancement agents include well-validated [[nootropic]]s, such as [[modafinil]],{{refn|name=modafinil|<ref name=Modafini/><ref name=C /><ref name=D /><ref name="I" /><ref>{{cite journal |last1=Mereu |first1=Maddalena |last2=Bonci |first2=Antonello |last3=Newman |first3=Amy Hauck |last4=Tanda |first4=Gianluigi |title=The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders |journal=Psychopharmacology |date=1 October 2013 |volume=229 |issue=3 |pages=415–434 |doi=10.1007/s00213-013-3232-4 |pmid=23934211 |pmc=3800148 |language=en |issn=1432-2072}}</ref><ref name="10.3390/brainsci9080178">{{cite journal |last1=Al-Shargie |first1=Fares |last2=Tariq |first2=Usman |last3=Mir |first3=Hasan |last4=Alawar |first4=Hamad |last5=Babiloni |first5=Fabio |last6=Al-Nashash |first6=Hasan |title=Vigilance Decrement and Enhancement Techniques: A Review |journal=Brain Sciences |date=August 2019 |volume=9 |issue=8 |pages=178 |doi=10.3390/brainsci9080178 |pmid=31357524 |pmc=6721323 |language=en |issn=2076-3425|doi-access=free }}</ref>}} [[citicoline]],<ref>{{Cite web|last=Tardner|first=P.|date=2020-08-30|title=The use of citicoline for the treatment of cognitive decline and cognitive impairment: A meta-analysis of pharmacological literature • International Journal of Environmental Science & Technology|url=https://www.ijest.org/citicoline-cognitive-decline-ptardner-0820/|access-date=2020-08-31|website=International Journal of Environmental Science & Technology|language=en-US}}</ref> [[Bacopa monnieri]],<ref>{{cite journal |last1=Kongkeaw |first1=Chuenjid |last2=Dilokthornsakul |first2=Piyameth |last3=Thanarangsarit |first3=Phurit |last4=Limpeanchob |first4=Nanteetip |last5=Norman Scholfield |first5=C. |title=Meta-analysis of randomized controlled trials on cognitive effects of Bacopa monnieri extract |journal=Journal of Ethnopharmacology |date=10 January 2014 |volume=151 |issue=1 |pages=528–535 |doi=10.1016/j.jep.2013.11.008 |pmid=24252493 |language=en |issn=0378-8741}}</ref><ref>{{cite journal |last1=Aguiar |first1=Sebastian |last2=Borowski |first2=Thomas |title=Neuropharmacological Review of the Nootropic Herb Bacopa monnieri |journal=Rejuvenation Research |date=1 August 2013 |volume=16 |issue=4 |pages=313–326 |doi=10.1089/rej.2013.1431 |pmid=23772955 |pmc=3746283 |issn=1549-1684}}</ref> [[phosphatidylserine]],<ref name="E" /> and [[caffeine]]{{refn|name=caffeine|<ref name="10.1007/s00103-010-1105-0"/><ref name="10.1055/s-0035-1559640"/><ref name="10.3390/brainsci9080178"/><ref name="10.52586/4948"/><ref name="10.1007/s40664-019-0340-y">{{cite journal |last1=Losch |first1=D. |last2=Schulze |first2=J. |title=Neuroenhancement |journal=Zentralblatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie |date=1 November 2019 |volume=69 |issue=6 |pages=368–371 |doi=10.1007/s40664-019-0340-y |s2cid=240645044 |language=de |issn=2198-0713}}</ref><ref name="10.1007/s00391-017-1351-y">{{cite journal |last1=Iglseder |first1=Bernhard |title=Doping für das Gehirn |journal=Zeitschrift für Gerontologie und Geriatrie |date=1 February 2018 |volume=51 |issue=2 |pages=143–148 |doi=10.1007/s00391-017-1351-y |pmid=29209802 |language=de |issn=1435-1269}}</ref><ref name="10.3389/fpsyg.2015.01852">{{cite journal |last1=Caviola |first1=Lucius |last2=Faber |first2=Nadira S. |title=Pills or Push-Ups? Effectiveness and Public Perception of Pharmacological and Non-Pharmacological Cognitive Enhancement |journal=Frontiers in Psychology |date=2015 |volume=6 |page=1852 |doi=10.3389/fpsyg.2015.01852 |pmid=26696922 |pmc=4667098 |issn=1664-1078|doi-access=free }}</ref><ref name="10.1155/2021/8823383"/><ref name="10.1097/YIC.0000000000000172"/>}} as well as other drugs used for treating patients with [[neurological disorder]]s.
Neuroenhancers reliably engender substantial cognitive, social, psychological, [[Mood (psychology)|mood]], or motor benefits beyond normal functioning in healthy individuals,<ref name="10.1055/s-0035-1559640"/> whilst causing few side effects, albeit broader definitions also include the use of psychoactive substances that are deemed unhealthy or to have substantial side effects. Pharmacological neuroenhancement agents include well-validated [[nootropic]]s, such as [[modafinil]],{{refn|name=modafinil|<ref name=Modafini/><ref name=C /><ref name=D /><ref name="I" /><ref>{{cite journal |last1=Mereu |first1=Maddalena |last2=Bonci |first2=Antonello |last3=Newman |first3=Amy Hauck |last4=Tanda |first4=Gianluigi |title=The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders |journal=Psychopharmacology |date=1 October 2013 |volume=229 |issue=3 |pages=415–434 |doi=10.1007/s00213-013-3232-4 |pmid=23934211 |pmc=3800148 |language=en |issn=1432-2072}}</ref><ref name="10.3390/brainsci9080178">{{cite journal |last1=Al-Shargie |first1=Fares |last2=Tariq |first2=Usman |last3=Mir |first3=Hasan |last4=Alawar |first4=Hamad |last5=Babiloni |first5=Fabio |last6=Al-Nashash |first6=Hasan |title=Vigilance Decrement and Enhancement Techniques: A Review |journal=Brain Sciences |date=August 2019 |volume=9 |issue=8 |pages=178 |doi=10.3390/brainsci9080178 |pmid=31357524 |pmc=6721323 |language=en |issn=2076-3425|doi-access=free }}</ref>}} [[citicoline]],<ref>{{Cite web|last=Tardner|first=P.|date=2020-08-30|title=The use of citicoline for the treatment of cognitive decline and cognitive impairment: A meta-analysis of pharmacological literature • International Journal of Environmental Science & Technology|url=https://www.ijest.org/citicoline-cognitive-decline-ptardner-0820/|access-date=2020-08-31|website=International Journal of Environmental Science & Technology|language=en-US}}</ref> [[Bacopa monnieri]],<ref>{{cite journal |last1=Kongkeaw |first1=Chuenjid |last2=Dilokthornsakul |first2=Piyameth |last3=Thanarangsarit |first3=Phurit |last4=Limpeanchob |first4=Nanteetip |last5=Norman Scholfield |first5=C. |title=Meta-analysis of randomized controlled trials on cognitive effects of Bacopa monnieri extract |journal=Journal of Ethnopharmacology |date=10 January 2014 |volume=151 |issue=1 |pages=528–535 |doi=10.1016/j.jep.2013.11.008 |pmid=24252493 |language=en |issn=0378-8741}}</ref><ref>{{cite journal |last1=Aguiar |first1=Sebastian |last2=Borowski |first2=Thomas |title=Neuropharmacological Review of the Nootropic Herb Bacopa monnieri |journal=Rejuvenation Research |date=1 August 2013 |volume=16 |issue=4 |pages=313–326 |doi=10.1089/rej.2013.1431 |pmid=23772955 |pmc=3746283 |issn=1549-1684}}</ref><ref>{{cite journal |last1=Kean |first1=James D. |last2=Downey |first2=Luke A. |last3=Stough |first3=Con |title=Systematic Overview of Bacopa monnieri (L.) Wettst. Dominant Poly-Herbal Formulas in Children and Adolescents |journal=Medicines |date=December 2017 |volume=4 |issue=4 |pages=86 |doi=10.3390/medicines4040086 |language=en |issn=2305-6320}}</ref> [[phosphatidylserine]],<ref name="E" /> and [[caffeine]]{{refn|name=caffeine|<ref name="10.1007/s00103-010-1105-0"/><ref name="10.1055/s-0035-1559640"/><ref name="10.3390/brainsci9080178"/><ref name="10.52586/4948"/><ref name="10.1007/s40664-019-0340-y">{{cite journal |last1=Losch |first1=D. |last2=Schulze |first2=J. |title=Neuroenhancement |journal=Zentralblatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie |date=1 November 2019 |volume=69 |issue=6 |pages=368–371 |doi=10.1007/s40664-019-0340-y |s2cid=240645044 |language=de |issn=2198-0713}}</ref><ref name="10.1007/s00391-017-1351-y">{{cite journal |last1=Iglseder |first1=Bernhard |title=Doping für das Gehirn |journal=Zeitschrift für Gerontologie und Geriatrie |date=1 February 2018 |volume=51 |issue=2 |pages=143–148 |doi=10.1007/s00391-017-1351-y |pmid=29209802 |language=de |issn=1435-1269}}</ref><ref name="10.3389/fpsyg.2015.01852">{{cite journal |last1=Caviola |first1=Lucius |last2=Faber |first2=Nadira S. |title=Pills or Push-Ups? Effectiveness and Public Perception of Pharmacological and Non-Pharmacological Cognitive Enhancement |journal=Frontiers in Psychology |date=2015 |volume=6 |page=1852 |doi=10.3389/fpsyg.2015.01852 |pmid=26696922 |pmc=4667098 |issn=1664-1078|doi-access=free }}</ref><ref name="10.1155/2021/8823383"/><ref name="10.1097/YIC.0000000000000172"/>}} as well as other drugs used for treating patients with [[neurological disorder]]s.


Non-pharmacological measures of cognitive enhancement include behavioral methods (activities, techniques, and changes),<ref name="10.3389/fnsys.2022.1000495">{{cite journal |last1=Jangwan |first1=Nitish Singh |last2=Ashraf |first2=Ghulam Md |last3=Ram |first3=Veerma |last4=Singh |first4=Vinod |last5=Alghamdi |first5=Badrah S. |last6=Abuzenadah |first6=Adel Mohammad |last7=Singh |first7=Mamta F. |title=Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects |journal=Frontiers in Systems Neuroscience |date=2022 |volume=16 |doi=10.3389/fnsys.2022.1000495}}</ref> [[Neurostimulation|non-invasive brain stimulation]], which has been employed to improve various cognitive and affective functions, and [[Brain–computer interface|brain-machine interfaces]], which hold much potential to extend the repertoire of motor and cognitive capacities.<ref>{{Cite journal|title = Brain–machine interface|journal = Proceedings of the National Academy of Sciences|date = 2013-11-12|issn = 0027-8424|pmc = 3831969|pmid = 24222678|pages = 18343|volume = 110|issue = 46|doi = 10.1073/pnas.1319310110|first = Prashant|last = Nair|bibcode = 2013PNAS..11018343N|doi-access = free}}</ref>
Non-pharmacological measures of cognitive enhancement include behavioral methods (activities, techniques, and changes),<ref name="10.3389/fnsys.2022.1000495">{{cite journal |last1=Jangwan |first1=Nitish Singh |last2=Ashraf |first2=Ghulam Md |last3=Ram |first3=Veerma |last4=Singh |first4=Vinod |last5=Alghamdi |first5=Badrah S. |last6=Abuzenadah |first6=Adel Mohammad |last7=Singh |first7=Mamta F. |title=Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects |journal=Frontiers in Systems Neuroscience |date=2022 |volume=16 |doi=10.3389/fnsys.2022.1000495}}</ref> [[Neurostimulation|non-invasive brain stimulation]], which has been employed to improve various cognitive and affective functions, and [[Brain–computer interface|brain-machine interfaces]], which hold much potential to extend the repertoire of motor and cognitive capacities.<ref>{{Cite journal|title = Brain–machine interface|journal = Proceedings of the National Academy of Sciences|date = 2013-11-12|issn = 0027-8424|pmc = 3831969|pmid = 24222678|pages = 18343|volume = 110|issue = 46|doi = 10.1073/pnas.1319310110|first = Prashant|last = Nair|bibcode = 2013PNAS..11018343N|doi-access = free}}</ref>
Line 8: Line 8:
There are many [[nootropics]], which include smart drugs and [[dietary supplement]]s, and all or many of these are relevant to neuroenhancement, albeit many or most only have small effect sizes in healthy individuals or common major side effects. The most common, popular<ref>{{cite journal |last1=Wood |first1=Suzanne |last2=Sage |first2=Jennifer R. |last3=Shuman |first3=Tristan |last4=Anagnostaras |first4=Stephan G. |title=Psychostimulants and Cognition: A Continuum of Behavioral and Cognitive Activation |journal=Pharmacological Reviews |date=1 January 2014 |volume=66 |issue=1 |pages=193–221 |doi=10.1124/pr.112.007054 |pmid=24344115 |pmc=3880463 |language=en |issn=0031-6997}}</ref><ref>{{cite journal |last1=Schifano |first1=Fabrizio |last2=Catalani |first2=Valeria |last3=Sharif |first3=Safia |last4=Napoletano |first4=Flavia |last5=Corkery |first5=John Martin |last6=Arillotta |first6=Davide |last7=Fergus |first7=Suzanne |last8=Vento |first8=Alessandro |last9=Guirguis |first9=Amira |title=Benefits and Harms of 'Smart Drugs' (Nootropics) in Healthy Individuals |journal=Drugs |date=1 April 2022 |volume=82 |issue=6 |pages=633–647 |doi=10.1007/s40265-022-01701-7 |pmid=35366192 |s2cid=247860331 |language=en |issn=1179-1950}}</ref> or notable<ref name="10.1021/acschemneuro.8b00571"/> pharmacological agents in neuroenhancement with potentials for significant effect sizes (as in at least as effective<ref>{{cite journal |last1=Wingelaar-Jagt |first1=Yara Q. |last2=Bottenheft |first2=Charelle |last3=Riedel |first3=Wim J. |last4=Ramaekers |first4=Johannes G. |title=Effects of modafinil and caffeine on night-time vigilance of air force crewmembers: A randomized controlled trial |journal=Journal of Psychopharmacology |date=February 2023 |volume=37 |issue=2 |pages=172–180 |doi=10.1177/02698811221142568 |pmid=36515156 |pmc=9912306 |language=en |issn=0269-8811}}</ref><ref name="10.3390/brainsci9080178">{{cite journal |last1=Al-Shargie |first1=Fares |last2=Tariq |first2=Usman |last3=Mir |first3=Hasan |last4=Alawar |first4=Hamad |last5=Babiloni |first5=Fabio |last6=Al-Nashash |first6=Hasan |title=Vigilance Decrement and Enhancement Techniques: A Review |journal=Brain Sciences |date=August 2019 |volume=9 |issue=8 |pages=178 |doi=10.3390/brainsci9080178 |pmid=31357524 |pmc=6721323 |language=en |issn=2076-3425|doi-access=free }}</ref> or similar to caffeine)<ref name="10.1055/s-0035-1559640"/> include [[modafinil]] and [[methylphenidate]] (Ritalin).<!-- Memantine and donepezil are less common but may also have potentials for significant effect sizes.-->
There are many [[nootropics]], which include smart drugs and [[dietary supplement]]s, and all or many of these are relevant to neuroenhancement, albeit many or most only have small effect sizes in healthy individuals or common major side effects. The most common, popular<ref>{{cite journal |last1=Wood |first1=Suzanne |last2=Sage |first2=Jennifer R. |last3=Shuman |first3=Tristan |last4=Anagnostaras |first4=Stephan G. |title=Psychostimulants and Cognition: A Continuum of Behavioral and Cognitive Activation |journal=Pharmacological Reviews |date=1 January 2014 |volume=66 |issue=1 |pages=193–221 |doi=10.1124/pr.112.007054 |pmid=24344115 |pmc=3880463 |language=en |issn=0031-6997}}</ref><ref>{{cite journal |last1=Schifano |first1=Fabrizio |last2=Catalani |first2=Valeria |last3=Sharif |first3=Safia |last4=Napoletano |first4=Flavia |last5=Corkery |first5=John Martin |last6=Arillotta |first6=Davide |last7=Fergus |first7=Suzanne |last8=Vento |first8=Alessandro |last9=Guirguis |first9=Amira |title=Benefits and Harms of 'Smart Drugs' (Nootropics) in Healthy Individuals |journal=Drugs |date=1 April 2022 |volume=82 |issue=6 |pages=633–647 |doi=10.1007/s40265-022-01701-7 |pmid=35366192 |s2cid=247860331 |language=en |issn=1179-1950}}</ref> or notable<ref name="10.1021/acschemneuro.8b00571"/> pharmacological agents in neuroenhancement with potentials for significant effect sizes (as in at least as effective<ref>{{cite journal |last1=Wingelaar-Jagt |first1=Yara Q. |last2=Bottenheft |first2=Charelle |last3=Riedel |first3=Wim J. |last4=Ramaekers |first4=Johannes G. |title=Effects of modafinil and caffeine on night-time vigilance of air force crewmembers: A randomized controlled trial |journal=Journal of Psychopharmacology |date=February 2023 |volume=37 |issue=2 |pages=172–180 |doi=10.1177/02698811221142568 |pmid=36515156 |pmc=9912306 |language=en |issn=0269-8811}}</ref><ref name="10.3390/brainsci9080178">{{cite journal |last1=Al-Shargie |first1=Fares |last2=Tariq |first2=Usman |last3=Mir |first3=Hasan |last4=Alawar |first4=Hamad |last5=Babiloni |first5=Fabio |last6=Al-Nashash |first6=Hasan |title=Vigilance Decrement and Enhancement Techniques: A Review |journal=Brain Sciences |date=August 2019 |volume=9 |issue=8 |pages=178 |doi=10.3390/brainsci9080178 |pmid=31357524 |pmc=6721323 |language=en |issn=2076-3425|doi-access=free }}</ref> or similar to caffeine)<ref name="10.1055/s-0035-1559640"/> include [[modafinil]] and [[methylphenidate]] (Ritalin).<!-- Memantine and donepezil are less common but may also have potentials for significant effect sizes.-->


[[Stimulant]]s in general<ref name="10.1007/s00103-010-1105-0">{{cite journal |last1=Franke |first1=A.G. |last2=Lieb |first2=K. |title=Pharmakologisches Neuroenhancement und "Hirndoping" |journal=Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz |date=1 August 2010 |volume=53 |issue=8 |pages=853–860 |doi=10.1007/s00103-010-1105-0 |pmid=20700786 |language=de |issn=1437-1588}}</ref><ref name="10.1007/s40664-019-0340-y"/> and various [[Dementia#Medications|antidementives]],<ref name="10.1007/s00103-010-1105-0"/><ref name="10.1007/s40664-019-0340-y"/><ref name="10.1212/WNL.0b013e318289703b"/><ref name="Weiergraeber">{{cite journal |last1=Weiergräber |first1=Marco |last2=Ehninger |first2=Dan |last3=Broich |first3=Karl |title=Neuroenhancement and mood enhancement – Physiological and pharmacodynamical background |journal=Medizinische Monatsschrift fur Pharmazeuten |date=1 April 2017 |volume=40 |issue=4 |pages=154–164 |pmid=29952165 |issn=0342-9601}}</ref> [[anxiolytic]]s,<ref name="10.1212/WNL.0b013e318289703b">{{cite journal |last1=Graf |first1=William D. |last2=Nagel |first2=Saskia K. |last3=Epstein |first3=Leon G. |last4=Miller |first4=Geoffrey |last5=Nass |first5=Ruth |last6=Larriviere |first6=Dan |title=Pediatric neuroenhancement: Ethical, legal, social, and neurodevelopmental implications |journal=Neurology |date=26 March 2013 |volume=80 |issue=13 |pages=1251–1260 |doi=10.1212/WNL.0b013e318289703b |pmid=23486879 |s2cid=207122859 |language=en |issn=0028-3878}}</ref> [[Empathogen–entactogen|empathogens]],<ref name="10.36131/cnfioritieditore20210303">{{cite journal |last1=Marazziti |first1=Donatella |last2=Avella |first2=Maria Teresa |last3=Ivaldi |first3=Tea |last4=Palermo |first4=Stefania |last5=Massa |first5=Lucia |last6=Della Vecchia |first6=Alessandra |last7=Basile |first7=Lucia |last8=Mucci |first8=Federico |title=Neuroenhancement: state of the art and future perspectives |journal=Clinical Neuropsychiatry |date=June 2021 |volume=18 |issue=3 |pages=137–169 |doi=10.36131/cnfioritieditore20210303|pmid=34909030 |pmc=8629054 }}</ref> types of [[microdosing]],<ref name="10.36131/cnfioritieditore20210303"/><ref name="10.1111/bph.13813"/><ref name="10.1177/2398212818816018">{{cite journal |last1=Brühl |first1=Annette B. |last2=d’Angelo |first2=Camilla |last3=Sahakian |first3=Barbara J. |title=Neuroethical issues in cognitive enhancement: Modafinil as the example of a workplace drug? |journal=Brain and Neuroscience Advances |date=January 2019 |volume=3 |pages=239821281881601 |doi=10.1177/2398212818816018|pmid=32166175 |pmc=7058249 }}</ref><ref name="10.1080/02791072.2020.1761573">{{cite journal |last1=Bornemann |first1=Joel |title=The Viability of Microdosing Psychedelics as a Strategy to Enhance Cognition and Well-being - An Early Review |journal=Journal of Psychoactive Drugs |date=7 August 2020 |volume=52 |issue=4 |pages=300–308 |doi=10.1080/02791072.2020.1761573 |issn=0279-1072}}</ref> and [[antidepressants]]<ref name="10.1007/s00103-010-1105-0"/><ref name="10.1007/s40664-019-0340-y"/> may also fall into the scope of neuroenhancement despite not necessarily being considered nootropics.
[[Stimulant]]s in general<ref name="10.1007/s00103-010-1105-0">{{cite journal |last1=Franke |first1=A.G. |last2=Lieb |first2=K. |title=Pharmakologisches Neuroenhancement und "Hirndoping" |journal=Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz |date=1 August 2010 |volume=53 |issue=8 |pages=853–860 |doi=10.1007/s00103-010-1105-0 |pmid=20700786 |language=de |issn=1437-1588}}</ref><ref name="10.1007/s40664-019-0340-y"/> and various [[Dementia#Medications|antidementives]],<ref name="10.1007/s00103-010-1105-0"/><ref name="10.1007/s40664-019-0340-y"/><ref name="10.1212/WNL.0b013e318289703b"/><ref name="Weiergraeber">{{cite journal |last1=Weiergräber |first1=Marco |last2=Ehninger |first2=Dan |last3=Broich |first3=Karl |title=Neuroenhancement and mood enhancement – Physiological and pharmacodynamical background |journal=Medizinische Monatsschrift fur Pharmazeuten |date=1 April 2017 |volume=40 |issue=4 |pages=154–164 |pmid=29952165 |issn=0342-9601}}</ref> [[anxiolytic]]s,<ref name="10.1212/WNL.0b013e318289703b">{{cite journal |last1=Graf |first1=William D. |last2=Nagel |first2=Saskia K. |last3=Epstein |first3=Leon G. |last4=Miller |first4=Geoffrey |last5=Nass |first5=Ruth |last6=Larriviere |first6=Dan |title=Pediatric neuroenhancement: Ethical, legal, social, and neurodevelopmental implications |journal=Neurology |date=26 March 2013 |volume=80 |issue=13 |pages=1251–1260 |doi=10.1212/WNL.0b013e318289703b |pmid=23486879 |s2cid=207122859 |language=en |issn=0028-3878}}</ref> [[Empathogen–entactogen|empathogens]],<ref name="10.36131/cnfioritieditore20210303">{{cite journal |last1=Marazziti |first1=Donatella |last2=Avella |first2=Maria Teresa |last3=Ivaldi |first3=Tea |last4=Palermo |first4=Stefania |last5=Massa |first5=Lucia |last6=Della Vecchia |first6=Alessandra |last7=Basile |first7=Lucia |last8=Mucci |first8=Federico |title=Neuroenhancement: state of the art and future perspectives |journal=Clinical Neuropsychiatry |date=June 2021 |volume=18 |issue=3 |pages=137–169 |doi=10.36131/cnfioritieditore20210303|pmid=34909030 |pmc=8629054 }}</ref> types of [[microdosing]] (mainly [[Psychedelic microdosing|of psychedelics]]),<ref name="10.36131/cnfioritieditore20210303"/><ref name="10.1111/bph.13813"/><ref name="10.1177/2398212818816018">{{cite journal |last1=Brühl |first1=Annette B. |last2=d’Angelo |first2=Camilla |last3=Sahakian |first3=Barbara J. |title=Neuroethical issues in cognitive enhancement: Modafinil as the example of a workplace drug? |journal=Brain and Neuroscience Advances |date=January 2019 |volume=3 |pages=239821281881601 |doi=10.1177/2398212818816018|pmid=32166175 |pmc=7058249 }}</ref><ref name="10.1080/02791072.2020.1761573">{{cite journal |last1=Bornemann |first1=Joel |title=The Viability of Microdosing Psychedelics as a Strategy to Enhance Cognition and Well-being - An Early Review |journal=Journal of Psychoactive Drugs |date=7 August 2020 |volume=52 |issue=4 |pages=300–308 |doi=10.1080/02791072.2020.1761573 |issn=0279-1072}}</ref> and [[antidepressants]]<ref name="10.1007/s00103-010-1105-0"/><ref name="10.1007/s40664-019-0340-y"/> may also fall into the scope of neuroenhancement despite not necessarily being considered nootropics.


Although consideration of individual neuroenhancement agents is usually triggered by success in clinical and technological fields, they have also been used to attempt to help people with a lack of normal cognitive, motor, and affective abilities: for example, social skills and empathy. In this case, neuroenhancement drugs try to increase [[oxytocin]] and decrease [[cortisol]] levels helping people better their communication and social interaction skills.<ref name="D" />
Although consideration of individual neuroenhancement agents is usually triggered by success in clinical and technological fields, they have also been used to attempt to help people with a lack of normal cognitive, motor, and affective abilities: for example, social skills and empathy. In this case, neuroenhancement drugs try to increase [[oxytocin]] and decrease [[cortisol]] levels helping people better their communication and social interaction skills.<ref name="D" />
Line 59: Line 59:
===Research and candidates===
===Research and candidates===
[[File:Number of studies about neuroenhancement in PubMed.png|thumb|Studies about neuroenhancement: [[PubMed]] search results for a query (for titles and abstracts)<ref>{{cite web |title=("enhance"[Title/Abstract] AND "cognition"[Title/Abstract]) OR ("neuroenhancement"[Title/Abstract]) OR ("cognitive enhancement"[Title/Abstract]) - Search Results - PubMed |url=https://pubmed.ncbi.nlm.nih.gov/?term=%28%22enhance%22%5BTitle%2FAbstract%5D+AND+%22cognition%22%5BTitle%2FAbstract%5D%29+OR+%28%22neuroenhancement%22%5BTitle%2FAbstract%5D%29+OR+%28%22cognitive+enhancement%22%5BTitle%2FAbstract%5D%29 |website=PubMed |access-date=13 March 2023 |language=en}}</ref>]]
[[File:Number of studies about neuroenhancement in PubMed.png|thumb|Studies about neuroenhancement: [[PubMed]] search results for a query (for titles and abstracts)<ref>{{cite web |title=("enhance"[Title/Abstract] AND "cognition"[Title/Abstract]) OR ("neuroenhancement"[Title/Abstract]) OR ("cognitive enhancement"[Title/Abstract]) - Search Results - PubMed |url=https://pubmed.ncbi.nlm.nih.gov/?term=%28%22enhance%22%5BTitle%2FAbstract%5D+AND+%22cognition%22%5BTitle%2FAbstract%5D%29+OR+%28%22neuroenhancement%22%5BTitle%2FAbstract%5D%29+OR+%28%22cognitive+enhancement%22%5BTitle%2FAbstract%5D%29 |website=PubMed |access-date=13 March 2023 |language=en}}</ref>]]
Research also explores derivatives (such as N-acetylcysteine amide) of already existing cognitive enhancers that have or could have higher [[bioavailability]].<ref>{{cite journal |last1=Hara |first1=Y. |last2=McKeehan |first2=N. |last3=Dacks |first3=P. A. |last4=Fillit |first4=H. M. |title=Evaluation of the neuroprotective potential of n-acetylcysteine for prevention and treatment of cognitive aging and dementia |journal=Journal of Prevention of Alzheimer's Disease |date=1 September 2017 |volume=J Prev Alz Dis 20174 |issue=3 |pages=201–206 |doi=10.14283/jpad.2017.22|pmid=29182711 |s2cid=45647979 }}</ref>
Research also explores derivatives (such as [[Acetylcysteinamide|N-acetylcysteine amide]] for NAC) of already existing cognitive enhancers that have or could have higher [[bioavailability]].<ref>{{cite journal |last1=Hara |first1=Y. |last2=McKeehan |first2=N. |last3=Dacks |first3=P. A. |last4=Fillit |first4=H. M. |title=Evaluation of the neuroprotective potential of n-acetylcysteine for prevention and treatment of cognitive aging and dementia |journal=Journal of Prevention of Alzheimer's Disease |date=1 September 2017 |volume=J Prev Alz Dis 20174 |issue=3 |pages=201–206 |doi=10.14283/jpad.2017.22|pmid=29182711 |s2cid=45647979 }}</ref>


Differential [[half-life|half-lives]] may also be a topic of research and development. Modafinil substantially increases [[alertness]] but, having a long half-life of approximately 13 hours,<ref name="10.2165/11315280-000000000-00000"/> can delay or impair sleep-onset,<ref name="10.1371/journal.pone.0081802">{{cite journal |last1=Sheng |first1=Ping |last2=Hou |first2=Lijun |last3=Wang |first3=Xiang |last4=Wang |first4=Xiaowen |last5=Huang |first5=Chengguang |last6=Yu |first6=Mingkun |last7=Han |first7=Xi |last8=Dong |first8=Yan |title=Efficacy of Modafinil on Fatigue and Excessive Daytime Sleepiness Associated with Neurological Disorders: A Systematic Review and Meta-Analysis |journal=PLOS ONE |date=3 December 2013 |volume=8 |issue=12 |pages=e81802 |doi=10.1371/journal.pone.0081802|pmid=24312590 |pmc=3849275 |bibcode=2013PLoSO...881802S |doi-access=free }}</ref><ref name="10.52586/4948"/> with there being no marketed shorter-acting version. According to two 2009 studies, [[armodafinil]] is eliminated approximately three times more slowly than the S-[[isomer]] of racemic modafinil.<ref>{{cite journal |last1=Darwish |first1=Mona |last2=Kirby |first2=Mary |last3=Hellriegel |first3=Edward T. |last4=Yang |first4=Ronghua |last5=Robertson |first5=Philmore |title=Pharmacokinetic Profile of Armodafinil in Healthy Subjects |journal=Clinical Drug Investigation |date=1 February 2009 |volume=29 |issue=2 |pages=87–100 |doi=10.2165/0044011-200929020-00003 |pmid=19133704 |s2cid=24886727 |language=en |issn=1179-1918}}</ref><ref name="10.2165/11315280-000000000-00000">{{cite journal |last1=Darwish |first1=Mona |last2=Kirby |first2=Mary |last3=Hellriegel |first3=Edward T. |last4=Robertson |first4=Philmore |title=Armodafinil and Modafinil Have Substantially Different Pharmacokinetic Profiles Despite Having the Same Terminal Half-Lives |journal=Clinical Drug Investigation |date=1 September 2009 |volume=29 |issue=9 |pages=613–623 |doi=10.2165/11315280-000000000-00000 |pmid=19663523 |s2cid=6607186 |language=en |issn=1179-1918}}</ref>
Differential [[half-life|half-lives]] may also be a topic of research and development. Modafinil substantially increases [[alertness]] but, having a long half-life of approximately 13 hours,<ref name="10.2165/11315280-000000000-00000"/> can delay or impair sleep-onset,<ref name="10.1371/journal.pone.0081802">{{cite journal |last1=Sheng |first1=Ping |last2=Hou |first2=Lijun |last3=Wang |first3=Xiang |last4=Wang |first4=Xiaowen |last5=Huang |first5=Chengguang |last6=Yu |first6=Mingkun |last7=Han |first7=Xi |last8=Dong |first8=Yan |title=Efficacy of Modafinil on Fatigue and Excessive Daytime Sleepiness Associated with Neurological Disorders: A Systematic Review and Meta-Analysis |journal=PLOS ONE |date=3 December 2013 |volume=8 |issue=12 |pages=e81802 |doi=10.1371/journal.pone.0081802|pmid=24312590 |pmc=3849275 |bibcode=2013PLoSO...881802S |doi-access=free }}</ref><ref name="10.52586/4948"/> with there being no marketed shorter-acting version. According to two 2009 studies, [[armodafinil]] is eliminated approximately three times more slowly than the S-[[isomer]] of racemic modafinil.<ref>{{cite journal |last1=Darwish |first1=Mona |last2=Kirby |first2=Mary |last3=Hellriegel |first3=Edward T. |last4=Yang |first4=Ronghua |last5=Robertson |first5=Philmore |title=Pharmacokinetic Profile of Armodafinil in Healthy Subjects |journal=Clinical Drug Investigation |date=1 February 2009 |volume=29 |issue=2 |pages=87–100 |doi=10.2165/0044011-200929020-00003 |pmid=19133704 |s2cid=24886727 |language=en |issn=1179-1918}}</ref><ref name="10.2165/11315280-000000000-00000">{{cite journal |last1=Darwish |first1=Mona |last2=Kirby |first2=Mary |last3=Hellriegel |first3=Edward T. |last4=Robertson |first4=Philmore |title=Armodafinil and Modafinil Have Substantially Different Pharmacokinetic Profiles Despite Having the Same Terminal Half-Lives |journal=Clinical Drug Investigation |date=1 September 2009 |volume=29 |issue=9 |pages=613–623 |doi=10.2165/11315280-000000000-00000 |pmid=19663523 |s2cid=6607186 |language=en |issn=1179-1918}}</ref>
Line 67: Line 67:
* different protocols (e.g. dosages,<ref name="10.1093/nutrit/nux007"/> timing and scheduling)
* different protocols (e.g. dosages,<ref name="10.1093/nutrit/nux007"/> timing and scheduling)
* combinations (e.g. concurrent, cyclic or sequential and [[Precursor (chemistry)|precursors]], depletions<ref name="10.1093/jn/137.6.1539S">{{cite journal |last1=Fernstrom |first1=John D. |last2=Fernstrom |first2=Madelyn H. |title=Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain |journal=The Journal of Nutrition |date=1 June 2007 |volume=137 |issue=6 |pages=S1539–S1547 |doi=10.1093/jn/137.6.1539S |pmid=17513421 |language=en |issn=0022-3166}}</ref><ref>{{cite journal |last1=Riedel |first1=Wim J |last2=Klaassen |first2=Tineke |last3=Schmitt |first3=Jeroen A. J |title=Tryptophan, mood, and cognitive function |journal=Brain, Behavior, and Immunity |date=1 October 2002 |volume=16 |issue=5 |pages=581–589 |doi=10.1016/S0889-1591(02)00013-2 |pmid=12401472 |s2cid=42931109 |language=en |issn=0889-1591|quote=[...] As noted above two experiments addressed the question how [acute [[tryptophan]] depletion (ATD)] affects cognitive functions in healthy individuals. These experiments shared one common dependent variable, which was the memory task. In the first study it was shown that ATD impaired long-term memory consolidation when a new word list was learned at 6 h after start of depletion [...]}}</ref> and [[Cofactor (biochemistry)|cofactors]])
* combinations (e.g. concurrent, cyclic or sequential and [[Precursor (chemistry)|precursors]], depletions<ref name="10.1093/jn/137.6.1539S">{{cite journal |last1=Fernstrom |first1=John D. |last2=Fernstrom |first2=Madelyn H. |title=Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain |journal=The Journal of Nutrition |date=1 June 2007 |volume=137 |issue=6 |pages=S1539–S1547 |doi=10.1093/jn/137.6.1539S |pmid=17513421 |language=en |issn=0022-3166}}</ref><ref>{{cite journal |last1=Riedel |first1=Wim J |last2=Klaassen |first2=Tineke |last3=Schmitt |first3=Jeroen A. J |title=Tryptophan, mood, and cognitive function |journal=Brain, Behavior, and Immunity |date=1 October 2002 |volume=16 |issue=5 |pages=581–589 |doi=10.1016/S0889-1591(02)00013-2 |pmid=12401472 |s2cid=42931109 |language=en |issn=0889-1591|quote=[...] As noted above two experiments addressed the question how [acute [[tryptophan]] depletion (ATD)] affects cognitive functions in healthy individuals. These experiments shared one common dependent variable, which was the memory task. In the first study it was shown that ATD impaired long-term memory consolidation when a new word list was learned at 6 h after start of depletion [...]}}</ref> and [[Cofactor (biochemistry)|cofactors]])
**An example of one combination under research is the concurrent combination of [[l-theanine]] with caffeine.<ref>{{cite journal |last1=Camfield |first1=David A |last2=Stough |first2=Con |last3=Farrimond |first3=Jonathon |last4=Scholey |first4=Andrew B |title=Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and meta-analysis |journal=Nutrition Reviews |date=August 2014 |volume=72 |issue=8 |pages=507–522 |doi=10.1111/nure.12120|pmid=24946991 }}</ref><ref>{{cite journal |last1=Sohail |first1=Anas Anas |last2=Ortiz |first2=Fernando |last3=Varghese |first3=Teresa |last4=Fabara |first4=Stephanie P. |last5=Batth |first5=Arshdeep S. |last6=Sandesara |first6=Darshan P. |last7=Sabir |first7=Ahtesham |last8=Khurana |first8=Mahika |last9=Datta |first9=Shae |last10=Patel |first10=Urvish K. |last11=Sohail |first11=Anas Anas |last12=Ortiz |first12=Juan Fernando |last13=Varghese |first13=Teresa |last14=Fabara |first14=Stephanie P. |last15=Batth |first15=Arshdeep S. |last16=Sandesara |first16=Darshan P. |last17=Sabir |first17=Ahtesham |last18=Khurana |first18=Mahika |last19=Datta |first19=Shae |last20=Patel |first20=Urvish K. |title=The Cognitive-Enhancing Outcomes of Caffeine and L-theanine: A Systematic Review |journal=Cureus |date=30 December 2021 |volume=13 |issue=12 |pages=e20828 |doi=10.7759/cureus.20828 |pmid=35111479 |pmc=8794723 |language=en |issn=2168-8184}}</ref>
**An example of one combination under research is the concurrent combination of [[l-theanine]] with caffeine.<ref>{{cite journal |last1=Camfield |first1=David A |last2=Stough |first2=Con |last3=Farrimond |first3=Jonathon |last4=Scholey |first4=Andrew B |title=Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and meta-analysis |journal=Nutrition Reviews |date=August 2014 |volume=72 |issue=8 |pages=507–522 |doi=10.1111/nure.12120|pmid=24946991 }}</ref><ref>{{cite journal |last1=Sohail |first1=Anas Anas |last2=Ortiz |first2=Fernando |last3=Varghese |first3=Teresa |last4=Fabara |first4=Stephanie P. |last5=Batth |first5=Arshdeep S. |last6=Sandesara |first6=Darshan P. |last7=Sabir |first7=Ahtesham |last8=Khurana |first8=Mahika |last9=Datta |first9=Shae |last10=Patel |first10=Urvish K. |last11=Sohail |first11=Anas Anas |last12=Ortiz |first12=Juan Fernando |last13=Varghese |first13=Teresa |last14=Fabara |first14=Stephanie P. |last15=Batth |first15=Arshdeep S. |last16=Sandesara |first16=Darshan P. |last17=Sabir |first17=Ahtesham |last18=Khurana |first18=Mahika |last19=Datta |first19=Shae |last20=Patel |first20=Urvish K. |title=The Cognitive-Enhancing Outcomes of Caffeine and L-theanine: A Systematic Review |journal=Cureus |date=30 December 2021 |volume=13 |issue=12 |pages=e20828 |doi=10.7759/cureus.20828 |pmid=35111479 |pmc=8794723 |language=en |issn=2168-8184}}</ref><ref name="10.1123/ijsnem.2017-0314"/>
**One study investigated high-dosage modafinil combined with low-dosage caffeine – 200 mg of each.<ref name="10.1016/bs.pbr.2019.03.022">{{cite book |last1=Gunzelmann |first1=Glenn |last2=M. James |first2=Stephen |last3=Caldwell |first3=Jo Lynn |title=Chapter 8 - Basic and applied science interactions in fatigue understanding and risk mitigation |chapter=Basic and applied science interactions in fatigue understanding and risk mitigation |series=Progress in Brain Research |date=1 January 2019 |volume=246 |pages=177–204 |publisher=Elsevier |language=en|doi=10.1016/bs.pbr.2019.03.022|pmid=31072561 |isbn=9780444642509 |s2cid=145885926 }}</ref>{{Example needed|s|date=March 2023}}
**One study investigated high-dosage modafinil combined with low-dosage caffeine – 200 mg of each.<ref name="10.1016/bs.pbr.2019.03.022">{{cite book |last1=Gunzelmann |first1=Glenn |last2=M. James |first2=Stephen |last3=Caldwell |first3=Jo Lynn |title=Chapter 8 - Basic and applied science interactions in fatigue understanding and risk mitigation |chapter=Basic and applied science interactions in fatigue understanding and risk mitigation |series=Progress in Brain Research |date=1 January 2019 |volume=246 |pages=177–204 |publisher=Elsevier |language=en|doi=10.1016/bs.pbr.2019.03.022|pmid=31072561 |isbn=9780444642509 |s2cid=145885926 }}</ref>{{Example needed|s|date=March 2023}}
* factors of effects outcomes (including situational, [[personalized medicine|personal]] (e.g. genetic or baseline-skill-levels),<ref name="10.1093/nutrit/nux007">{{cite journal |last1=Crawford |first1=Cindy |last2=Teo |first2=Lynn |last3=Lafferty |first3=Lynn |last4=Drake |first4=Angela |last5=Bingham |first5=John J. |last6=Gallon |first6=Matthew D. |last7=O’Connell |first7=Meghan L. |last8=Chittum |first8=Holly K. |last9=Arzola |first9=Sonya M. |last10=Berry |first10=Kevin |title=Caffeine to optimize cognitive function for military mission-readiness: a systematic review and recommendations for the field |journal=Nutrition Reviews |date=June 2017 |volume=75 |issue=suppl_2 |pages=17–35 |doi=10.1093/nutrit/nux007|pmid=28969341 }}</ref><ref name="10.1111/add.12460">{{cite journal |title=Efficacy of stimulants for cognitive enhancement in non-attention deficit hyperactivity disorder youth: a systematic review |journal=Addiction |year=2014 |doi=10.1111/add.12460|last1=Bagot |first1=Kara Simone |last2=Kaminer |first2=Yifrah |volume=109 |issue=4 |pages=547–557 |pmid=24749160 |pmc=4471173 }}</ref> protocol-related, etc)<ref name="10.1021/acschemneuro.8b00571"/>
* factors of effects outcomes (including situational, [[personalized medicine|personal]] (e.g. genetic or baseline-skill-levels),<ref name="10.1093/nutrit/nux007">{{cite journal |last1=Crawford |first1=Cindy |last2=Teo |first2=Lynn |last3=Lafferty |first3=Lynn |last4=Drake |first4=Angela |last5=Bingham |first5=John J. |last6=Gallon |first6=Matthew D. |last7=O’Connell |first7=Meghan L. |last8=Chittum |first8=Holly K. |last9=Arzola |first9=Sonya M. |last10=Berry |first10=Kevin |title=Caffeine to optimize cognitive function for military mission-readiness: a systematic review and recommendations for the field |journal=Nutrition Reviews |date=June 2017 |volume=75 |issue=suppl_2 |pages=17–35 |doi=10.1093/nutrit/nux007|pmid=28969341 }}</ref><ref name="10.1111/add.12460">{{cite journal |title=Efficacy of stimulants for cognitive enhancement in non-attention deficit hyperactivity disorder youth: a systematic review |journal=Addiction |year=2014 |doi=10.1111/add.12460|last1=Bagot |first1=Kara Simone |last2=Kaminer |first2=Yifrah |volume=109 |issue=4 |pages=547–557 |pmid=24749160 |pmc=4471173 }}</ref> protocol-related, etc)<ref name="10.1021/acschemneuro.8b00571"/>
Line 79: Line 79:
***have a possible effect of overconfidence<ref name=A/>
***have a possible effect of overconfidence<ref name=A/>
***have risks for side effects like headache<ref name=Modafini/><ref name="10.1080/08897077.2019.1700584"/> and have low abuse/addiction potential<ref name=Modafini/><ref name="10.1080/08897077.2019.1700584"/>
***have risks for side effects like headache<ref name=Modafini/><ref name="10.1080/08897077.2019.1700584"/> and have low abuse/addiction potential<ref name=Modafini/><ref name="10.1080/08897077.2019.1700584"/>
**Some pharmacological agents may have issues due to which some may consider them as not viable for enhancement or not consider them to be neuroenhancers – for example "[[nicotine]] and amphetamines (such as [[Adderall]])" may result "in substantial loss of cholinergic and dopaminergic receptor responsivity and may ultimately lead to their epigenetic downregulation" {{Crossreference|(see e.g. [[Dopamine receptor#Dopamine regulation]])}}<ref name="10.1016/j.ejphar.2018.08.008"/> Various recreational drugs are partly used due to cognitive enhancement effects<ref name="10.1097/YIC.0000000000000172">{{cite journal |last1=Tang |first1=Siu W. |last2=Tang |first2=Wayne H. |last3=Leonard |first3=Brian E. |title=Managing interactions between cognitive enhancers and other psychotropics: |journal=International Clinical Psychopharmacology |date=July 2017 |volume=32 |issue=4 |pages=175–183 |doi=10.1097/YIC.0000000000000172}}</ref><ref name="10.36131/cnfioritieditore20210303"/><ref name="10.1016/j.bbr.2020.112672">{{cite journal |last1=Müller |first1=Christian P. |title=Drug instrumentalization |journal=Behavioural Brain Research |date=15 July 2020 |volume=390 |pages=112672 |doi=10.1016/j.bbr.2020.112672 |language=en |issn=0166-4328}}</ref> on e.g. sociability, mood and/or creativity – in the exemplary case of [[Alcohol and health|alcohol]] this can have substantial effects on health, including long-term negative consequences on cognitive functions.<ref name="10.36131/cnfioritieditore20210303"/> They can also induce tolerance for the effects and addiction could develop from long-term drug instrumentalization.<ref name="10.1016/j.bbr.2020.112672"/>
**Some pharmacological agents may have issues due to which some may consider them as not viable for enhancement or not consider them to be neuroenhancers – for example "[[nicotine]] and amphetamines (such as [[Adderall]])" may result "in substantial loss of cholinergic and dopaminergic receptor responsivity and may ultimately lead to their epigenetic downregulation". {{Crossreference|(see e.g. [[Dopamine receptor#Dopamine regulation]])}}<ref name="10.1016/j.ejphar.2018.08.008"/> Various recreational drugs are partly used due to cognitive enhancement effects<ref name="10.1097/YIC.0000000000000172">{{cite journal |last1=Tang |first1=Siu W. |last2=Tang |first2=Wayne H. |last3=Leonard |first3=Brian E. |title=Managing interactions between cognitive enhancers and other psychotropics: |journal=International Clinical Psychopharmacology |date=July 2017 |volume=32 |issue=4 |pages=175–183 |doi=10.1097/YIC.0000000000000172}}</ref><ref name="10.36131/cnfioritieditore20210303"/><ref name="10.1016/j.bbr.2020.112672">{{cite journal |last1=Müller |first1=Christian P. |title=Drug instrumentalization |journal=Behavioural Brain Research |date=15 July 2020 |volume=390 |pages=112672 |doi=10.1016/j.bbr.2020.112672 |language=en |issn=0166-4328}}</ref> on e.g. sociability, mood and/or creativity – in the exemplary case of [[Alcohol and health|alcohol]] this can have substantial effects on health, including long-term negative consequences on cognitive functions.<ref name="10.36131/cnfioritieditore20210303"/> They can also induce tolerance for the effects and addiction could develop from long-term drug instrumentalization.<ref name="10.1016/j.bbr.2020.112672"/>
* differential effects (e.g. comparisons between substances/strategies<ref name="10.1021/acschemneuro.8b00571"/> and per task, cognitive domain<ref name="10.1021/acschemneuro.8b00571"/> or purpose)
* differential effects (e.g. comparisons between substances/strategies<ref name="10.1021/acschemneuro.8b00571"/> and per task, cognitive domain<ref name="10.1021/acschemneuro.8b00571"/> or purpose)
**{{anchor|Modafinil comparisons}}For example, it was found that methylphenidate (Ritalin) increases alertness more on simple tasks than on difficult ones, while modafinil increases concentration or attention,<ref name="10.52586/4948"/><ref name=A/> reportedly may significantly outperform methylphenidate "for cognitive enhancement in healthy individuals, 'especially on people undergoing sleep deprivation'",<ref name="10.1371/journal.pbio.1001289"/> and is thought to also have an impact on decision-making, [[planning]] and [[Moral enhancement|moral reasoning]]<ref>{{cite journal |last1=Ngo |first1=Thao |last2=Ghio |first2=Marta |last3=Kuchinke |first3=Lars |last4=Roser |first4=Patrik |last5=Bellebaum |first5=Christian |title=Moral decision making under modafinil: a randomized placebo-controlled double-blind crossover fMRI study |journal=Psychopharmacology |date=1 September 2019 |volume=236 |issue=9 |pages=2747–2759 |doi=10.1007/s00213-019-05250-y |pmid=31037409 |s2cid=253751563 |language=en |issn=1432-2072}}</ref><ref>{{cite book |last1=Earp |first1=Brian D. |last2=Douglas |first2=Thomas |last3=Savulescu |first3=Julian |title=The Routledge Handbook of Neuroethics |date=2017 |publisher=Routledge |url=https://www.ncbi.nlm.nih.gov/books/NBK493126/ |isbn=978-1-138-89829-5 |chapter=Moral Neuroenhancement}}</ref>{{additional citation needed|date=March 2023}} and motivation.<ref name="10.1098/rstb.2014.0214"/><ref name="10.1111/bph.13813">{{cite journal |last1=d'Angelo |first1=L-S Camilla |last2=Savulich |first2=George |last3=Sahakian |first3=Barbara J |title=Lifestyle use of drugs by healthy people for enhancing cognition, creativity, motivation and pleasure: Lifestyle use of drugs by healthy people |journal=British Journal of Pharmacology |date=October 2017 |volume=174 |issue=19 |pages=3257–3267 |doi=10.1111/bph.13813 |pmid=28427114 |pmc=5595759 |language=en}}</ref><ref name="10.1177/2398212818816018"/><ref>{{cite book |last1=Mann |first1=Sebastian Porsdam |last2=Sahakian |first2=Barbara J. |title=The Routledge Handbook of Neuroethics |chapter=Modafinil and the Increasing Lifestyle Use of Smart Drugs by Healthy People: Neuroethical and Societal Issues}}</ref> Modafinil has replaced [[dextroamphetamine]] in certain types of military operations due to its superior side effects profile.<ref name="10.1016/bs.pbr.2019.03.022"/>
**{{anchor|Modafinil comparisons}}For example, it was found that methylphenidate (Ritalin) increases alertness more on simple tasks than on difficult ones, while modafinil increases concentration or attention,<ref name="10.52586/4948"/><ref name=A/> reportedly may significantly outperform methylphenidate "for cognitive enhancement in healthy individuals, 'especially on people undergoing sleep deprivation'",<ref name="10.1371/journal.pbio.1001289"/> and is thought to also have an impact on decision-making, [[planning]] and [[Moral enhancement|moral reasoning]]<ref>{{cite journal |last1=Ngo |first1=Thao |last2=Ghio |first2=Marta |last3=Kuchinke |first3=Lars |last4=Roser |first4=Patrik |last5=Bellebaum |first5=Christian |title=Moral decision making under modafinil: a randomized placebo-controlled double-blind crossover fMRI study |journal=Psychopharmacology |date=1 September 2019 |volume=236 |issue=9 |pages=2747–2759 |doi=10.1007/s00213-019-05250-y |pmid=31037409 |s2cid=253751563 |language=en |issn=1432-2072}}</ref><ref>{{cite book |last1=Earp |first1=Brian D. |last2=Douglas |first2=Thomas |last3=Savulescu |first3=Julian |title=The Routledge Handbook of Neuroethics |date=2017 |publisher=Routledge |url=https://www.ncbi.nlm.nih.gov/books/NBK493126/ |isbn=978-1-138-89829-5 |chapter=Moral Neuroenhancement}}</ref>{{additional citation needed|date=March 2023}} and motivation.<ref name="10.1098/rstb.2014.0214"/><ref name="10.1111/bph.13813">{{cite journal |last1=d'Angelo |first1=L-S Camilla |last2=Savulich |first2=George |last3=Sahakian |first3=Barbara J |title=Lifestyle use of drugs by healthy people for enhancing cognition, creativity, motivation and pleasure: Lifestyle use of drugs by healthy people |journal=British Journal of Pharmacology |date=October 2017 |volume=174 |issue=19 |pages=3257–3267 |doi=10.1111/bph.13813 |pmid=28427114 |pmc=5595759 |language=en}}</ref><ref name="10.1177/2398212818816018"/><ref>{{cite book |last1=Mann |first1=Sebastian Porsdam |last2=Sahakian |first2=Barbara J. |title=The Routledge Handbook of Neuroethics |chapter=Modafinil and the Increasing Lifestyle Use of Smart Drugs by Healthy People: Neuroethical and Societal Issues}}</ref> Modafinil has replaced [[dextroamphetamine]] in certain types of military operations due to its superior side effects profile.<ref name="10.1016/bs.pbr.2019.03.022"/>
Line 86: Line 86:
====Intrabrain bioengineering====
====Intrabrain bioengineering====
Advanced cognitive enhancement that is not viable for use by humans in the near future could benefit from research in which researchers design receptors to activate or inhibit neurons with proteins, e.g. using "[[Receptor activated solely by a synthetic ligand|Designer Receptors Exclusively Activated by Designer Drugs]]".<ref name="defcontext">{{cite book |last1=Tennison |first1=Michael N. |last2=Moreno |first2=Jonathan D. |title=The Routledge Handbook of Neuroethics |chapter=Neuroenhancement and Therapy in National Defense Contexts}}</ref> If [[wetware computer|organic neuromorphic devices]] reach a certain point and become [[biocompatible]], novel [[brain implant]]s could be possible.<ref name="sciame">{{cite news |last1=Bolakhe |first1=Saugat |title=Lego Robot with an Organic 'Brain' Learns to Navigate a Maze |url=https://www.scientificamerican.com/article/lego-robot-with-an-organic-brain-learns-to-navigate-a-maze/ |access-date=1 February 2022 |work=Scientific American |language=en}}</ref> Genetically modified neurons may enable [[Nanobiotechnology#Applications|connecting external components]] to nerves.<ref>{{cite news |title=Genetically modified neurons could help us connect to implants |url=https://www.newscientist.com/article/2237987-genetically-modified-neurons-could-help-us-connect-to-implants/ |access-date=1 February 2022 |work=New Scientist}}</ref> Researcher reported in 2020 that they [[Bioengineering|bioengineered]] ''[[C. elegans]]'' worms to synthesize, fabricate, and assemble [[Bioelectronics|bioelectronic materials]] in its brain cells. They enabled modulation of membrane properties in specific neuron populations and manipulation of behavior in the living animals.<ref>{{cite news |title=Scientists program cells to carry out gene-guided construction projects |url=https://phys.org/news/2020-03-scientists-cells-gene-guided.html |access-date=5 April 2020 |work=phys.org |language=en-us}}</ref><ref>{{cite journal |last1=Otto |first1=Kevin J. |last2=Schmidt |first2=Christine E. |title=Neuron-targeted electrical modulation |journal=Science |date=20 March 2020 |volume=367 |issue=6484 |pages=1303–1304 |doi=10.1126/science.abb0216 |pmid=32193309 |bibcode=2020Sci...367.1303O |s2cid=213192749 }}</ref><ref>{{cite journal |authorlink18=Zhenan Bao |authorlink19=Karl Deisseroth |last1=Liu |first1=Jia |last2=Kim |first2=Yoon Seok |last3=Richardson |first3=Claire E. |last4=Tom |first4=Ariane |last5=Ramakrishnan |first5=Charu |last6=Birey |first6=Fikri |last7=Katsumata |first7=Toru |last8=Chen |first8=Shucheng |last9=Wang |first9=Cheng |last10=Wang |first10=Xiao |last11=Joubert |first11=Lydia-Marie |last12=Jiang |first12=Yuanwen |last13=Wang |first13=Huiliang |last14=Fenno |first14=Lief E. |last15=Tok |first15=Jeffrey B.-H. |last16=Pașca |first16=Sergiu P. |last17=Shen |first17=Kang |last18=Bao |first18=Zhenan |last19=Deisseroth |first19=Karl |title=Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals |journal=Science |date=20 March 2020 |volume=367 |issue=6484 |pages=1372–1376 |doi=10.1126/science.aay4866 |pmid=32193327 |pmc=7527276 |bibcode=2020Sci...367.1372L |s2cid=213191980 }}</ref>
Advanced cognitive enhancement that is not viable for use by humans in the near future could benefit from research in which researchers design receptors to activate or inhibit neurons with proteins, e.g. using "[[Receptor activated solely by a synthetic ligand|Designer Receptors Exclusively Activated by Designer Drugs]]".<ref name="defcontext">{{cite book |last1=Tennison |first1=Michael N. |last2=Moreno |first2=Jonathan D. |title=The Routledge Handbook of Neuroethics |chapter=Neuroenhancement and Therapy in National Defense Contexts}}</ref> If [[wetware computer|organic neuromorphic devices]] reach a certain point and become [[biocompatible]], novel [[brain implant]]s could be possible.<ref name="sciame">{{cite news |last1=Bolakhe |first1=Saugat |title=Lego Robot with an Organic 'Brain' Learns to Navigate a Maze |url=https://www.scientificamerican.com/article/lego-robot-with-an-organic-brain-learns-to-navigate-a-maze/ |access-date=1 February 2022 |work=Scientific American |language=en}}</ref> Genetically modified neurons may enable [[Nanobiotechnology#Applications|connecting external components]] to nerves.<ref>{{cite news |title=Genetically modified neurons could help us connect to implants |url=https://www.newscientist.com/article/2237987-genetically-modified-neurons-could-help-us-connect-to-implants/ |access-date=1 February 2022 |work=New Scientist}}</ref> Researcher reported in 2020 that they [[Bioengineering|bioengineered]] ''[[C. elegans]]'' worms to synthesize, fabricate, and assemble [[Bioelectronics|bioelectronic materials]] in its brain cells. They enabled modulation of membrane properties in specific neuron populations and manipulation of behavior in the living animals.<ref>{{cite news |title=Scientists program cells to carry out gene-guided construction projects |url=https://phys.org/news/2020-03-scientists-cells-gene-guided.html |access-date=5 April 2020 |work=phys.org |language=en-us}}</ref><ref>{{cite journal |last1=Otto |first1=Kevin J. |last2=Schmidt |first2=Christine E. |title=Neuron-targeted electrical modulation |journal=Science |date=20 March 2020 |volume=367 |issue=6484 |pages=1303–1304 |doi=10.1126/science.abb0216 |pmid=32193309 |bibcode=2020Sci...367.1303O |s2cid=213192749 }}</ref><ref>{{cite journal |authorlink18=Zhenan Bao |authorlink19=Karl Deisseroth |last1=Liu |first1=Jia |last2=Kim |first2=Yoon Seok |last3=Richardson |first3=Claire E. |last4=Tom |first4=Ariane |last5=Ramakrishnan |first5=Charu |last6=Birey |first6=Fikri |last7=Katsumata |first7=Toru |last8=Chen |first8=Shucheng |last9=Wang |first9=Cheng |last10=Wang |first10=Xiao |last11=Joubert |first11=Lydia-Marie |last12=Jiang |first12=Yuanwen |last13=Wang |first13=Huiliang |last14=Fenno |first14=Lief E. |last15=Tok |first15=Jeffrey B.-H. |last16=Pașca |first16=Sergiu P. |last17=Shen |first17=Kang |last18=Bao |first18=Zhenan |last19=Deisseroth |first19=Karl |title=Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals |journal=Science |date=20 March 2020 |volume=367 |issue=6484 |pages=1372–1376 |doi=10.1126/science.aay4866 |pmid=32193327 |pmc=7527276 |bibcode=2020Sci...367.1372L |s2cid=213191980 }}</ref>
There also is research of potentially implantable<ref>{{cite news |last1=Sample |first1=Ian |title=Bionic neurons could enable implants to restore failing brain circuits |url=https://www.theguardian.com/science/2019/dec/03/bionic-neurons-could-enable-implants-to-restore-failing-brain-circuits |access-date=27 February 2023 |work=The Guardian |date=3 December 2019}}</ref> [[Artificial cell#Artificial neurons|physical artificial neurons]].<ref>{{cite journal |last1=Abu-Hassan |first1=Kamal |last2=Taylor |first2=Joseph D. |last3=Morris |first3=Paul G. |last4=Donati |first4=Elisa |last5=Bortolotto |first5=Zuner A. |last6=Indiveri |first6=Giacomo |last7=Paton |first7=Julian F. R. |last8=Nogaret |first8=Alain |title=Optimal solid state neurons |journal=Nature Communications |date=3 December 2019 |volume=10 |issue=1 |pages=5309 |doi=10.1038/s41467-019-13177-3 |pmid=31796727 |pmc=6890780 |bibcode=2019NatCo..10.5309A |language=en |issn=2041-1723}}</ref> Implants of genetically engineered or stem-cell grown neural tissue may become possible as well.<ref name="10.1177/1477878511409623">{{cite journal |authorlink1=Allen Buchanan |last1=Buchanan |first1=Allen |title=Cognitive enhancement and education |journal=Theory and Research in Education |date=July 2011 |volume=9 |issue=2 |pages=145–162 |doi=10.1177/1477878511409623 |language=en |issn=1477-8785}}</ref>
There also is research of potentially implantable<ref>{{cite news |last1=Sample |first1=Ian |title=Bionic neurons could enable implants to restore failing brain circuits |url=https://www.theguardian.com/science/2019/dec/03/bionic-neurons-could-enable-implants-to-restore-failing-brain-circuits |access-date=27 February 2023 |work=The Guardian |date=3 December 2019}}</ref> [[Artificial cell#Artificial neurons|physical artificial neurons]].<ref>{{cite journal |last1=Abu-Hassan |first1=Kamal |last2=Taylor |first2=Joseph D. |last3=Morris |first3=Paul G. |last4=Donati |first4=Elisa |last5=Bortolotto |first5=Zuner A. |last6=Indiveri |first6=Giacomo |last7=Paton |first7=Julian F. R. |last8=Nogaret |first8=Alain |title=Optimal solid state neurons |journal=Nature Communications |date=3 December 2019 |volume=10 |issue=1 |pages=5309 |doi=10.1038/s41467-019-13177-3 |pmid=31796727 |pmc=6890780 |bibcode=2019NatCo..10.5309A |language=en |issn=2041-1723}}</ref> [[Bioimplant]]s of genetically engineered or stem-cell grown neural tissue may become possible as well.<ref name="10.1177/1477878511409623">{{cite journal |authorlink1=Allen Buchanan |last1=Buchanan |first1=Allen |title=Cognitive enhancement and education |journal=Theory and Research in Education |date=July 2011 |volume=9 |issue=2 |pages=145–162 |doi=10.1177/1477878511409623 |language=en |issn=1477-8785}}</ref>


====Dietary components and supplements====
====Dietary components and supplements====
Various compounds contained in foods or consumed in isolated forms or herbs such as [[cinnamon]],<ref>{{cite journal |last1=Nakhaee |first1=Samaneh |last2=Kooshki |first2=Alireza |last3=Hormozi |first3=Ali |last4=Akbari |first4=Aref |last5=Mehrpour |first5=Omid |last6=Farrokhfall |first6=Khadijeh |title=Cinnamon and cognitive function: a systematic review of preclinical and clinical studies |journal=Nutritional Neuroscience |date=18 January 2023 |pages=1–15 |doi=10.1080/1028415X.2023.2166436 |pmid=36652384 |s2cid=255969320 |issn=1028-415X}}</ref> [[cocoa powder]],<ref>{{cite journal |last1=Gratton |first1=Gabriele |last2=Weaver |first2=Samuel R. |last3=Burley |first3=Claire V. |last4=Low |first4=Kathy A. |last5=Maclin |first5=Edward L. |last6=Johns |first6=Paul W. |last7=Pham |first7=Quang S. |last8=Lucas |first8=Samuel J. E. |last9=Fabiani |first9=Monica |last10=Rendeiro |first10=Catarina |title=Dietary flavanols improve cerebral cortical oxygenation and cognition in healthy adults |journal=Scientific Reports |date=24 November 2020 |volume=10 |issue=1 |pages=19409 |doi=10.1038/s41598-020-76160-9 |pmid=33235219 |pmc=7687895 |bibcode=2020NatSR..1019409G |language=en |issn=2045-2322}}</ref><ref name="10.1055/a-0588-5534"/><ref>{{cite journal |last1=Melzer |first1=Thayza Martins |last2=Manosso |first2=Luana Meller |last3=Yau |first3=Suk-yu |last4=Gil-Mohapel |first4=Joana |last5=Brocardo |first5=Patricia S. |title=In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function |journal=International Journal of Molecular Sciences |date=January 2021 |volume=22 |issue=9 |pages=5026 |doi=10.3390/ijms22095026 |language=en |issn=1422-0067}}</ref><ref name="10.3389/fnut.2017.00019">{{cite journal |last1=Socci |first1=Valentina |last2=Tempesta |first2=Daniela |last3=Desideri |first3=Giovambattista |last4=De Gennaro |first4=Luigi |last5=Ferrara |first5=Michele |title=Enhancing Human Cognition with Cocoa Flavonoids |journal=Frontiers in Nutrition |date=2017 |volume=4 |page=19 |doi=10.3389/fnut.2017.00019 |pmid=28560212 |pmc=5432604 |issn=2296-861X|doi-access=free }}</ref> [[anthocyanin]]s,<ref>{{cite journal |last1=Kent |first1=K. |last2=Charlton |first2=K. E. |last3=Netzel |first3=M. |last4=Fanning |first4=K. |title=Food-based anthocyanin intake and cognitive outcomes in human intervention trials: a systematic review |journal=Journal of Human Nutrition and Dietetics |date=June 2017 |volume=30 |issue=3 |pages=260–274 |doi=10.1111/jhn.12431 |pmid=27730693 |s2cid=4344504 |language=en}}</ref> [[levodopa]]<ref name="10.1111/nyas.13040"/> l-[[phenylalanine]]<ref>{{cite journal |last1=Strasser |first1=Barbara |last2=Gostner |first2=Johanna M. |last3=Fuchs |first3=Dietmar |title=Mood, food, and cognition: role of tryptophan and serotonin |journal=Current Opinion in Clinical Nutrition and Metabolic Care |date=January 2016 |volume=19 |issue=1 |pages=55–61|doi=10.1097/MCO.0000000000000237|pmid=26560523 |s2cid=12387611 |url=https://journals.lww.com/co-clinicalnutrition/Abstract/2016/01000/Mood,_food,_and_cognition__role_of_tryptophan_and.11.aspx|url-access=subscription}}</ref><ref name="joshi"/> and [[l-tyrosine]],<ref>{{cite journal |last1=Jongkees |first1=Bryant J. |last2=Hommel |first2=Bernhard |last3=Kühn |first3=Simone |last4=Colzato |first4=Lorenza S. |title=Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands—A review |journal=Journal of Psychiatric Research |date=1 November 2015 |volume=70 |pages=50–57 |doi=10.1016/j.jpsychires.2015.08.014 |pmid=26424423 |language=en |issn=0022-3956}}</ref><ref name="10.1093/jn/137.6.1539S"/> [[phenethylamine]] (PEA),<ref name="10.3390/md20080493">{{cite journal |last1=McCarthy |first1=Bozena |last2=O’Neill |first2=Graham |last3=Abu-Ghannam
Various compounds contained in foods or consumed in isolated forms or herbs such as [[cinnamon]],<ref>{{cite journal |last1=Nakhaee |first1=Samaneh |last2=Kooshki |first2=Alireza |last3=Hormozi |first3=Ali |last4=Akbari |first4=Aref |last5=Mehrpour |first5=Omid |last6=Farrokhfall |first6=Khadijeh |title=Cinnamon and cognitive function: a systematic review of preclinical and clinical studies |journal=Nutritional Neuroscience |date=18 January 2023 |pages=1–15 |doi=10.1080/1028415X.2023.2166436 |pmid=36652384 |s2cid=255969320 |issn=1028-415X}}</ref> [[cocoa powder]],<ref>{{cite journal |last1=Gratton |first1=Gabriele |last2=Weaver |first2=Samuel R. |last3=Burley |first3=Claire V. |last4=Low |first4=Kathy A. |last5=Maclin |first5=Edward L. |last6=Johns |first6=Paul W. |last7=Pham |first7=Quang S. |last8=Lucas |first8=Samuel J. E. |last9=Fabiani |first9=Monica |last10=Rendeiro |first10=Catarina |title=Dietary flavanols improve cerebral cortical oxygenation and cognition in healthy adults |journal=Scientific Reports |date=24 November 2020 |volume=10 |issue=1 |pages=19409 |doi=10.1038/s41598-020-76160-9 |pmid=33235219 |pmc=7687895 |bibcode=2020NatSR..1019409G |language=en |issn=2045-2322}}</ref><ref name="10.1055/a-0588-5534"/><ref>{{cite journal |last1=Melzer |first1=Thayza Martins |last2=Manosso |first2=Luana Meller |last3=Yau |first3=Suk-yu |last4=Gil-Mohapel |first4=Joana |last5=Brocardo |first5=Patricia S. |title=In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function |journal=International Journal of Molecular Sciences |date=January 2021 |volume=22 |issue=9 |pages=5026 |doi=10.3390/ijms22095026 |language=en |issn=1422-0067}}</ref><ref name="10.3389/fnut.2017.00019">{{cite journal |last1=Socci |first1=Valentina |last2=Tempesta |first2=Daniela |last3=Desideri |first3=Giovambattista |last4=De Gennaro |first4=Luigi |last5=Ferrara |first5=Michele |title=Enhancing Human Cognition with Cocoa Flavonoids |journal=Frontiers in Nutrition |date=2017 |volume=4 |page=19 |doi=10.3389/fnut.2017.00019 |pmid=28560212 |pmc=5432604 |issn=2296-861X|doi-access=free }}</ref><ref name="10.1123/ijsnem.2017-0314"/> [[anthocyanin]]s,<ref>{{cite journal |last1=Kent |first1=K. |last2=Charlton |first2=K. E. |last3=Netzel |first3=M. |last4=Fanning |first4=K. |title=Food-based anthocyanin intake and cognitive outcomes in human intervention trials: a systematic review |journal=Journal of Human Nutrition and Dietetics |date=June 2017 |volume=30 |issue=3 |pages=260–274 |doi=10.1111/jhn.12431 |pmid=27730693 |s2cid=4344504 |language=en}}</ref> [[Nitrate#Dietary nitrate|dietary nitrate]] (in beet root),<ref name="10.1123/ijsnem.2017-0314"/> [[epicatechin]],<ref>{{cite journal |last1=Guerrieri |first1=Davide |last2=Moon |first2=Hyo Youl |last3=van Praag |first3=Henriette |title=Exercise in a Pill: The Latest on Exercise-Mimetics |journal=Brain Plasticity |date=1 January 2017 |volume=2 |issue=2 |pages=153–169 |doi=10.3233/BPL-160043 |language=en |issn=2213-6304}}</ref><ref>{{cite journal |last1=Haskell-Ramsay |first1=Crystal F. |last2=Schmitt |first2=Jeroen |last3=Actis-Goretta |first3=Lucas |title=The Impact of Epicatechin on Human Cognition: The Role of Cerebral Blood Flow |journal=Nutrients |date=August 2018 |volume=10 |issue=8 |pages=986 |doi=10.3390/nu10080986 |language=en |issn=2072-6643}}</ref> [[levodopa]]<ref name="10.1111/nyas.13040"/> l-[[phenylalanine]]<ref>{{cite journal |last1=Strasser |first1=Barbara |last2=Gostner |first2=Johanna M. |last3=Fuchs |first3=Dietmar |title=Mood, food, and cognition: role of tryptophan and serotonin |journal=Current Opinion in Clinical Nutrition and Metabolic Care |date=January 2016 |volume=19 |issue=1 |pages=55–61|doi=10.1097/MCO.0000000000000237|pmid=26560523 |s2cid=12387611 |url=https://journals.lww.com/co-clinicalnutrition/Abstract/2016/01000/Mood,_food,_and_cognition__role_of_tryptophan_and.11.aspx|url-access=subscription}}</ref><ref name="joshi"/> and [[l-tyrosine]],<ref>{{cite journal |last1=Jongkees |first1=Bryant J. |last2=Hommel |first2=Bernhard |last3=Kühn |first3=Simone |last4=Colzato |first4=Lorenza S. |title=Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands—A review |journal=Journal of Psychiatric Research |date=1 November 2015 |volume=70 |pages=50–57 |doi=10.1016/j.jpsychires.2015.08.014 |pmid=26424423 |language=en |issn=0022-3956}}</ref><ref name="10.1093/jn/137.6.1539S"/> [[phenethylamine]] (PEA),<ref name="10.3390/md20080493">{{cite journal |last1=McCarthy |first1=Bozena |last2=O’Neill |first2=Graham |last3=Abu-Ghannam
|first3=Nissreen |title=Potential Psychoactive Effects of Microalgal Bioactive Compounds for the Case of Sleep and Mood Regulation: Opportunities and Challenges |journal=Marine Drugs |date=August 2022 |volume=20 |issue=8 |pages=493 |doi=10.3390/md20080493 |pmid=36005495 |pmc=9410000 |language=en |issn=1660-3397|doi-access=free }}</ref> [[carotenoid]]s like [[lycopene]],<ref name="10.3390/md20080493"/> [[l-theanine]],<ref>{{cite journal |last1=Lee |first1=Gihyun |last2=Bae |first2=Hyunsu |title=Therapeutic Effects of Phytochemicals and Medicinal Herbs on Depression |journal=BioMed Research International |date=2017 |volume=2017 |pages=1–11 |doi=10.1155/2017/6596241}}</ref> [[apigenin]] (or [[chamomile]]),<ref>{{cite journal |last1=Venigalla |first1=Madhuri |last2=Gyengesi |first2=Erika |last3=Münch |first3=Gerald |title=Curcumin and Apigenin – novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease |journal=Neural Regeneration Research |date=August 2015 |volume=10 |issue=8 |pages=1181–1185 |doi=10.4103/1673-5374.162686 |pmid=26487830 |pmc=4590215 |issn=1673-5374}}</ref><ref>{{cite journal |last1=Salehi |first1=Bahare |last2=Venditti |first2=Alessandro |last3=Sharifi-Rad |first3=Mehdi |last4=Kręgiel |first4=Dorota |last5=Sharifi-Rad |first5=Javad |last6=Durazzo |first6=Alessandra |last7=Lucarini |first7=Massimo |last8=Santini |first8=Antonello |last9=Souto |first9=Eliana B. |last10=Novellino |first10=Ettore |last11=Antolak |first11=Hubert |last12=Azzini |first12=Elena |last13=Setzer |first13=William N. |last14=Martins |first14=Natália |title=The Therapeutic Potential of Apigenin |journal=International Journal of Molecular Sciences |date=January 2019 |volume=20 |issue=6 |pages=1305 |doi=10.3390/ijms20061305 |pmid=30875872 |pmc=6472148 |language=en |issn=1422-0067|doi-access=free }}</ref> [[ginger]],<ref>{{cite journal |last1=Arcusa |first1=Raúl |last2=Villaño |first2=Débora |last3=Marhuenda |first3=Javier |last4=Cano |first4=Miguel |last5=Cerdà |first5=Begoña |last6=Zafrilla |first6=Pilar |title=Potential Role of Ginger (Zingiber officinale Roscoe) in the Prevention of Neurodegenerative Diseases |journal=Frontiers in Nutrition |date=2022 |volume=9 |page=809621 |doi=10.3389/fnut.2022.809621 |pmid=35369082 |pmc=8971783 |issn=2296-861X|doi-access=free }}</ref><ref name="10.3389/fnut.2017.00019"/><ref name="joshi"/> [[herbal infusion]]s (notably [[lemon balm]], [[rosemary]], [[peppermint]] and [[Caffeinated drink#Beverages|caffeinated drinks]]),<ref>{{cite journal |last1=Etheridge |first1=Christopher John |last2=Derbyshire |first2=Emma |title=Herbal infusions and health: A review of findings from human studies, mechanisms and future research directions |journal=Nutrition & Food Science |date=1 January 2020 |volume=50 |issue=5 |pages=969–985 |doi=10.1108/NFS-08-2019-0263 |s2cid=211002387 |issn=0034-6659}}</ref><ref>{{cite journal |last1=Howes |first1=Melanie‐Jayne R. |last2=Perry |first2=Nicolette S.L. |last3=Vásquez‐Londoño |first3=Carlos |last4=Perry |first4=Elaine K. |title=Role of phytochemicals as nutraceuticals for cognitive functions affected in ageing |journal=British Journal of Pharmacology |date=March 2020 |volume=177 |issue=6 |pages=1294–1315 |doi=10.1111/bph.14898 |pmid=31650528 |pmc=7056459 |language=en |issn=0007-1188}}</ref><ref>{{cite journal |last1=Roe |first1=Amy L. |last2=Venkataraman |first2=Arvind |title=The Safety and Efficacy of Botanicals with Nootropic Effects |journal=Current Neuropharmacology |date=September 2021 |volume=19 |issue=9 |pages=1442–1467 |doi=10.2174/1570159X19666210726150432|pmid=34315377 |pmc=8762178 }}</ref><ref>{{cite journal |last1=Hussain |first1=S. M. |last2=Syeda |first2=A. F. |last3=Alshammari |first3=M. |last4=Alnasser |first4=S. |last5=Alenzi |first5=N. D. |last6=Alanazi |first6=S. T. |last7=Nandakumar |first7=K. |title=Cognition enhancing effect of rosemary (Rosmarinus officinalis L.) in lab animal studies: a systematic review and meta-analysis |journal=Brazilian Journal of Medical and Biological Research |date=9 February 2022 |volume=55 |pages=e11593 |doi=10.1590/1414-431X2021e11593 |pmid=35170682 |pmc=8851910 |language=en |issn=0100-879X}}</ref><ref name="10.1097/YIC.0000000000000172"/><ref name="joshi"/> [[rhodiola rosea]],<ref>{{cite journal |last1=Onaolapo |first1=Adejoke Yetunde |last2=Obelawo |first2=Adebimpe Yemisi |last3=Onaolapo |first3=Olakunle James |title=Brain Ageing, Cognition and Diet: A Review of the Emerging Roles of Food-Based Nootropics in Mitigating Age-related Memory Decline |journal=Current Aging Science |year=2019 |volume=12 |issue=1 |pages=2–14 |doi=10.2174/1874609812666190311160754 |pmid=30864515 |pmc=6971896 |language=en}}</ref><ref>{{cite journal |last1=Malík |first1=Matěj |last2=Tlustoš |first2=Pavel |title=Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs |journal=Nutrients |date=January 2022 |volume=14 |issue=16 |pages=3367 |doi=10.3390/nu14163367 |pmid=36014874 |pmc=9415189 |language=en |issn=2072-6643|doi-access=free }}</ref><ref name="joshi"/><ref name="10.18053/jctres.07.202104.014"/><ref>{{cite journal |last1=Suliman |first1=Noor Azuin |last2=Mat Taib |first2=Che Norma |last3=Mohd Moklas |first3=Mohamad Aris |last4=Adenan |first4=Mohd Ilham |last5=Hidayat Baharuldin |first5=Mohamad Taufik |last6=Basir |first6=Rusliza |title=Establishing Natural Nootropics: Recent Molecular Enhancement Influenced by Natural Nootropic |journal=Evidence-Based Complementary and Alternative Medicine |date=30 August 2016 |volume=2016 |pages=e4391375 |doi=10.1155/2016/4391375 |pmid=27656235 |pmc=5021479 |language=en |issn=1741-427X|doi-access=free }}</ref> [[creatine]],<ref>{{cite journal |last1=Roschel |first1=Hamilton |last2=Gualano |first2=Bruno |last3=Ostojic |first3=Sergej M. |last4=Rawson |first4=Eric S. |title=Creatine Supplementation and Brain Health |journal=Nutrients |date=February 2021 |volume=13 |issue=2 |pages=586 |doi=10.3390/nu13020586 |pmid=33578876 |pmc=7916590 |language=en |issn=2072-6643|doi-access=free }}</ref><ref>{{cite journal |last1=Dolan |first1=Eimear |last2=Gualano |first2=Bruno |last3=Rawson |first3=Eric S. |title=Beyond muscle: the effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury |journal=European Journal of Sport Science |date=2 January 2019 |volume=19 |issue=1 |pages=1–14 |doi=10.1080/17461391.2018.1500644 |pmid=30086660 |s2cid=51936612 |issn=1746-1391}}</ref><ref name="10.1089/acm.2021.0135"/> [[omega 3]] (e.g. sustainably [[Algaculture|algae-derived]]),<ref>{{cite journal |last1=Dyall |first1=Simon C. |title=Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA |journal=Frontiers in Aging Neuroscience |date=2015 |volume=7 |page=52 |doi=10.3389/fnagi.2015.00052 |pmid=25954194 |pmc=4404917 |issn=1663-4365|doi-access=free }}</ref><ref>{{cite journal |last1=Singh |first1=Jessica E. |title=Dietary Sources of Omega-3 Fatty Acids Versus Omega-3 Fatty Acid Supplementation Effects on Cognition and Inflammation |journal=Current Nutrition Reports |date=1 September 2020 |volume=9 |issue=3 |pages=264–277 |doi=10.1007/s13668-020-00329-x |pmid=32621236 |s2cid=220306807 |language=en |issn=2161-3311}}</ref><ref name="10.3390/md20080493"/> and other nutrients and phytonutrients<ref name="10.18053/jctres.07.202104.014">{{cite journal |doi=10.18053/jctres.07.202104.014|last1=Lewis |first1=John E. |last2=Poles |first2=Jillian |last3=Shaw |first3=Delaney P. |last4=Karhu |first4=Elisa |last5=Khan |first5=Sher Ali |last6=Lyons |first6=Annabel E. |last7=Sacco |first7=Susana Barreiro |last8=McDaniel |first8=H. Reginald |title=The effects of twenty-one nutrients and phytonutrients on cognitive function: A narrative review |journal=Journal of Clinical and Translational Research |date=26 August 2021 |volume=7 |issue=4 |pages=575–620 |pmid=34541370 |pmc=8445631 |issn=2424-810X}}</ref><ref name="10.1089/acm.2021.0135">{{cite journal |last1=Crawford |first1=Cindy |last2=Boyd |first2=Courtney |last3=Deuster |first3=Patricia A. |title=Dietary Supplement Ingredients for Optimizing Cognitive Performance Among Healthy Adults: A Systematic Review |journal=The Journal of Alternative and Complementary Medicine |date=1 November 2021 |volume=27 |issue=11 |pages=940–958 |doi=10.1089/acm.2021.0135 |pmid=34370563 |s2cid=236969310 |issn=1075-5535}}</ref> as well as correction of prevalent [[micronutrient]] deficiencies<ref>{{cite journal |last1=Muscaritoli |first1=Maurizio |title=The Impact of Nutrients on Mental Health and Well-Being: Insights From the Literature |journal=Frontiers in Nutrition |date=2021 |volume=8 |page=656290 |doi=10.3389/fnut.2021.656290 |pmid=33763446 |pmc=7982519 |issn=2296-861X|doi-access=free }}</ref><ref name="10.1016/S2214-109X(22)00367-9">{{cite journal |last1=Stevens |first1=Gretchen A. |last2=Beal |first2=Ty |last3=Mbuya |first3=Mduduzi N. N. |last4=Luo |first4=Hanqi |last5=Neufeld |first5=Lynnette M. |last6=Addo |first6=O. Yaw |last7=Adu-Afarwuah |first7=Seth |last8=Alayón |first8=Silvia |last9=Bhutta |first9=Zulfiqar |last10=Brown |first10=Kenneth H. |last11=Jefferds |first11=Maria Elena |last12=Engle-Stone |first12=Reina |last13=Fawzi |first13=Wafaie |last14=Hess |first14=Sonja Y. |last15=Johnston |first15=Robert |last16=Katz |first16=Joanne |last17=Krasevec |first17=Julia |last18=McDonald |first18=Christine M. |last19=Mei |first19=Zuguo |last20=Osendarp |first20=Saskia |last21=Paciorek |first21=Christopher J. |last22=Petry |first22=Nicolai |last23=Pfeiffer |first23=Christine M. |last24=Ramirez-Luzuriaga |first24=Maria J. |last25=Rogers |first25=Lisa M. |last26=Rohner |first26=Fabian |last27=Sethi |first27=Vani |last28=Suchdev |first28=Parminder S. |last29=Tessema |first29=Masresha |last30=Villapando |first30=Salvador |last31=Wieringa |first31=Frank T. |last32=Williams |first32=Anne M. |last33=Woldeyahannes |first33=Meseret |last34=Young |first34=Melissa F. |title=Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: a pooled analysis of individual-level data from population-representative surveys |journal=The Lancet Global Health |date=1 November 2022 |volume=10 |issue=11 |pages=e1590–e1599 |doi=10.1016/S2214-109X(22)00367-9 |pmid=36240826 |s2cid=252857990 |language=English |issn=2214-109X|doi-access=free }}</ref><ref name="joshi"/><ref>{{cite journal |last1=Enderami |first1=Athena |last2=Zarghami |first2=Mehran |last3=Darvishi-Khezri |first3=Hadi |title=The effects and potential mechanisms of folic acid on cognitive function: a comprehensive review |journal=Neurological Sciences |date=1 October 2018 |volume=39 |issue=10 |pages=1667–1675 |doi=10.1007/s10072-018-3473-4 |pmid=29936555 |s2cid=49421574 |language=en |issn=1590-3478}}</ref> are investigated for potential minor but significant or additive impacts on cognition (e.g. mild stimulation and/or mood modulation) in healthy non-old individuals. {{see below|also [[#Diet]] below}}
|first3=Nissreen |title=Potential Psychoactive Effects of Microalgal Bioactive Compounds for the Case of Sleep and Mood Regulation: Opportunities and Challenges |journal=Marine Drugs |date=August 2022 |volume=20 |issue=8 |pages=493 |doi=10.3390/md20080493 |pmid=36005495 |pmc=9410000 |language=en |issn=1660-3397|doi-access=free }}</ref> [[carotenoid]]s like [[lycopene]] (in tomato sauce),<ref name="10.3390/md20080493"/> [[l-theanine]],<ref>{{cite journal |last1=Lee |first1=Gihyun |last2=Bae |first2=Hyunsu |title=Therapeutic Effects of Phytochemicals and Medicinal Herbs on Depression |journal=BioMed Research International |date=2017 |volume=2017 |pages=1–11 |doi=10.1155/2017/6596241}}</ref> [[apigenin]] (or [[chamomile]]),<ref>{{cite journal |last1=Venigalla |first1=Madhuri |last2=Gyengesi |first2=Erika |last3=Münch |first3=Gerald |title=Curcumin and Apigenin – novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease |journal=Neural Regeneration Research |date=August 2015 |volume=10 |issue=8 |pages=1181–1185 |doi=10.4103/1673-5374.162686 |pmid=26487830 |pmc=4590215 |issn=1673-5374}}</ref><ref>{{cite journal |last1=Salehi |first1=Bahare |last2=Venditti |first2=Alessandro |last3=Sharifi-Rad |first3=Mehdi |last4=Kręgiel |first4=Dorota |last5=Sharifi-Rad |first5=Javad |last6=Durazzo |first6=Alessandra |last7=Lucarini |first7=Massimo |last8=Santini |first8=Antonello |last9=Souto |first9=Eliana B. |last10=Novellino |first10=Ettore |last11=Antolak |first11=Hubert |last12=Azzini |first12=Elena |last13=Setzer |first13=William N. |last14=Martins |first14=Natália |title=The Therapeutic Potential of Apigenin |journal=International Journal of Molecular Sciences |date=January 2019 |volume=20 |issue=6 |pages=1305 |doi=10.3390/ijms20061305 |pmid=30875872 |pmc=6472148 |language=en |issn=1422-0067|doi-access=free }}</ref> [[ginger]],<ref>{{cite journal |last1=Arcusa |first1=Raúl |last2=Villaño |first2=Débora |last3=Marhuenda |first3=Javier |last4=Cano |first4=Miguel |last5=Cerdà |first5=Begoña |last6=Zafrilla |first6=Pilar |title=Potential Role of Ginger (Zingiber officinale Roscoe) in the Prevention of Neurodegenerative Diseases |journal=Frontiers in Nutrition |date=2022 |volume=9 |page=809621 |doi=10.3389/fnut.2022.809621 |pmid=35369082 |pmc=8971783 |issn=2296-861X|doi-access=free }}</ref><ref name="10.3389/fnut.2017.00019"/><ref name="joshi"/> [[herbal infusion]]s (notably [[lemon balm]], [[rosemary]], [[peppermint]] and [[Caffeinated drink#Beverages|caffeinated drinks]]),<ref>{{cite journal |last1=Etheridge |first1=Christopher John |last2=Derbyshire |first2=Emma |title=Herbal infusions and health: A review of findings from human studies, mechanisms and future research directions |journal=Nutrition & Food Science |date=1 January 2020 |volume=50 |issue=5 |pages=969–985 |doi=10.1108/NFS-08-2019-0263 |s2cid=211002387 |issn=0034-6659}}</ref><ref>{{cite journal |last1=Howes |first1=Melanie‐Jayne R. |last2=Perry |first2=Nicolette S.L. |last3=Vásquez‐Londoño |first3=Carlos |last4=Perry |first4=Elaine K. |title=Role of phytochemicals as nutraceuticals for cognitive functions affected in ageing |journal=British Journal of Pharmacology |date=March 2020 |volume=177 |issue=6 |pages=1294–1315 |doi=10.1111/bph.14898 |pmid=31650528 |pmc=7056459 |language=en |issn=0007-1188}}</ref><ref>{{cite journal |last1=Roe |first1=Amy L. |last2=Venkataraman |first2=Arvind |title=The Safety and Efficacy of Botanicals with Nootropic Effects |journal=Current Neuropharmacology |date=September 2021 |volume=19 |issue=9 |pages=1442–1467 |doi=10.2174/1570159X19666210726150432|pmid=34315377 |pmc=8762178 }}</ref><ref>{{cite journal |last1=Hussain |first1=S. M. |last2=Syeda |first2=A. F. |last3=Alshammari |first3=M. |last4=Alnasser |first4=S. |last5=Alenzi |first5=N. D. |last6=Alanazi |first6=S. T. |last7=Nandakumar |first7=K. |title=Cognition enhancing effect of rosemary (Rosmarinus officinalis L.) in lab animal studies: a systematic review and meta-analysis |journal=Brazilian Journal of Medical and Biological Research |date=9 February 2022 |volume=55 |pages=e11593 |doi=10.1590/1414-431X2021e11593 |pmid=35170682 |pmc=8851910 |language=en |issn=0100-879X}}</ref><ref name="10.1097/YIC.0000000000000172"/><ref name="joshi"/> [[rhodiola rosea]],<ref>{{cite journal |last1=Onaolapo |first1=Adejoke Yetunde |last2=Obelawo |first2=Adebimpe Yemisi |last3=Onaolapo |first3=Olakunle James |title=Brain Ageing, Cognition and Diet: A Review of the Emerging Roles of Food-Based Nootropics in Mitigating Age-related Memory Decline |journal=Current Aging Science |year=2019 |volume=12 |issue=1 |pages=2–14 |doi=10.2174/1874609812666190311160754 |pmid=30864515 |pmc=6971896 |language=en}}</ref><ref>{{cite journal |last1=Malík |first1=Matěj |last2=Tlustoš |first2=Pavel |title=Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs |journal=Nutrients |date=January 2022 |volume=14 |issue=16 |pages=3367 |doi=10.3390/nu14163367 |pmid=36014874 |pmc=9415189 |language=en |issn=2072-6643|doi-access=free }}</ref><ref name="joshi"/><ref name="10.18053/jctres.07.202104.014"/><ref>{{cite journal |last1=Suliman |first1=Noor Azuin |last2=Mat Taib |first2=Che Norma |last3=Mohd Moklas |first3=Mohamad Aris |last4=Adenan |first4=Mohd Ilham |last5=Hidayat Baharuldin |first5=Mohamad Taufik |last6=Basir |first6=Rusliza |title=Establishing Natural Nootropics: Recent Molecular Enhancement Influenced by Natural Nootropic |journal=Evidence-Based Complementary and Alternative Medicine |date=30 August 2016 |volume=2016 |pages=e4391375 |doi=10.1155/2016/4391375 |pmid=27656235 |pmc=5021479 |language=en |issn=1741-427X|doi-access=free }}</ref> [[creatine]],<ref>{{cite journal |last1=Roschel |first1=Hamilton |last2=Gualano |first2=Bruno |last3=Ostojic |first3=Sergej M. |last4=Rawson |first4=Eric S. |title=Creatine Supplementation and Brain Health |journal=Nutrients |date=February 2021 |volume=13 |issue=2 |pages=586 |doi=10.3390/nu13020586 |pmid=33578876 |pmc=7916590 |language=en |issn=2072-6643|doi-access=free }}</ref><ref>{{cite journal |last1=Dolan |first1=Eimear |last2=Gualano |first2=Bruno |last3=Rawson |first3=Eric S. |title=Beyond muscle: the effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury |journal=European Journal of Sport Science |date=2 January 2019 |volume=19 |issue=1 |pages=1–14 |doi=10.1080/17461391.2018.1500644 |pmid=30086660 |s2cid=51936612 |issn=1746-1391}}</ref><ref name="10.1089/acm.2021.0135"/> [[omega 3]] (e.g. sustainably [[Algaculture|algae-derived]]),<ref>{{cite journal |last1=Dyall |first1=Simon C. |title=Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA |journal=Frontiers in Aging Neuroscience |date=2015 |volume=7 |page=52 |doi=10.3389/fnagi.2015.00052 |pmid=25954194 |pmc=4404917 |issn=1663-4365|doi-access=free }}</ref><ref>{{cite journal |last1=Singh |first1=Jessica E. |title=Dietary Sources of Omega-3 Fatty Acids Versus Omega-3 Fatty Acid Supplementation Effects on Cognition and Inflammation |journal=Current Nutrition Reports |date=1 September 2020 |volume=9 |issue=3 |pages=264–277 |doi=10.1007/s13668-020-00329-x |pmid=32621236 |s2cid=220306807 |language=en |issn=2161-3311}}</ref><ref name="10.3390/md20080493"/> and other nutrients and phytonutrients<ref name="10.18053/jctres.07.202104.014">{{cite journal |doi=10.18053/jctres.07.202104.014|last1=Lewis |first1=John E. |last2=Poles |first2=Jillian |last3=Shaw |first3=Delaney P. |last4=Karhu |first4=Elisa |last5=Khan |first5=Sher Ali |last6=Lyons |first6=Annabel E. |last7=Sacco |first7=Susana Barreiro |last8=McDaniel |first8=H. Reginald |title=The effects of twenty-one nutrients and phytonutrients on cognitive function: A narrative review |journal=Journal of Clinical and Translational Research |date=26 August 2021 |volume=7 |issue=4 |pages=575–620 |pmid=34541370 |pmc=8445631 |issn=2424-810X}}</ref><ref name="10.1089/acm.2021.0135">{{cite journal |last1=Crawford |first1=Cindy |last2=Boyd |first2=Courtney |last3=Deuster |first3=Patricia A. |title=Dietary Supplement Ingredients for Optimizing Cognitive Performance Among Healthy Adults: A Systematic Review |journal=The Journal of Alternative and Complementary Medicine |date=1 November 2021 |volume=27 |issue=11 |pages=940–958 |doi=10.1089/acm.2021.0135 |pmid=34370563 |s2cid=236969310 |issn=1075-5535}}</ref> as well as correction of prevalent [[micronutrient]] deficiencies<ref>{{cite journal |last1=Muscaritoli |first1=Maurizio |title=The Impact of Nutrients on Mental Health and Well-Being: Insights From the Literature |journal=Frontiers in Nutrition |date=2021 |volume=8 |page=656290 |doi=10.3389/fnut.2021.656290 |pmid=33763446 |pmc=7982519 |issn=2296-861X|doi-access=free }}</ref><ref name="10.1016/S2214-109X(22)00367-9">{{cite journal |last1=Stevens |first1=Gretchen A. |last2=Beal |first2=Ty |last3=Mbuya |first3=Mduduzi N. N. |last4=Luo |first4=Hanqi |last5=Neufeld |first5=Lynnette M. |last6=Addo |first6=O. Yaw |last7=Adu-Afarwuah |first7=Seth |last8=Alayón |first8=Silvia |last9=Bhutta |first9=Zulfiqar |last10=Brown |first10=Kenneth H. |last11=Jefferds |first11=Maria Elena |last12=Engle-Stone |first12=Reina |last13=Fawzi |first13=Wafaie |last14=Hess |first14=Sonja Y. |last15=Johnston |first15=Robert |last16=Katz |first16=Joanne |last17=Krasevec |first17=Julia |last18=McDonald |first18=Christine M. |last19=Mei |first19=Zuguo |last20=Osendarp |first20=Saskia |last21=Paciorek |first21=Christopher J. |last22=Petry |first22=Nicolai |last23=Pfeiffer |first23=Christine M. |last24=Ramirez-Luzuriaga |first24=Maria J. |last25=Rogers |first25=Lisa M. |last26=Rohner |first26=Fabian |last27=Sethi |first27=Vani |last28=Suchdev |first28=Parminder S. |last29=Tessema |first29=Masresha |last30=Villapando |first30=Salvador |last31=Wieringa |first31=Frank T. |last32=Williams |first32=Anne M. |last33=Woldeyahannes |first33=Meseret |last34=Young |first34=Melissa F. |title=Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: a pooled analysis of individual-level data from population-representative surveys |journal=The Lancet Global Health |date=1 November 2022 |volume=10 |issue=11 |pages=e1590–e1599 |doi=10.1016/S2214-109X(22)00367-9 |pmid=36240826 |s2cid=252857990 |language=English |issn=2214-109X|doi-access=free }}</ref><ref name="joshi"/><ref>{{cite journal |last1=Enderami |first1=Athena |last2=Zarghami |first2=Mehran |last3=Darvishi-Khezri |first3=Hadi |title=The effects and potential mechanisms of folic acid on cognitive function: a comprehensive review |journal=Neurological Sciences |date=1 October 2018 |volume=39 |issue=10 |pages=1667–1675 |doi=10.1007/s10072-018-3473-4 |pmid=29936555 |s2cid=49421574 |language=en |issn=1590-3478}}</ref> are investigated for potential minor but significant or additive impacts on cognition (e.g. mild stimulation and/or mood modulation) in healthy non-old individuals. {{see below|also [[#Diet]] below}}


The dietary component [[glucose]] (and its [[glycogen]] form) is the main energy sources for the brain, with some researchers considering it a "[b]iochemical enhancer" despite of the health impacts of direct consumption. A constant supply of it is needed and simple sugars can spike blood glucose and their glucose supply does not last long. Slowly absorbed carbohydrate-containing food or low-GI food would lead to a slower release of glucose than a quickly absorbed or high-GI food.<ref>{{cite journal |last1=Philippou |first1=Elena |last2=Constantinou |first2=Marios |title=The Influence of Glycemic Index on Cognitive Functioning: A Systematic Review of the Evidence |journal=Advances in Nutrition |date=1 March 2014 |volume=5 |issue=2 |pages=119–130 |doi=10.3945/an.113.004960 |language=en |issn=2161-8313}}</ref><ref name="10.1123/ijsnem.2017-0314">{{cite journal |last1=Meeusen |first1=Romain |last2=Decroix |first2=Lieselot |title=Nutritional Supplements and the Brain |journal=International Journal of Sport Nutrition and Exercise Metabolism |date=1 March 2018 |volume=28 |issue=2 |pages=200–211 |doi=10.1123/ijsnem.2017-0314 |language=en |issn=1543-2742}}</ref><ref name="10.1021/acschemneuro.8b00571"/><ref name="joshi"/>
The dietary component [[glucose]] (and its [[glycogen]] form) is the main energy sources for the brain, with some researchers considering it a "[b]iochemical enhancer" despite of the health impacts of direct consumption. A constant supply of it is needed and simple sugars can spike blood glucose and their glucose supply does not last long. Slowly absorbed carbohydrate-containing food or low-[[glycemic index|GI]] food would lead to a slower release of glucose than a quickly absorbed or high-GI food.<ref>{{cite journal |last1=Philippou |first1=Elena |last2=Constantinou |first2=Marios |title=The Influence of Glycemic Index on Cognitive Functioning: A Systematic Review of the Evidence |journal=Advances in Nutrition |date=1 March 2014 |volume=5 |issue=2 |pages=119–130 |doi=10.3945/an.113.004960 |language=en |issn=2161-8313}}</ref><ref name="10.1123/ijsnem.2017-0314">{{cite journal |last1=Meeusen |first1=Romain |last2=Decroix |first2=Lieselot |title=Nutritional Supplements and the Brain |journal=International Journal of Sport Nutrition and Exercise Metabolism |date=1 March 2018 |volume=28 |issue=2 |pages=200–211 |doi=10.1123/ijsnem.2017-0314 |language=en |issn=1543-2742}}</ref><ref name="10.1021/acschemneuro.8b00571"/><ref name="joshi"/> There is very little research on links between brain [[glucose metabolism]] and cognition, despite it also being relevant to neurodegenerative disorders.<ref>{{cite journal |last1=Rebelos |first1=Eleni |last2=Rinne |first2=Juha O. |last3=Nuutila |first3=Pirjo |last4=Ekblad |first4=Laura L. |title=Brain Glucose Metabolism in Health, Obesity, and Cognitive Decline—Does Insulin Have Anything to Do with It? A Narrative Review |journal=Journal of Clinical Medicine |date=January 2021 |volume=10 |issue=7 |pages=1532 |doi=10.3390/jcm10071532 |language=en |issn=2077-0383}}</ref>


====Medications====
====Medications====
Notable potentially viable pharmacological agents – as final products or as prototypes for similar ones – under early-stage research with potential for substantial effect sizes for specific purposes in specific situations (such as learning periods) but, in at least most cases, largely unknown effects in humans and safety profiles: [[orexin-A]],<ref name="10.1371/journal.pbio.1001289">{{cite journal |last1=Tennison |first1=Michael N. |last2=Moreno |first2=Jonathan D. |title=Neuroscience, Ethics, and National Security: The State of the Art |journal=PLOS Biology |date=20 March 2012 |volume=10 |issue=3 |pages=e1001289 |doi=10.1371/journal.pbio.1001289 |pmid=22448146 |pmc=3308927 |language=en |issn=1545-7885}}</ref> [[Fibroblast growth loop peptide|FGL]], [[PTEN-PDZ]], and [[Phosphoinositide 3-kinase#Learning and memory|PI3K-activator]] PTD4-PI3KAc,<ref>{{cite journal |last1=Asua |first1=Diego |last2=Bougamra |first2=Ghassen |last3=Calleja-Felipe |first3=María |last4=Morales |first4=Miguel |last5=Knafo |first5=Shira |title=Peptides Acting as Cognitive Enhancers |journal=Neuroscience |date=1 February 2018 |volume=370 |pages=81–87 |doi=10.1016/j.neuroscience.2017.10.002 |pmid=29030286 |s2cid=10269993 |language=en |issn=0306-4522}}</ref> [[dihexa]],<ref>{{cite journal |last1=Wright |first1=John W. |last2=Harding |first2=Joseph W. |title=The Brain Hepatocyte Growth Factor/c-Met Receptor System: A New Target for the Treatment of Alzheimer's Disease |journal=Journal of Alzheimer's Disease |date=1 January 2015 |volume=45 |issue=4 |pages=985–1000 |doi=10.3233/JAD-142814 |language=en |issn=1387-2877}}</ref><ref>{{cite journal |last1=Ho |first1=Jean K. |last2=Nation |first2=Daniel A. |title=Cognitive benefits of angiotensin IV and angiotensin-(1–7): A systematic review of experimental studies |journal=Neuroscience & Biobehavioral Reviews |date=1 September 2018 |volume=92 |pages=209–225 |doi=10.1016/j.neubiorev.2018.05.005 |language=en |issn=0149-7634}}</ref><ref>{{cite journal |last1=Hallberg |first1=Mathias |last2=Larhed |first2=Mats |title=From Angiotensin IV to Small Peptidemimetics Inhibiting Insulin-Regulated Aminopeptidase |journal=Frontiers in Pharmacology |date=2020 |volume=11 |doi=10.3389/fphar.2020.590855 |issn=1663-9812}}</ref> [[d-cycloserine]],<ref>{{cite journal |last1=Stern |first1=Sarah A. |last2=Alberini |first2=Cristina M. |title=Mechanisms of memory enhancement |journal=WIREs Systems Biology and Medicine |date=January 2013 |volume=5 |issue=1 |pages=37–53 |doi=10.1002/wsbm.1196 |pmid=23151999 |pmc=3527655 |language=en |issn=1939-5094}}</ref><ref>{{cite journal |last1=Hofmann |first1=Stefan G. |last2=Fang |first2=Angela |last3=Gutner |first3=Cassidy A. |title=Cognitive enhancers for the treatment of anxiety disorders |journal=Restorative Neurology and Neuroscience |date=1 January 2014 |volume=32 |issue=1 |pages=183–195 |doi=10.3233/RNN-139002 |pmid=23542909 |language=en |issn=0922-6028}}</ref><ref name="10.3389/fnsys.2014.00046">{{cite journal |last1=Diekelmann |first1=Susanne |title=Sleep for cognitive enhancement |journal=Frontiers in Systems Neuroscience |date=2014 |volume=8 |page=46 |doi=10.3389/fnsys.2014.00046 |pmid=24765066 |pmc=3980112 |issn=1662-5137|doi-access=free }}</ref><ref>{{cite journal |last1=Merlo |first1=Emiliano |last2=Milton |first2=Amy L |last3=Everitt |first3=Barry J |title=Enhancing cognition by affecting memory reconsolidation |journal=Current Opinion in Behavioral Sciences |date=1 August 2015 |volume=4 |pages=41–47 |doi=10.1016/j.cobeha.2015.02.003 |s2cid=53170506 |language=en |issn=2352-1546|url=http://sro.sussex.ac.uk/id/eprint/81983/1/__smbhome.uscs.susx.ac.uk_sc328_Desktop_Papers%20for%20SRO_MERLO_Current_Opinion_in_Behavioral_Sciences_Jan_2015_author_copy.pdf }}</ref> [[Dopamine reuptake inhibitor|DAT blockers]] [[CE-123]] and CE-158,<ref>{{cite journal |last1=Desibhatla |first1=Mukund |title=The Development and Evaluation of Novel DA Transport Inhibitors and their Effects on Effort-Related Motivation: A Review |journal=Honors Scholar Theses |date=1 May 2021 |url=https://opencommons.uconn.edu/srhonors_theses/787/}}</ref> [[ampakine]]s like [[IDRA-21]] and [[CX717]],<ref name="10.3233/JAD-2012-121186">{{cite journal |last1=Froestl |first1=Wolfgang |last2=Muhs |first2=Andreas |last3=Pfeifer |first3=Andrea |title=Cognitive Enhancers (Nootropics). Part 1: Drugs Interacting with Receptors |journal=Journal of Alzheimer's Disease |date=1 January 2012 |volume=32 |issue=4 |pages=793–887 |doi=10.3233/JAD-2012-121186 |pmid=22886028 |language=en |issn=1387-2877}}</ref><ref>{{cite journal |last1=Partin |first1=Kathryn M |title=AMPA receptor potentiators: from drug design to cognitive enhancement |journal=Current Opinion in Pharmacology |date=1 February 2015 |volume=20 |pages=46–53 |doi=10.1016/j.coph.2014.11.002 |pmid=25462292 |pmc=4318786 |language=en |issn=1471-4892}}</ref><ref name="joshi">{{cite journal |last1=Pranav |first1=Joshi C. |title=A review on natural memory enhancers (nootropics) |journal=Unique Journal of Engineering and Advanced Sciences |date=2013 |url=http://www.ujconline.net/wp-content/uploads/2013/09/3-UJEAS-1314-Rv.pdf |language=en}}</ref> [[neuropeptide]] [[cerebrolysin]],<ref name="10.1007/s40664-019-0340-y"/><ref>{{cite journal |last1=Daubner |first1=Johanna |last2=Arshaad |first2=Muhammad Imran |last3=Henseler |first3=Christina |last4=Hescheler |first4=Jürgen |last5=Ehninger |first5=Dan |last6=Broich |first6=Karl |last7=Rawashdeh |first7=Oliver |last8=Papazoglou |first8=Anna |last9=Weiergräber |first9=Marco |title=Pharmacological Neuroenhancement: Current Aspects of Categorization, Epidemiology, Pharmacology, Drug Development, Ethics, and Future Perspectives |journal=Neural Plasticity |date=13 January 2021 |volume=2021 |pages=e8823383 |doi=10.1155/2021/8823383 |pmid=33519929 |pmc=7817276 |language=en |issn=2090-5904|doi-access=free }}</ref> [[rapastinel]],<ref>{{cite journal |last1=Kato |first1=Taro |last2=Duman |first2=Ronald S. |title=Rapastinel, a novel glutamatergic agent with ketamine-like antidepressant actions: Convergent mechanisms |journal=Pharmacology Biochemistry and Behavior |date=1 January 2020 |volume=188 |pages=172827 |doi=10.1016/j.pbb.2019.172827 |language=en |issn=0091-3057}}</ref><ref>{{cite journal |last1=Burgdorf |first1=Jeffrey |last2=Zhang |first2=Xiao-lei |last3=Weiss |first3=Craig |last4=Matthews |first4=Elizabeth |last5=Disterhoft |first5=John F. |last6=Stanton |first6=Patric K. |last7=Moskal |first7=Joseph R. |title=The N-methyl-d-aspartate receptor modulator GLYX-13 enhances learning and memory, in young adult and learning impaired aging rats |journal=Neurobiology of Aging |date=1 April 2011 |volume=32 |issue=4 |pages=698–706 |doi=10.1016/j.neurobiolaging.2009.04.012 |language=en |issn=0197-4580}}</ref><ref>{{cite journal |last1=R. Moskal |first1=Joseph |last2=S. Burgdorf |first2=Jeffrey |last3=K. Stanton |first3=Patric |last4=A. Kroes |first4=Roger |last5=F. Disterhoft |first5=John |last6=M. Burch |first6=Ronald |last7=Amin Khan |first7=M. |title=The Development of Rapastinel (Formerly GLYX-13); A Rapid Acting and Long Lasting Antidepressant |journal=Current Neuropharmacology |date=2017 |url=https://www.ingentaconnect.com/content/ben/cn/2017/00000015/00000001/art00008 |language=en}}</ref> [[ISRIB]],<ref>{{cite journal |last1=Costa-Mattioli |first1=Mauro |last2=Walter |first2=Peter |title=The integrated stress response: From mechanism to disease |journal=Science |date=24 April 2020 |volume=368 |issue=6489 |pages=eaat5314 |doi=10.1126/science.aat5314 |pmid=32327570 |pmc=8997189 |language=en |issn=0036-8075}}</ref><ref>{{cite journal |last1=Jin |first1=Yang |last2=Saatcioglu |first2=Fahri |title=Targeting the Unfolded Protein Response in Hormone-Regulated Cancers |journal=Trends in Cancer |date=1 February 2020 |volume=6 |issue=2 |pages=160–171 |doi=10.1016/j.trecan.2019.12.001 |pmid=32061305 |s2cid=211136354 |language=en |issn=2405-8033}}</ref> [[selective receptor modulator|selective]] [[receptor modulator]]s such as [[MRK-016]] which targets subtypes of GABA<sub>A</sub> receptors,<ref>{{cite journal |last1=Atack |first1=John R. |title=GABAA Receptor Subtype-Selective Modulators. II. α5-Selective Inverse Agonists for Cognition Enhancement |journal=Current Topics in Medicinal Chemistry |volume=11 |issue=9 |pages=1203–1214 |doi=10.2174/156802611795371314 |language=en}}</ref> modafinil-analogs [[CRL-40,940]] and {{tooltip|modafiendz|N-Methylbisfluoromodafinil}},<ref name="10.1080/08897077.2019.1700584">{{cite journal |last1=Sousa |first1=Ana |last2=Dinis-Oliveira |first2=Ricardo Jorge |title=Pharmacokinetic and pharmacodynamic of the cognitive enhancer modafinil: Relevant clinical and forensic aspects |journal=Substance Abuse |date=2 April 2020 |volume=41 |issue=2 |pages=155–173 |doi=10.1080/08897077.2019.1700584 |pmid=31951804 |s2cid=210709160 |issn=0889-7077}}</ref> modafinil-inspired/hybrid [[Triple reuptake inhibitor|TRI]] [[JZ-IV-10]] and JZAD-IV-22,<ref>{{cite journal |last1=Kleczkowska |first1=Patrycja |title=Chimeric Structures in Mental Illnesses&mdash;"Magic" Molecules Specified for Complex Disorders |journal=International Journal of Molecular Sciences |date=January 2022 |volume=23 |issue=7 |pages=3739 |doi=10.3390/ijms23073739 |pmid=35409098 |pmc=8998808 |language=en |issn=1422-0067|doi-access=free }}</ref><ref>{{cite journal |last1=Sharma |first1=Horrick |last2=Santra |first2=Soumava |last3=Dutta |first3=Aloke |title=Triple reuptake inhibitors as potential next-generation antidepressants: a new hope? |journal=Future Medicinal Chemistry |date=November 2015 |volume=7 |issue=17 |pages=2385–2406 |doi=10.4155/fmc.15.134|pmid=26619226 |pmc=4976848 }}</ref><ref>{{cite journal |last1=Subbaiah |first1=Murugaiah A. M. |title=Triple Reuptake Inhibitors as Potential Therapeutics for Depression and Other Disorders: Design Paradigm and Developmental Challenges |journal=Journal of Medicinal Chemistry |date=22 March 2018 |volume=61 |issue=6 |pages=2133–2165 |doi=10.1021/acs.jmedchem.6b01827 |pmid=28731336 |language=en |issn=0022-2623}}</ref> [[pterostilbene]],<ref>{{cite journal |last1=Poulose |first1=Shibu M. |last2=Thangthaeng |first2=Nopporn |last3=Miller |first3=Marshall G. |last4=Shukitt-Hale |first4=Barbara |title=Effects of pterostilbene and resveratrol on brain and behavior |journal=Neurochemistry International |date=1 October 2015 |volume=89 |pages=227–233 |doi=10.1016/j.neuint.2015.07.017 |pmid=26212523 |s2cid=33577543 |language=en |issn=0197-0186}}</ref><ref>{{cite journal |last1=McCormack |first1=Denise |last2=McFadden |first2=David |title=A Review of Pterostilbene Antioxidant Activity and Disease Modification |journal=Oxidative Medicine and Cellular Longevity |date=4 April 2013 |volume=2013 |pages=e575482 |doi=10.1155/2013/575482 |pmid=23691264 |pmc=3649683 |language=en |issn=1942-0900|doi-access=free }}</ref> [[Caloric restriction mimetic|CRM]] acyl-[[ghrelin]] mimetics and agonists like [[ibutamoren]],<ref>{{cite journal |last1=Buntwal |first1=Luke |last2=Sassi |first2=Martina |last3=Morgan |first3=Alwena H. |last4=Andrews |first4=Zane B. |last5=Davies |first5=Jeffrey S. |title=Ghrelin-Mediated Hippocampal Neurogenesis: Implications for Health and Disease |journal=Trends in Endocrinology & Metabolism |date=1 November 2019 |volume=30 |issue=11 |pages=844–859 |doi=10.1016/j.tem.2019.07.001 |pmid=31445747 |s2cid=201126380 |language=en |issn=1043-2760|url=https://cronfa.swan.ac.uk/Record/cronfa52032 }}</ref><ref>{{cite journal |last1=Morgan |first1=A. H. |last2=Andrews |first2=Z. B. |last3=Davies |first3=J. S. |title=Less is more: Caloric regulation of neurogenesis and adult brain function |journal=Journal of Neuroendocrinology |date=October 2017 |volume=29 |issue=10 |pages=e12512 |doi=10.1111/jne.12512 |pmid=28771924 |s2cid=3070497 |language=en}}</ref> and [[pitolisant]].<ref>{{cite journal |last1=Harwell |first1=Victoria |last2=Fasinu |first2=Pius |title=Pitolisant and Other Histamine-3 Receptor Antagonists—An Update on Therapeutic Potentials and Clinical Prospects |journal=Medicines |date=1 September 2020 |volume=7 |issue=9 |pages=55 |doi=10.3390/medicines7090055|pmid=32882898 |pmc=7554886 |doi-access=free }}</ref><ref>{{cite journal |last1=Schlicker |first1=Eberhard |last2=Kathmann |first2=Markus |title=Role of the Histamine H3 Receptor in the Central Nervous System |journal=Histamine and Histamine Receptors in Health and Disease |series=Handbook of Experimental Pharmacology |date=2017 |volume=241 |pages=277–299 |doi=10.1007/164_2016_12 |publisher=Springer International Publishing |pmid=27787717 |isbn=978-3-319-58192-7 |language=en}}</ref>
Notable potentially viable pharmacological agents – as final products or as prototypes for similar ones – under early-stage research with potential for substantial effect sizes for specific purposes in specific situations (such as learning periods) also in healthy non-old humans but, in at least most cases, largely unknown effects in humans and safety profiles: [[orexin-A]],<ref name="10.1371/journal.pbio.1001289">{{cite journal |last1=Tennison |first1=Michael N. |last2=Moreno |first2=Jonathan D. |title=Neuroscience, Ethics, and National Security: The State of the Art |journal=PLOS Biology |date=20 March 2012 |volume=10 |issue=3 |pages=e1001289 |doi=10.1371/journal.pbio.1001289 |pmid=22448146 |pmc=3308927 |language=en |issn=1545-7885}}</ref> [[Fibroblast growth loop peptide|FGL]], [[PTEN-PDZ]], and [[Phosphoinositide 3-kinase#Learning and memory|PI3K-activator]] PTD4-PI3KAc,<ref>{{cite journal |last1=Asua |first1=Diego |last2=Bougamra |first2=Ghassen |last3=Calleja-Felipe |first3=María |last4=Morales |first4=Miguel |last5=Knafo |first5=Shira |title=Peptides Acting as Cognitive Enhancers |journal=Neuroscience |date=1 February 2018 |volume=370 |pages=81–87 |doi=10.1016/j.neuroscience.2017.10.002 |pmid=29030286 |s2cid=10269993 |language=en |issn=0306-4522}}</ref> [[dihexa]],<ref>{{cite journal |last1=Wright |first1=John W. |last2=Harding |first2=Joseph W. |title=The Brain Hepatocyte Growth Factor/c-Met Receptor System: A New Target for the Treatment of Alzheimer's Disease |journal=Journal of Alzheimer's Disease |date=1 January 2015 |volume=45 |issue=4 |pages=985–1000 |doi=10.3233/JAD-142814 |language=en |issn=1387-2877}}</ref><ref>{{cite journal |last1=Ho |first1=Jean K. |last2=Nation |first2=Daniel A. |title=Cognitive benefits of angiotensin IV and angiotensin-(1–7): A systematic review of experimental studies |journal=Neuroscience & Biobehavioral Reviews |date=1 September 2018 |volume=92 |pages=209–225 |doi=10.1016/j.neubiorev.2018.05.005 |language=en |issn=0149-7634}}</ref><ref>{{cite journal |last1=Hallberg |first1=Mathias |last2=Larhed |first2=Mats |title=From Angiotensin IV to Small Peptidemimetics Inhibiting Insulin-Regulated Aminopeptidase |journal=Frontiers in Pharmacology |date=2020 |volume=11 |doi=10.3389/fphar.2020.590855 |issn=1663-9812}}</ref> [[d-cycloserine]],<ref>{{cite journal |last1=Stern |first1=Sarah A. |last2=Alberini |first2=Cristina M. |title=Mechanisms of memory enhancement |journal=WIREs Systems Biology and Medicine |date=January 2013 |volume=5 |issue=1 |pages=37–53 |doi=10.1002/wsbm.1196 |pmid=23151999 |pmc=3527655 |language=en |issn=1939-5094}}</ref><ref>{{cite journal |last1=Hofmann |first1=Stefan G. |last2=Fang |first2=Angela |last3=Gutner |first3=Cassidy A. |title=Cognitive enhancers for the treatment of anxiety disorders |journal=Restorative Neurology and Neuroscience |date=1 January 2014 |volume=32 |issue=1 |pages=183–195 |doi=10.3233/RNN-139002 |pmid=23542909 |language=en |issn=0922-6028}}</ref><ref name="10.3389/fnsys.2014.00046">{{cite journal |last1=Diekelmann |first1=Susanne |title=Sleep for cognitive enhancement |journal=Frontiers in Systems Neuroscience |date=2014 |volume=8 |page=46 |doi=10.3389/fnsys.2014.00046 |pmid=24765066 |pmc=3980112 |issn=1662-5137|doi-access=free }}</ref><ref>{{cite journal |last1=Merlo |first1=Emiliano |last2=Milton |first2=Amy L |last3=Everitt |first3=Barry J |title=Enhancing cognition by affecting memory reconsolidation |journal=Current Opinion in Behavioral Sciences |date=1 August 2015 |volume=4 |pages=41–47 |doi=10.1016/j.cobeha.2015.02.003 |s2cid=53170506 |language=en |issn=2352-1546|url=http://sro.sussex.ac.uk/id/eprint/81983/1/__smbhome.uscs.susx.ac.uk_sc328_Desktop_Papers%20for%20SRO_MERLO_Current_Opinion_in_Behavioral_Sciences_Jan_2015_author_copy.pdf }}</ref> [[Dopamine reuptake inhibitor|DAT blockers]] [[CE-123]] and CE-158,<ref>{{cite journal |last1=Desibhatla |first1=Mukund |title=The Development and Evaluation of Novel DA Transport Inhibitors and their Effects on Effort-Related Motivation: A Review |journal=Honors Scholar Theses |date=1 May 2021 |url=https://opencommons.uconn.edu/srhonors_theses/787/}}</ref> [[ampakine]]s like [[IDRA-21]] and [[CX717]],<ref name="10.3233/JAD-2012-121186">{{cite journal |last1=Froestl |first1=Wolfgang |last2=Muhs |first2=Andreas |last3=Pfeifer |first3=Andrea |title=Cognitive Enhancers (Nootropics). Part 1: Drugs Interacting with Receptors |journal=Journal of Alzheimer's Disease |date=1 January 2012 |volume=32 |issue=4 |pages=793–887 |doi=10.3233/JAD-2012-121186 |pmid=22886028 |language=en |issn=1387-2877}}</ref><ref>{{cite journal |last1=Partin |first1=Kathryn M |title=AMPA receptor potentiators: from drug design to cognitive enhancement |journal=Current Opinion in Pharmacology |date=1 February 2015 |volume=20 |pages=46–53 |doi=10.1016/j.coph.2014.11.002 |pmid=25462292 |pmc=4318786 |language=en |issn=1471-4892}}</ref><ref name="joshi">{{cite journal |last1=Pranav |first1=Joshi C. |title=A review on natural memory enhancers (nootropics) |journal=Unique Journal of Engineering and Advanced Sciences |date=2013 |url=http://www.ujconline.net/wp-content/uploads/2013/09/3-UJEAS-1314-Rv.pdf |language=en}}</ref> [[neuropeptide]] [[cerebrolysin]],<ref name="10.1007/s40664-019-0340-y"/><ref>{{cite journal |last1=Daubner |first1=Johanna |last2=Arshaad |first2=Muhammad Imran |last3=Henseler |first3=Christina |last4=Hescheler |first4=Jürgen |last5=Ehninger |first5=Dan |last6=Broich |first6=Karl |last7=Rawashdeh |first7=Oliver |last8=Papazoglou |first8=Anna |last9=Weiergräber |first9=Marco |title=Pharmacological Neuroenhancement: Current Aspects of Categorization, Epidemiology, Pharmacology, Drug Development, Ethics, and Future Perspectives |journal=Neural Plasticity |date=13 January 2021 |volume=2021 |pages=e8823383 |doi=10.1155/2021/8823383 |pmid=33519929 |pmc=7817276 |language=en |issn=2090-5904|doi-access=free }}</ref> [[rapastinel]],<ref>{{cite journal |last1=Kato |first1=Taro |last2=Duman |first2=Ronald S. |title=Rapastinel, a novel glutamatergic agent with ketamine-like antidepressant actions: Convergent mechanisms |journal=Pharmacology Biochemistry and Behavior |date=1 January 2020 |volume=188 |pages=172827 |doi=10.1016/j.pbb.2019.172827 |language=en |issn=0091-3057}}</ref><ref>{{cite journal |last1=Burgdorf |first1=Jeffrey |last2=Zhang |first2=Xiao-lei |last3=Weiss |first3=Craig |last4=Matthews |first4=Elizabeth |last5=Disterhoft |first5=John F. |last6=Stanton |first6=Patric K. |last7=Moskal |first7=Joseph R. |title=The N-methyl-d-aspartate receptor modulator GLYX-13 enhances learning and memory, in young adult and learning impaired aging rats |journal=Neurobiology of Aging |date=1 April 2011 |volume=32 |issue=4 |pages=698–706 |doi=10.1016/j.neurobiolaging.2009.04.012 |language=en |issn=0197-4580}}</ref><ref>{{cite journal |last1=R. Moskal |first1=Joseph |last2=S. Burgdorf |first2=Jeffrey |last3=K. Stanton |first3=Patric |last4=A. Kroes |first4=Roger |last5=F. Disterhoft |first5=John |last6=M. Burch |first6=Ronald |last7=Amin Khan |first7=M. |title=The Development of Rapastinel (Formerly GLYX-13); A Rapid Acting and Long Lasting Antidepressant |journal=Current Neuropharmacology |date=2017 |url=https://www.ingentaconnect.com/content/ben/cn/2017/00000015/00000001/art00008 |language=en}}</ref> [[ISRIB]],<ref>{{cite journal |last1=Costa-Mattioli |first1=Mauro |last2=Walter |first2=Peter |title=The integrated stress response: From mechanism to disease |journal=Science |date=24 April 2020 |volume=368 |issue=6489 |pages=eaat5314 |doi=10.1126/science.aat5314 |pmid=32327570 |pmc=8997189 |language=en |issn=0036-8075}}</ref><ref>{{cite journal |last1=Jin |first1=Yang |last2=Saatcioglu |first2=Fahri |title=Targeting the Unfolded Protein Response in Hormone-Regulated Cancers |journal=Trends in Cancer |date=1 February 2020 |volume=6 |issue=2 |pages=160–171 |doi=10.1016/j.trecan.2019.12.001 |pmid=32061305 |s2cid=211136354 |language=en |issn=2405-8033}}</ref> [[selective receptor modulator|selective]] [[receptor modulator]]s such as [[MRK-016]] which targets subtypes of GABA<sub>A</sub> receptors,<ref>{{cite journal |last1=Atack |first1=John R. |title=GABAA Receptor Subtype-Selective Modulators. II. α5-Selective Inverse Agonists for Cognition Enhancement |journal=Current Topics in Medicinal Chemistry |volume=11 |issue=9 |pages=1203–1214 |doi=10.2174/156802611795371314 |language=en}}</ref> modafinil-analogs [[CRL-40,940]] and {{tooltip|modafiendz|N-Methylbisfluoromodafinil}},<ref name="10.1080/08897077.2019.1700584">{{cite journal |last1=Sousa |first1=Ana |last2=Dinis-Oliveira |first2=Ricardo Jorge |title=Pharmacokinetic and pharmacodynamic of the cognitive enhancer modafinil: Relevant clinical and forensic aspects |journal=Substance Abuse |date=2 April 2020 |volume=41 |issue=2 |pages=155–173 |doi=10.1080/08897077.2019.1700584 |pmid=31951804 |s2cid=210709160 |issn=0889-7077}}</ref> modafinil-inspired/hybrid [[Triple reuptake inhibitor|TRI]] [[JZ-IV-10]] and JZAD-IV-22,<ref>{{cite journal |last1=Kleczkowska |first1=Patrycja |title=Chimeric Structures in Mental Illnesses&mdash;"Magic" Molecules Specified for Complex Disorders |journal=International Journal of Molecular Sciences |date=January 2022 |volume=23 |issue=7 |pages=3739 |doi=10.3390/ijms23073739 |pmid=35409098 |pmc=8998808 |language=en |issn=1422-0067|doi-access=free }}</ref><ref>{{cite journal |last1=Sharma |first1=Horrick |last2=Santra |first2=Soumava |last3=Dutta |first3=Aloke |title=Triple reuptake inhibitors as potential next-generation antidepressants: a new hope? |journal=Future Medicinal Chemistry |date=November 2015 |volume=7 |issue=17 |pages=2385–2406 |doi=10.4155/fmc.15.134|pmid=26619226 |pmc=4976848 }}</ref><ref>{{cite journal |last1=Subbaiah |first1=Murugaiah A. M. |title=Triple Reuptake Inhibitors as Potential Therapeutics for Depression and Other Disorders: Design Paradigm and Developmental Challenges |journal=Journal of Medicinal Chemistry |date=22 March 2018 |volume=61 |issue=6 |pages=2133–2165 |doi=10.1021/acs.jmedchem.6b01827 |pmid=28731336 |language=en |issn=0022-2623}}</ref> [[pterostilbene]],<ref>{{cite journal |last1=Poulose |first1=Shibu M. |last2=Thangthaeng |first2=Nopporn |last3=Miller |first3=Marshall G. |last4=Shukitt-Hale |first4=Barbara |title=Effects of pterostilbene and resveratrol on brain and behavior |journal=Neurochemistry International |date=1 October 2015 |volume=89 |pages=227–233 |doi=10.1016/j.neuint.2015.07.017 |pmid=26212523 |s2cid=33577543 |language=en |issn=0197-0186}}</ref><ref>{{cite journal |last1=McCormack |first1=Denise |last2=McFadden |first2=David |title=A Review of Pterostilbene Antioxidant Activity and Disease Modification |journal=Oxidative Medicine and Cellular Longevity |date=4 April 2013 |volume=2013 |pages=e575482 |doi=10.1155/2013/575482 |pmid=23691264 |pmc=3649683 |language=en |issn=1942-0900|doi-access=free }}</ref> [[Caloric restriction mimetic|CRM]] acyl-[[ghrelin]] mimetics and agonists like [[ibutamoren]],<ref>{{cite journal |last1=Buntwal |first1=Luke |last2=Sassi |first2=Martina |last3=Morgan |first3=Alwena H. |last4=Andrews |first4=Zane B. |last5=Davies |first5=Jeffrey S. |title=Ghrelin-Mediated Hippocampal Neurogenesis: Implications for Health and Disease |journal=Trends in Endocrinology & Metabolism |date=1 November 2019 |volume=30 |issue=11 |pages=844–859 |doi=10.1016/j.tem.2019.07.001 |pmid=31445747 |s2cid=201126380 |language=en |issn=1043-2760|url=https://cronfa.swan.ac.uk/Record/cronfa52032 }}</ref><ref>{{cite journal |last1=Morgan |first1=A. H. |last2=Andrews |first2=Z. B. |last3=Davies |first3=J. S. |title=Less is more: Caloric regulation of neurogenesis and adult brain function |journal=Journal of Neuroendocrinology |date=October 2017 |volume=29 |issue=10 |pages=e12512 |doi=10.1111/jne.12512 |pmid=28771924 |s2cid=3070497 |language=en}}</ref> and [[pitolisant]].<ref>{{cite journal |last1=Harwell |first1=Victoria |last2=Fasinu |first2=Pius |title=Pitolisant and Other Histamine-3 Receptor Antagonists—An Update on Therapeutic Potentials and Clinical Prospects |journal=Medicines |date=1 September 2020 |volume=7 |issue=9 |pages=55 |doi=10.3390/medicines7090055|pmid=32882898 |pmc=7554886 |doi-access=free }}</ref><ref>{{cite journal |last1=Schlicker |first1=Eberhard |last2=Kathmann |first2=Markus |title=Role of the Histamine H3 Receptor in the Central Nervous System |journal=Histamine and Histamine Receptors in Health and Disease |series=Handbook of Experimental Pharmacology |date=2017 |volume=241 |pages=277–299 |doi=10.1007/164_2016_12 |publisher=Springer International Publishing |pmid=27787717 |isbn=978-3-319-58192-7 |language=en}}</ref>


Some medications like sociability-related [[GABA receptor agonist]] [[phenibut]] can have durable major side-effects and addiction potential for some at least at some dosages, albeit not necessarily.<ref name="10.1111/j.1527-3458.2001.tb00211.x"/><ref>{{cite journal |last1=Kupats |first1=Einars |last2=Vrublevska |first2=Jelena |last3=Zvejniece |first3=Baiba |last4=Vavers |first4=Edijs |last5=Stelfa |first5=Gundega |last6=Zvejniece |first6=Liga |last7=Dambrova |first7=Maija |title=Safety and Tolerability of the Anxiolytic and Nootropic Drug Phenibut: A Systematic Review of Clinical Trials and Case Reports |journal=Pharmacopsychiatry |date=September 2020 |volume=53 |issue=5 |pages=201–208 |doi=10.1055/a-1151-5017 |pmid=32340063 |s2cid=216593771 |language=en |issn=0176-3679}}</ref><ref name="10.1176/appi.ajp-rj.2020.160203"/>
Some medications like sociability-related [[GABA receptor agonist]] [[phenibut]] can have durable major side-effects and addiction potential for some at least at some dosages, albeit not necessarily.<ref name="10.1111/j.1527-3458.2001.tb00211.x"/><ref>{{cite journal |last1=Kupats |first1=Einars |last2=Vrublevska |first2=Jelena |last3=Zvejniece |first3=Baiba |last4=Vavers |first4=Edijs |last5=Stelfa |first5=Gundega |last6=Zvejniece |first6=Liga |last7=Dambrova |first7=Maija |title=Safety and Tolerability of the Anxiolytic and Nootropic Drug Phenibut: A Systematic Review of Clinical Trials and Case Reports |journal=Pharmacopsychiatry |date=September 2020 |volume=53 |issue=5 |pages=201–208 |doi=10.1055/a-1151-5017 |pmid=32340063 |s2cid=216593771 |language=en |issn=0176-3679}}</ref><ref name="10.1176/appi.ajp-rj.2020.160203"/>
Line 121: Line 121:
===Conventional methods and foundational strategies===
===Conventional methods and foundational strategies===
{{See also|Metascience#ICTs|Human intelligence#Improving}}
{{See also|Metascience#ICTs|Human intelligence#Improving}}
Enhancement can also be based on conventional methods; this may be considered neuroenhancement<ref name="10.1007/s12152-012-9167-3">{{cite journal |last1=Lucke |first1=Jayne |last2=Partridge |first2=Brad |title=Towards a Smart Population: A Public Health Framework for Cognitive Enhancement |journal=Neuroethics |date=1 August 2013 |volume=6 |issue=2 |pages=419–427 |doi=10.1007/s12152-012-9167-3 |s2cid=255510188 |language=en |issn=1874-5504}}</ref> if they are targeted, especially when they are applied to an advanced level{{additional citation needed|date=March 2023}} or if they are considered from a collective public health intervention<ref name="10.1007/s12152-012-9167-3"/> perspective. From this perspective, "[[policy failure|failing]] to encourage the pursuit of healthy behaviours" has "adverse effects on population cognitive health".<ref name="10.1007/s12152-012-9167-3"/> Conventional methods include [[Aging brain#Delaying the effects of aging|those that delay or mitigate brain aging]] (which is one major preoccupation of neuro-enhancement),<ref name="10.3389/fsoc.2017.00001">{{cite journal |last1=O’Connor |first1=Cliodhna |last2=Nagel |first2=Saskia K. |title=Neuro-Enhancement Practices across the Lifecourse: Exploring the Roles of Relationality and Individualism |journal=Frontiers in Sociology |date=2017 |volume=2 |doi=10.3389/fsoc.2017.00001 |issn=2297-7775|doi-access=free }}</ref> including adequate sleep, {{anchor|Diet}}[[Healthy diet#Research|optimized diet]] {{see above|also [[#Dietary components and supplements|above]]}}, and physical activity ([[Neurobiological effects of physical exercise|which has many neuroeffects]]).<ref name="10.1007/s12152-012-9167-3"/><ref>{{cite journal |last1=Cancer |first1=Alice |last2=Schulz |first2=Peter J. |last3=Castaldi |first3=Silvana |last4=Antonietti |first4=Alessandro |title=Neuroethical Issues in Cognitive Enhancement: the Undergraduates' Point of View |journal=Journal of Cognitive Enhancement |date=1 December 2018 |volume=2 |issue=4 |pages=323–330 |doi=10.1007/s41465-018-0110-3 |s2cid=256624023 |language=en |issn=2509-3304}}</ref><ref name="ERLN">{{cite web |last1=Erler |first1=Alexandre |last2=Forlini |first2=Cynthia |title=Neuroenhancement |url=https://philpapers.org/rec/ERLN |website=Routledge Encyclopedia of Philosophy Online |access-date=9 March 2023 |date=2020}}</ref><ref name="10.3389/fpsyg.2015.01852"/><ref name="10.1007/s40664-019-0340-y"/><ref name="10.1111/bph.13813"/><ref name="10.1007/s00391-017-1351-y"/> However, they may also be considered as "co-strategies" in parallel to "neuroenhancement", rather than as techniques of cognitive enhancement.<ref>{{cite journal |last1=Heller |first1=Sebastian |last2=Tibubos |first2=Ana Nanette |last3=Hoff |first3=Thilo A. |last4=Werner |first4=Antonia M. |last5=Reichel |first5=Jennifer L. |last6=Mülder |first6=Lina M. |last7=Schäfer |first7=Markus |last8=Pfirrmann |first8=Daniel |last9=Stark |first9=Birgit |last10=Rigotti |first10=Thomas |last11=Simon |first11=Perikles |last12=Beutel |first12=Manfred E. |last13=Letzel |first13=Stephan |last14=Dietz |first14=Pavel |title=Potential risk groups and psychological, psychosocial, and health behavioral predictors of pharmacological neuroenhancement among university students in Germany |journal=Scientific Reports |date=18 January 2022 |volume=12 |issue=1 |pages=937 |doi=10.1038/s41598-022-04891-y |pmid=35042938 |pmc=8766436 |bibcode=2022NatSR..12..937H |language=en |issn=2045-2322}}</ref> Cognitively stimulating and social activities can also have positive effects on the brain.<ref name="10.1007/s00391-017-1351-y"/> Nutrition also plays an important role during early brain development.<ref>{{cite journal |last1=Black |first1=Maureen M. |title=Impact of Nutrition on Growth, Brain, and Cognition |journal=Recent Research in Nutrition and Growth |series=Nestlé Nutrition Institute Workshop Series |date=2018 |volume=89 |pages=185–195 |doi=10.1159/000486502 |pmid=29991042 |isbn=978-3-318-06351-6 |language=english}}</ref>
Enhancement can also be based on conventional methods; this may be considered neuroenhancement<ref name="10.1007/s12152-012-9167-3">{{cite journal |last1=Lucke |first1=Jayne |last2=Partridge |first2=Brad |title=Towards a Smart Population: A Public Health Framework for Cognitive Enhancement |journal=Neuroethics |date=1 August 2013 |volume=6 |issue=2 |pages=419–427 |doi=10.1007/s12152-012-9167-3 |s2cid=255510188 |language=en |issn=1874-5504}}</ref> if they are targeted, especially when they are applied to an advanced level{{additional citation needed|date=March 2023}} or if they are considered from a collective public health intervention<ref name="10.1007/s12152-012-9167-3"/> perspective. From this perspective, "[[policy failure|failing]] to encourage the pursuit of healthy behaviours" has "adverse effects on population cognitive health".<ref name="10.1007/s12152-012-9167-3"/> Conventional methods include [[Aging brain#Delaying the effects of aging|those that delay or mitigate brain aging]] (which is one major preoccupation of neuro-enhancement),<ref name="10.3389/fsoc.2017.00001">{{cite journal |last1=O’Connor |first1=Cliodhna |last2=Nagel |first2=Saskia K. |title=Neuro-Enhancement Practices across the Lifecourse: Exploring the Roles of Relationality and Individualism |journal=Frontiers in Sociology |date=2017 |volume=2 |doi=10.3389/fsoc.2017.00001 |issn=2297-7775|doi-access=free }}</ref> including adequate sleep, {{anchor|Diet}}[[Healthy diet#Research|optimized diet]] {{see above|also [[#Dietary components and supplements|above]]}}, and physical activity ([[Neurobiological effects of physical exercise|which has many neuroeffects]]).<ref name="10.1007/s12152-012-9167-3"/><ref>{{cite journal |last1=Cancer |first1=Alice |last2=Schulz |first2=Peter J. |last3=Castaldi |first3=Silvana |last4=Antonietti |first4=Alessandro |title=Neuroethical Issues in Cognitive Enhancement: the Undergraduates' Point of View |journal=Journal of Cognitive Enhancement |date=1 December 2018 |volume=2 |issue=4 |pages=323–330 |doi=10.1007/s41465-018-0110-3 |s2cid=256624023 |language=en |issn=2509-3304}}</ref><ref name="ERLN">{{cite web |last1=Erler |first1=Alexandre |last2=Forlini |first2=Cynthia |title=Neuroenhancement |url=https://philpapers.org/rec/ERLN |website=Routledge Encyclopedia of Philosophy Online |access-date=9 March 2023 |date=2020}}</ref><ref name="10.3389/fpsyg.2015.01852"/><ref name="10.1007/s40664-019-0340-y"/><ref name="10.1111/bph.13813"/><ref name="10.1007/s00391-017-1351-y"/> However, they may also be considered as "co-strategies" in parallel to "neuroenhancement", rather than as techniques of cognitive enhancement.<ref>{{cite journal |last1=Heller |first1=Sebastian |last2=Tibubos |first2=Ana Nanette |last3=Hoff |first3=Thilo A. |last4=Werner |first4=Antonia M. |last5=Reichel |first5=Jennifer L. |last6=Mülder |first6=Lina M. |last7=Schäfer |first7=Markus |last8=Pfirrmann |first8=Daniel |last9=Stark |first9=Birgit |last10=Rigotti |first10=Thomas |last11=Simon |first11=Perikles |last12=Beutel |first12=Manfred E. |last13=Letzel |first13=Stephan |last14=Dietz |first14=Pavel |title=Potential risk groups and psychological, psychosocial, and health behavioral predictors of pharmacological neuroenhancement among university students in Germany |journal=Scientific Reports |date=18 January 2022 |volume=12 |issue=1 |pages=937 |doi=10.1038/s41598-022-04891-y |pmid=35042938 |pmc=8766436 |bibcode=2022NatSR..12..937H |language=en |issn=2045-2322}}</ref>

Cognitively stimulating and social activities can also have positive effects on the brain.<ref name="10.1007/s00391-017-1351-y"/> Environmental protection measures can also secure or enhance cognitive abilities – for example studies have well-validated [[Air pollution#Central nervous system|extensive harmful effects of ubiqutous air pollution]] (outdoor<ref>{{cite journal |last1=Julvez |first1=Jordi |last2=López-Vicente |first2=Mónica |last3=Warembourg |first3=Charline |last4=Maitre |first4=Lea |last5=Philippat |first5=Claire |last6=Gützkow |first6=Kristine B. |last7=Guxens |first7=Monica |last8=Evandt |first8=Jorunn |last9=Andrusaityte |first9=Sandra |last10=Burgaleta |first10=Miguel |last11=Casas |first11=Maribel |last12=Chatzi |first12=Leda |last13=de Castro |first13=Montserrat |last14=Donaire-González |first14=David |last15=Gražulevičienė |first15=Regina |last16=Hernandez-Ferrer |first16=Carles |last17=Heude |first17=Barbara |last18=Mceachan |first18=Rosie |last19=Mon-Williams |first19=Mark |last20=Nieuwenhuijsen |first20=Mark |last21=Robinson |first21=Oliver |last22=Sakhi |first22=Amrit K. |last23=Sebastian-Galles |first23=Nuria |last24=Slama |first24=Remy |last25=Sunyer |first25=Jordi |last26=Tamayo-Uria |first26=Ibon |last27=Thomsen |first27=Cathrine |last28=Urquiza |first28=Jose |last29=Vafeiadi |first29=Marina |last30=Wright |first30=John |last31=Basagaña |first31=Xavier |last32=Vrijheid |first32=Martine |title=Early life multiple exposures and child cognitive function: A multi-centric birth cohort study in six European countries |journal=[[Environmental Pollution (journal)|Environmental Pollution]] |date=1 September 2021 |volume=284 |pages=117404 |doi=10.1016/j.envpol.2021.117404 |pmid=34077897 |pmc=8287594 |language=en |issn=0269-7491}}</ref><ref name="10.1016/j.pharmthera.2020.107523">{{cite journal |last1=Costa |first1=Lucio G. |last2=Cole |first2=Toby B. |last3=Dao |first3=Khoi |last4=Chang |first4=Yu-Chi |last5=Coburn |first5=Jacki |last6=Garrick |first6=Jacqueline M. |title=Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders |journal=[[Pharmacology & Therapeutics]] |date=June 2020 |volume=210 |pages=107523 |doi=10.1016/j.pharmthera.2020.107523 |pmid=32165138 |pmc=7245732 |issn=1879-016X}}</ref><ref>{{cite journal |last1=Volk |first1=Heather E. |last2=Perera |first2=Frederica |last3=Braun |first3=Joseph M. |last4=Kingsley |first4=Samantha L. |last5=Gray |first5=Kimberly |last6=Buckley |first6=Jessie |last7=Clougherty |first7=Jane E. |last8=Croen |first8=Lisa A. |last9=Eskenazi |first9=Brenda |last10=Herting |first10=Megan |last11=Just |first11=Allan C. |last12=Kloog |first12=Itai |last13=Margolis |first13=Amy |last14=McClure |first14=Leslie A. |last15=Miller |first15=Rachel |last16=Levine |first16=Sarah |last17=Wright |first17=Rosalind |title=Prenatal air pollution exposure and neurodevelopment: A review and blueprint for a harmonized approach within ECHO |journal=[[Environmental Research (journal)|Environmental Research]] |date=1 May 2021 |volume=196 |pages=110320 |doi=10.1016/j.envres.2020.110320 |pmid=33098817 |pmc=8060371 |bibcode=2021ER....196k0320V |language=en |issn=0013-9351}}</ref><ref>{{cite journal |last1=Shang |first1=Li |last2=Yang |first2=Liren |last3=Yang |first3=Wenfang |last4=Huang |first4=Liyan |last5=Qi |first5=Cuifang |last6=Yang |first6=Zixuan |last7=Fu |first7=Zhuxuan |last8=Chung |first8=Mei Chun |title=Effects of prenatal exposure to NO<sub>2</sub> on children's neurodevelopment: a systematic review and meta-analysis |journal=Environmental Science and Pollution Research |date=1 July 2020 |volume=27 |issue=20 |pages=24786–24798 |doi=10.1007/s11356-020-08832-y |pmc=7329770 |pmid=32356052 |s2cid=216650267 |language=en |issn=1614-7499}}</ref> and e.g. PM<sub>2.5</sub> and {{CO2}} concentrations indoor<ref>{{cite journal |last1=Cedeño Laurent |first1=Jose Guillermo |last2=MacNaughton |first2=Piers |last3=Jones |first3=Emily |last4=Young |first4=Anna S |last5=Bliss |first5=Maya |last6=Flanigan |first6=Skye |last7=Vallarino |first7=Jose |last8=Chen |first8=Ling Jyh |last9=Cao |first9=Xiaodong |last10=Allen |first10=Joseph G |title=Associations between acute exposures to PM2.5 and carbon dioxide indoors and cognitive function in office workers: a multicountry longitudinal prospective observational study |journal=[[Environmental Research Letters]] |date=1 September 2021 |volume=16 |issue=9 |pages=094047 |doi=10.1088/1748-9326/ac1bd8 |pmid=35330988 |pmc=8942432 |bibcode=2021ERL....16i4047C |s2cid=237462480 |language=en |issn=1748-9326}}</ref>) and shown that half of the US population has been exposed to [[Lead poisoning|substantially detrimental lead levels]] in early childhood (mainly [[Effects of the car on societies#Public or external costs|from car exhaust]] whose lead pollution peaked in the 1970s and caused widespread loss in cognitive ability).<ref>{{cite journal |last1=McFarland |first1=Michael J. |last2=Hauer |first2=Matt E. |last3=Reuben |first3=Aaron |title=Half of US population exposed to adverse lead levels in early childhood |journal=Proceedings of the National Academy of Sciences |date=15 March 2022 |volume=119 |issue=11 |pages=e2118631119 |doi=10.1073/pnas.2118631119| pmid=35254913 |pmc=8931364 |bibcode=2022PNAS..11918631M |language=en |issn=0027-8424}}
* University press release: {{cite news |title=Lead exposure in last century shrunk IQ scores of half of Americans |url=https://medicalxpress.com/news/2022-03-exposure-century-shrunk-iq-scores.html |access-date=18 April 2022 |work=Duke University |language=en}}</ref> Nutrition also plays an important role during early brain development.<ref>{{cite journal |last1=Black |first1=Maureen M. |title=Impact of Nutrition on Growth, Brain, and Cognition |journal=Recent Research in Nutrition and Growth |series=Nestlé Nutrition Institute Workshop Series |date=2018 |volume=89 |pages=185–195 |doi=10.1159/000486502 |pmid=29991042 |isbn=978-3-318-06351-6 |language=english}}</ref>


====Education- and time-use-related====
====Education- and time-use-related====
{{See also|Evidence-based learning}}
{{See also|Evidence-based learning}}
[[Education#Development|Development of education]] may also be part of neuroenhancement{{Example needed|s|date=March 2023}} – for example, it has been suggested that providing a mix of stimuli, such as using digital narratives, comic books, video games, and graphic poems, "may improve overall task approach" and increase "task motivation".<ref>{{cite journal |last1=Sanacore |first1=Joseph |last2=Piro |first2=Joseph |title=Multimodalities, Neuroenhancement, and Literacy Learning |journal=International Journal of Progressive Education |date=1 August 2014 |volume=10 |issue=2 |pages=56–72 |url=https://dergipark.org.tr/en/pub/ijpe/issue/26315/277335 |language=en |issn=1554-5210}}</ref> Results in neuroscience and software – e.g. AI – can be relevant to this development.<ref>{{cite journal |last1=Dündar-Coecke |first1=Selma |title=Future avenues for education and neuroenhancement |journal=New Ideas in Psychology |date=1 December 2021 |volume=63 |pages=100875 |doi=10.1016/j.newideapsych.2021.100875 |s2cid=236312270 |language=en |issn=0732-118X|url=https://psyarxiv.com/v9f5e/ }}</ref><ref name="10.1007/s11948-020-00210-8"/> Educational software may also fall into the scope of neuroenhancement (which may depend on the kinds or types of use or features of such).<ref name="10.1007/s40664-019-0340-y"/><ref name="10.1098/rstb.2014.0214"/> Applications of [[augmented reality]] technologies are investigated for general memory enhancement, extending perception and learning-assistance.<ref name="10.1038/s41398-020-0697-x">{{cite journal |last1=Schneider |first1=Felicitas |last2=Horowitz |first2=Alan |last3=Lesch |first3=Klaus-Peter |last4=Dandekar |first4=Thomas |title=Delaying memory decline: different options and emerging solutions |journal=Translational Psychiatry |date=21 January 2020 |volume=10 |issue=1 |page=13 |doi=10.1038/s41398-020-0697-x |pmid=32066684 |pmc=7026464 |language=en |issn=2158-3188}}</ref><ref name="10.3389/fdata.2022.978734">{{cite journal |last1=Moreno |first1=Jonathan |last2=Gross |first2=Michael L. |last3=Becker |first3=Jack |last4=Hereth |first4=Blake |last5=Shortland |first5=Neil D. |last6=Evans |first6=Nicholas G. |title=The ethics of AI-assisted warfighter enhancement research and experimentation: Historical perspectives and ethical challenges |journal=Frontiers in Big Data |date=2022 |volume=5 |page=978734 |doi=10.3389/fdata.2022.978734 |pmid=36156934 |pmc=9500287 |issn=2624-909X|doi-access=free }}</ref><ref name="defcontext"/>{{additional citation needed|date=March 2023}} [[Lifelong learning]] may be considered a way of cognitive enhancement.<ref name="10.1098/rstb.2014.0214">{{cite journal |last1=Sahakian |first1=Barbara J. |last2=Bruhl |first2=Annette B. |last3=Cook |first3=Jennifer |last4=Killikelly |first4=Clare |last5=Savulich |first5=George |last6=Piercy |first6=Thomas |last7=Hafizi |first7=Sepehr |last8=Perez |first8=Jesus |last9=Fernandez-Egea |first9=Emilio |last10=Suckling |first10=John |last11=Jones |first11=Peter B. |title=The impact of neuroscience on society: cognitive enhancement in neuropsychiatric disorders and in healthy people |journal=Philosophical Transactions of the Royal Society B: Biological Sciences |date=19 September 2015 |volume=370 |issue=1677 |pages=20140214 |doi=10.1098/rstb.2014.0214 |pmid=26240429 |pmc=4528826 |language=en |issn=0962-8436}}</ref> For the scope neuroenhancement relating to education and work, see ''[[#Scope for cognitive enhancement]]''.
[[Education#Development|Development of education]] may also be part of neuroenhancement.{{Example needed|s|date=March 2023}} Results in neuroscience and software – e.g. AI – can be relevant to this development.<ref>{{cite journal |last1=Dündar-Coecke |first1=Selma |title=Future avenues for education and neuroenhancement |journal=New Ideas in Psychology |date=1 December 2021 |volume=63 |pages=100875 |doi=10.1016/j.newideapsych.2021.100875 |s2cid=236312270 |language=en |issn=0732-118X|url=https://psyarxiv.com/v9f5e/ }}</ref><ref name="10.1007/s11948-020-00210-8"/> Educational software may also fall into the scope of neuroenhancement (which may depend on the kinds or types of use or features of such).<ref name="10.1007/s40664-019-0340-y"/><ref name="10.1098/rstb.2014.0214"/> Applications of [[augmented reality]] technologies {{see below|[[#Augmented reality|below]]}} are investigated for general memory enhancement, extending perception and learning-assistance.<ref name="10.1038/s41398-020-0697-x">{{cite journal |last1=Schneider |first1=Felicitas |last2=Horowitz |first2=Alan |last3=Lesch |first3=Klaus-Peter |last4=Dandekar |first4=Thomas |title=Delaying memory decline: different options and emerging solutions |journal=Translational Psychiatry |date=21 January 2020 |volume=10 |issue=1 |page=13 |doi=10.1038/s41398-020-0697-x |pmid=32066684 |pmc=7026464 |language=en |issn=2158-3188}}</ref><ref name="10.3389/fdata.2022.978734">{{cite journal |last1=Moreno |first1=Jonathan |last2=Gross |first2=Michael L. |last3=Becker |first3=Jack |last4=Hereth |first4=Blake |last5=Shortland |first5=Neil D. |last6=Evans |first6=Nicholas G. |title=The ethics of AI-assisted warfighter enhancement research and experimentation: Historical perspectives and ethical challenges |journal=Frontiers in Big Data |date=2022 |volume=5 |page=978734 |doi=10.3389/fdata.2022.978734 |pmid=36156934 |pmc=9500287 |issn=2624-909X|doi-access=free }}</ref><ref name="defcontext"/>{{additional citation needed|date=March 2023}} It has been suggested that providing a mix of stimuli that also stimulates the visual association cortex via digital narratives, comic books, video games, and graphic poems, "may improve overall task approach"{{clarify|date=March 2023}} and increase "task motivation".<ref>{{cite journal |last1=Sanacore |first1=Joseph |last2=Piro |first2=Joseph |title=Multimodalities, Neuroenhancement, and Literacy Learning |journal=International Journal of Progressive Education |date=1 August 2014 |volume=10 |issue=2 |pages=56–72 |url=https://dergipark.org.tr/en/pub/ijpe/issue/26315/277335 |language=en |issn=1554-5210}}</ref> [[Lifelong learning]] may be considered a way of cognitive enhancement.<ref name="10.1098/rstb.2014.0214">{{cite journal |last1=Sahakian |first1=Barbara J. |last2=Bruhl |first2=Annette B. |last3=Cook |first3=Jennifer |last4=Killikelly |first4=Clare |last5=Savulich |first5=George |last6=Piercy |first6=Thomas |last7=Hafizi |first7=Sepehr |last8=Perez |first8=Jesus |last9=Fernandez-Egea |first9=Emilio |last10=Suckling |first10=John |last11=Jones |first11=Peter B. |title=The impact of neuroscience on society: cognitive enhancement in neuropsychiatric disorders and in healthy people |journal=Philosophical Transactions of the Royal Society B: Biological Sciences |date=19 September 2015 |volume=370 |issue=1677 |pages=20140214 |doi=10.1098/rstb.2014.0214 |pmid=26240429 |pmc=4528826 |language=en |issn=0962-8436}}</ref> For the scope of neuroenhancement relating to education and work, see ''[[#Scope for cognitive enhancement]]''.


[[File:How do people spend their time – Time-use research.png|thumb|Lifetime-use between 15 and 64<ref>{{cite journal |last1=Ortiz-Ospina |first1=Esteban |last2=Giattino |first2=Charlie |last3=Roser |first3=Max |title=Time Use |url=https://ourworldindata.org/time-use |journal=Our World in Data |access-date=11 March 2023 |date=29 November 2020}}</ref>]]
[[File:How do people spend their time – Time-use research.png|thumb|Lifetime-use between 15 and 64<ref>{{cite journal |last1=Ortiz-Ospina |first1=Esteban |last2=Giattino |first2=Charlie |last3=Roser |first3=Max |title=Time Use |url=https://ourworldindata.org/time-use |journal=Our World in Data |access-date=11 March 2023 |date=29 November 2020}}</ref>]]
How people spend their time or activities may have major effects on cognition<ref name="10.1007/s00391-017-1351-y"/><ref name="10.3389/fpsyg.2021.611155">{{cite journal |last1=Vedechkina |first1=Maria |last2=Borgonovi |first2=Francesca |title=A Review of Evidence on the Role of Digital Technology in Shaping Attention and Cognitive Control in Children |journal=Frontiers in Psychology |date=2021 |volume=12 |page=611155 |doi=10.3389/fpsyg.2021.611155 |pmid=33716873 |pmc=7943608 |issn=1664-1078|doi-access=free }}</ref><ref name="10.3389/fnsys.2022.1000495"/> (and vice versa) and be modulatable in various non-pharmacological ways such as decision-making, [[prioritization]], routines, [[reflective practice]]s, reasoning-related technologies, [[gamification]],<ref name="10.1098/rstb.2014.0214"/> incentives (e.g. economics, economic policy, media policy, curricula, [[sociocybernetics|social feedback]], norms, etc), and so on.{{additional citation needed|date=March 2023}} There is [[time-use research]] and [[Digital media use and mental health#Impact on cognition|research on various types of media uses on cognition]]. Impacts of [[screen time]] as well as play behavior on cognition may depend heavily on the types of activities, contexts, substituted activities and contents.<ref name="10.3389/fpsyg.2021.611155"/><ref>{{cite journal |last1=Gashaj |first1=Venera |last2=Dapp |first2=Laura C. |last3=Trninic |first3=Dragan |last4=Roebers |first4=Claudia M. |title=The effect of video games, exergames and board games on executive functions in kindergarten and 2nd grade: An explorative longitudinal study |journal=Trends in Neuroscience and Education |date=1 December 2021 |volume=25 |pages=100162 |doi=10.1016/j.tine.2021.100162 |pmid=34844694 |s2cid=237631258 |language=en |issn=2211-9493}}</ref> {{Crossreference|(see also [[Reality#Media]])}} The Internet is sometimes considered as a "{{tooltip|powerful cognitive enhancement technology|offering instant access to almost any type of information, along with the ability to share that information with others}}". However, it is not "a simple, uniform technology, either in its composition, or in its use" and as "an informational resource currently fails to enhance cognition", partly due to issues that include [[information overload]], [[misinformation]] and persuasive design. Substantial neuroenhancement potential therefor may lie within measures such as individual empowerment (possibly via existing education systems), software development and better collaborative systems for sorting and categorizing information.<ref name="10.1007/s11948-020-00210-8">{{cite journal |last1=Voinea |first1=Cristina |last2=Vică |first2=Constantin |last3=Mihailov |first3=Emilian |last4=Savulescu |first4=Julian |title=The Internet as Cognitive Enhancement |journal=Science and Engineering Ethics |date=1 August 2020 |volume=26 |issue=4 |pages=2345–2362 |doi=10.1007/s11948-020-00210-8 |language=en |issn=1471-5546}}</ref>
How people spend their time or activities may have major effects on cognition<ref name="10.1007/s00391-017-1351-y"/><ref name="10.3389/fpsyg.2021.611155">{{cite journal |last1=Vedechkina |first1=Maria |last2=Borgonovi |first2=Francesca |title=A Review of Evidence on the Role of Digital Technology in Shaping Attention and Cognitive Control in Children |journal=Frontiers in Psychology |date=2021 |volume=12 |page=611155 |doi=10.3389/fpsyg.2021.611155 |pmid=33716873 |pmc=7943608 |issn=1664-1078|doi-access=free }}</ref><ref name="10.3389/fnsys.2022.1000495"/> (and vice versa) and be modulatable in various non-pharmacological ways such as decision-making, [[prioritization]], routines, [[reflective practice]]s, reasoning-related technologies, [[gamification]],<ref name="10.1098/rstb.2014.0214"/> incentives (e.g. economics, economic policy, media policy, curricula, [[sociocybernetics|social feedback]], norms, etc), and so on.{{additional citation needed|date=March 2023}} There is [[time-use research]] and [[Digital media use and mental health#Impact on cognition|research on various types of media uses on cognition]]. Impacts of [[screen time]] as well as [[Play (activity)|play]] behavior on cognition may depend heavily on the types of activities, contexts, substituted activities and contents.<ref name="10.3389/fpsyg.2021.611155"/><ref>{{cite journal |last1=Gashaj |first1=Venera |last2=Dapp |first2=Laura C. |last3=Trninic |first3=Dragan |last4=Roebers |first4=Claudia M. |title=The effect of video games, exergames and board games on executive functions in kindergarten and 2nd grade: An explorative longitudinal study |journal=Trends in Neuroscience and Education |date=1 December 2021 |volume=25 |pages=100162 |doi=10.1016/j.tine.2021.100162 |pmid=34844694 |s2cid=237631258 |language=en |issn=2211-9493}}</ref> {{Crossreference|(see also [[Reality#Media]])}} Play behavior may also extend to the choice of toys, as social-emotional and cognitive skills are developed and enhanced as children play. A study recommends [[toy]]s{{which|date=March 2023}} that encourage the child to be mentally and physically active.<ref>{{cite journal |title=Selecting Appropriate Toys for Young Children in the Digital Era |journal=Pediatrics |date=2019 |doi=10.1542/peds.2018-3348}}</ref> For example, construction toys like [[Meccano]] could facilitate children to learn skills that are embedded in the act of designing and creative thinking.<ref>{{cite journal |last1=Schweikardt |first1=Eric |last2=Gross |first2=Mark D |title=A Brief Survey of Distributed Computational Toys |journal=2007 First IEEE International Workshop on Digital Game and Intelligent Toy Enhanced Learning (DIGI℡'07) |date=March 2007 |pages=57–64 |doi=10.1109/DIGI℡.2007.4}}</ref><ref>{{cite journal |last1=Merrick |first1=Kathryn E. |title=Novelty and Beyond: Towards Combined Motivation Models and Integrated Learning Architectures |journal=Intrinsically Motivated Learning in Natural and Artificial Systems |date=2013 |pages=209–233 |doi=10.1007/978-3-642-32375-1_9 |publisher=Springer |language=en}}</ref>{{examples needed|date=March 2023}} Concerning screen use, children's exposure to computers as part of school curricula is important to the development of computer literacy.<ref>{{cite journal |last1=Poynton |first1=Timothy A. |title=Computer literacy across the lifespan: a review with implications for educators |journal=Computers in Human Behavior |date=1 November 2005 |volume=21 |issue=6 |pages=861–872 |doi=10.1016/j.chb.2004.03.004 |language=en |issn=0747-5632}}</ref>


The Internet is sometimes considered as a "{{tooltip|powerful cognitive enhancement technology|offering instant access to almost any type of information, along with the ability to share that information with others}}"<ref name="10.1007/s11948-020-00210-8"/> or as enabling "Internet-extended cognition" or "Web-extended minds" or "human-extended machine cognition".<ref>{{cite journal |last1=Smart |first1=Paul |title=Extended Cognition and the Internet |journal=Philosophy & Technology |date=1 September 2017 |volume=30 |issue=3 |pages=357–390 |doi=10.1007/s13347-016-0250-2 |language=en |issn=2210-5441}}</ref><ref>{{cite journal |last1=Smart |first1=Paul R. |title=The Web-Extended Mind |journal=Philosophical Engineering |date=22 November 2013 |pages=116–133 |doi=10.1002/9781118700143.ch8 |publisher=John Wiley & Sons, Ltd |language=en}}</ref><ref>{{cite journal |last1=Smart |first1=Paul R. |title=Human-extended machine cognition |journal=Cognitive Systems Research |doi=10.1016/j.cogsys.2017.11.001 |language=en}}</ref> However, it is not "a simple, uniform technology, either in its composition, or in its use" and as "an informational resource currently fails to enhance cognition", partly due to issues that include [[information overload]], [[misinformation]] and persuasive design. Substantial neuroenhancement potential therefor may lie in measures such as individual empowerment (possibly via existing education systems), software development and better collaborative systems for sorting and categorizing information.<ref name="10.1007/s11948-020-00210-8">{{cite journal |last1=Voinea |first1=Cristina |last2=Vică |first2=Constantin |last3=Mihailov |first3=Emilian |last4=Savulescu |first4=Julian |title=The Internet as Cognitive Enhancement |journal=Science and Engineering Ethics |date=1 August 2020 |volume=26 |issue=4 |pages=2345–2362 |doi=10.1007/s11948-020-00210-8 |language=en |issn=1471-5546}}</ref>
Integration of digital tool use may increase cognitive capacity and flexibility, lower cognitive load and foster [[digital literacy|digital fluency]].<ref>{{cite journal |last1=Caton |first1=Amy |last2=Bradshaw-Ward |first2=Danita |last3=Kinshuk |first3=Kinshuk |last4=Savenye |first4=Wilhelmina |title=Future Directions for Digital Literacy Fluency using Cognitive Flexibility Research: A Review of Selected Digital Literacy Paradigms and Theoretical Frameworks |journal=Journal of Learning for Development |date=21 November 2022 |volume=9 |issue=3 |pages=381–393 |doi=10.56059/jl4d.v9i3.818 |s2cid=254004509 |url=https://jl4d.org/index.php/ejl4d/article/view/818/852 |language=en |issn=2311-1550}}</ref> Skills in [[critical thinking]], technology-supported [[Inquiry-based learning|inquiry learning]],<ref>{{cite journal |last1=Wang |first1=Feng |last2=Kinzie |first2=Mable B. |last3=McGuire |first3=Patrick |last4=Pan |first4=Edward |title=Applying Technology to Inquiry-Based Learning in Early Childhood Education |journal=Early Childhood Education Journal |date=1 March 2010 |volume=37 |issue=5 |pages=381–389 |doi=10.1007/s10643-009-0364-6 |s2cid=143666182 |language=en |issn=1573-1707}}</ref> [[science|scientific]] [[reasoning]] abilities (e.g. compare with [[religious education]] and the "[[Cognitive science of religion|cognitive style of religious thinking]]"<ref>{{cite journal |last1=Riegel |first1=Ulrich |last2=Mendl |first2=Hans |title=What should religious education in Germany be about and how does religiosity fit into this picture? An empirical study of pre-service religious education teachers' beliefs on the aims of RE |journal=Journal of Beliefs & Values |date=4 May 2014 |volume=35 |issue=2 |pages=165–174 |doi=10.1080/13617672.2014.953300 |s2cid=144001680 |issn=1361-7672}}</ref><ref>{{cite book |last1=Kittelmann Flensner |first1=Karin |title=Discourses of religion and secularism in religious education classrooms |date=2017 |publisher=Springer |location=Cham, Switzerland |isbn=978-3-319-60949-2}}</ref>) and [[problem-solving]] may be related to the cognitive domain or represent "metacognitive skills".<ref>{{cite journal |last1=Setyowidodo |first1=I |last2=Jatmiko |first2=B |last3=Susantini |first3=E |last4=Handayani |first4=A D |last5=Pramesti |first5=Y S |title=The role of science project based peer interaction on improving collaborative skills and physical problem solving: a mini review |journal=Journal of Physics: Conference Series |date=1 April 2020 |volume=1521 |issue=2 |pages=022032 |doi=10.1088/1742-6596/1521/2/022032|bibcode=2020JPhCS1521b2032S |s2cid=219448364 }}</ref><ref>{{cite journal |last1=Norman |first1=Geoff |title=Teaching basic science to optimize transfer |journal=Medical Teacher |date=1 January 2009 |volume=31 |issue=9 |pages=807–811 |doi=10.1080/01421590903049814 |pmid=19811185 |s2cid=26691454 |issn=0142-159X}}</ref><ref>{{cite journal |last1=Kalyuga |first1=Slava |last2=Renkl |first2=Alexander |last3=Paas |first3=Fred |title=Facilitating Flexible Problem Solving: A Cognitive Load Perspective |journal=Educational Psychology Review |date=1 June 2010 |volume=22 |issue=2 |pages=175–186 |doi=10.1007/s10648-010-9132-9 |s2cid=56420974 |language=en |issn=1573-336X}}</ref> [[Education#Development|Improvements to education]] could be considered cognitive enhancements and "educators" may commonly commit to a fallacy whereby it is assumed that if "individual distinct cognitive processes can be enhanced [...] [this] must enhance cognition overall" when they "'teach[] to the test'" and prioritize "[[memorization]] over generalizable skills such as critical thinking and problem solving".<ref>{{cite journal |last1=Edgren |first1=Nora |last2=Dubljević |first2=Veljko |title=The ubiquuity of the fallacy of composition in cognitive enhancement and in education |journal=Theoretical Medicine and Bioethics |date=1 February 2023 |volume=44 |issue=1 |pages=41–56 |doi=10.1007/s11017-022-09595-y |language=en |issn=1573-1200}}</ref>


Integration of digital tool use may increase cognitive capacity and flexibility, lower cognitive load and foster [[digital literacy|digital fluency]].<ref>{{cite journal |last1=Caton |first1=Amy |last2=Bradshaw-Ward |first2=Danita |last3=Kinshuk |first3=Kinshuk |last4=Savenye |first4=Wilhelmina |title=Future Directions for Digital Literacy Fluency using Cognitive Flexibility Research: A Review of Selected Digital Literacy Paradigms and Theoretical Frameworks |journal=Journal of Learning for Development |date=21 November 2022 |volume=9 |issue=3 |pages=381–393 |doi=10.56059/jl4d.v9i3.818 |s2cid=254004509 |url=https://jl4d.org/index.php/ejl4d/article/view/818/852 |language=en |issn=2311-1550}}</ref> Skills in [[critical thinking]], technology-supported [[Inquiry-based learning|inquiry learning]],<ref>{{cite journal |last1=Wang |first1=Feng |last2=Kinzie |first2=Mable B. |last3=McGuire |first3=Patrick |last4=Pan |first4=Edward |title=Applying Technology to Inquiry-Based Learning in Early Childhood Education |journal=Early Childhood Education Journal |date=1 March 2010 |volume=37 |issue=5 |pages=381–389 |doi=10.1007/s10643-009-0364-6 |s2cid=143666182 |language=en |issn=1573-1707}}</ref> [[science|scientific]] [[reasoning]] abilities (e.g. compare with [[religious education]] and the "[[Cognitive science of religion|cognitive style of religious thinking]]"<ref>{{cite journal |last1=Riegel |first1=Ulrich |last2=Mendl |first2=Hans |title=What should religious education in Germany be about and how does religiosity fit into this picture? An empirical study of pre-service religious education teachers' beliefs on the aims of RE |journal=Journal of Beliefs & Values |date=4 May 2014 |volume=35 |issue=2 |pages=165–174 |doi=10.1080/13617672.2014.953300 |s2cid=144001680 |issn=1361-7672}}</ref><ref>{{cite book |last1=Kittelmann Flensner |first1=Karin |title=Discourses of religion and secularism in religious education classrooms |date=2017 |publisher=Springer |location=Cham, Switzerland |isbn=978-3-319-60949-2}}</ref>) and [[problem-solving]] may be related to the cognitive domain or represent "metacognitive skills".<ref>{{cite journal |last1=Setyowidodo |first1=I |last2=Jatmiko |first2=B |last3=Susantini |first3=E |last4=Handayani |first4=A D |last5=Pramesti |first5=Y S |title=The role of science project based peer interaction on improving collaborative skills and physical problem solving: a mini review |journal=Journal of Physics: Conference Series |date=1 April 2020 |volume=1521 |issue=2 |pages=022032 |doi=10.1088/1742-6596/1521/2/022032|bibcode=2020JPhCS1521b2032S |s2cid=219448364 }}</ref><ref>{{cite journal |last1=Norman |first1=Geoff |title=Teaching basic science to optimize transfer |journal=Medical Teacher |date=1 January 2009 |volume=31 |issue=9 |pages=807–811 |doi=10.1080/01421590903049814 |pmid=19811185 |s2cid=26691454 |issn=0142-159X}}</ref><ref>{{cite journal |last1=Kalyuga |first1=Slava |last2=Renkl |first2=Alexander |last3=Paas |first3=Fred |title=Facilitating Flexible Problem Solving: A Cognitive Load Perspective |journal=Educational Psychology Review |date=1 June 2010 |volume=22 |issue=2 |pages=175–186 |doi=10.1007/s10648-010-9132-9 |s2cid=56420974 |language=en |issn=1573-336X}}</ref> [[Education#Development|Improvements to education]] could be considered cognitive enhancements and "educators" may commonly commit to a fallacy whereby it is assumed that if "individual distinct cognitive processes can be enhanced [...] [this] must enhance cognition overall" when they deploy "'teaching to the test'" and prioritize "[[memorization]] over generalizable skills such as critical thinking and problem solving".<ref>{{cite journal |last1=Edgren |first1=Nora |last2=Dubljević |first2=Veljko |title=The ubiquuity of the fallacy of composition in cognitive enhancement and in education |journal=Theoretical Medicine and Bioethics |date=1 February 2023 |volume=44 |issue=1 |pages=41–56 |doi=10.1007/s11017-022-09595-y |language=en |issn=1573-1200}}</ref>
Motivations to make use of pharmacological ways include "time optimization" and "increase in time awake".<ref name="10.52586/4948">{{cite journal |last1=Esposito |first1=Massimiliano |last2=Cocimano |first2=Giuseppe |last3=Ministrieri |first3=Federica |last4=Rosi |first4=Giuseppe Li |last5=Nunno |first5=Nunzio Di |last6=Messina |first6=Giovanni |last7=Sessa |first7=Francesco |last8=Salerno |first8=Monica |title=Smart drugs and neuroenhancement: what do we know? |journal=Frontiers in Bioscience-Landmark |date=30 August 2021 |volume=26 |issue=8 |pages=347–359 |doi=10.52586/4948 |pmid=34455764 |issn=2768-6701}}</ref>

What could be described as "human-computer symbiosis" already permeates [[daily life]], including for example humans' use of [[Web search]] software for research or [[machine translation]].<ref>{{cite web |title=Cognitive collaboration |url=https://www2.deloitte.com/us/en/insights/deloitte-review/issue-20/augmented-intelligence-human-computer-collaboration.html |website=Deloitte Insights |access-date=17 March 2023 |language=en}}</ref> A "gradual transition from document-centric to more data-centric modes of information representation", as envisioned by [[Semantic Web]] developments, could "provide new opportunities for cognitive augmentation and enhancement". This would enable targeted retrieval of specific pieces of task-relevant information and highly flexible modes of information display, in a way that is more advanced or integrated than conventional desktop computer [[Web search]] querying.<ref>{{cite web |last1=Smart |first1=Paul R. |title=The Cognitive Machine: Cognitive Extension and Coalition Operations |url=https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6c13f99aaec1e333ffb44058e5c7155552cbf851 |access-date=17 March 2023}}</ref>

Motivations to make use of pharmacological ways include "time optimization" and "increase in time awake".<ref name="10.52586/4948">{{cite journal |last1=Esposito |first1=Massimiliano |last2=Cocimano |first2=Giuseppe |last3=Ministrieri |first3=Federica |last4=Rosi |first4=Giuseppe Li |last5=Nunno |first5=Nunzio Di |last6=Messina |first6=Giovanni |last7=Sessa |first7=Francesco |last8=Salerno |first8=Monica |title=Smart drugs and neuroenhancement: what do we know? |journal=Frontiers in Bioscience-Landmark |date=30 August 2021 |volume=26 |issue=8 |pages=347–359 |doi=10.52586/4948 |pmid=34455764 |issn=2768-6701}}</ref> Time requirements for neuroenhancers may be an important factor in their selection or adoption.


A 2021 study showed that the [[Abecedarian Early Intervention Project]] [[Cognitive development|resulted in significant changes in midlife brain structure]] in males. [[MRI]] scans showed that several brain regions' and total brain volumes were substantially larger in participants of the childcare program than in [[Treatment and control groups|the control group]].<ref>{{cite news |title=Scientists say active early learning shapes the adult brain |url=https://medicalxpress.com/news/2021-06-scientists-early-adult-brain.html |access-date=14 June 2021 |work=medicalxpress.com |language=en}}</ref><ref name="10.1162/jocn_a_01709">{{cite journal |last1=Farah |first1=Martha J. |last2=Sternberg |first2=Saul |last3=Nichols |first3=Thomas A. |last4=Duda |first4=Jeffrey T. |last5=Lohrenz |first5=Terry |last6=Luo |first6=Yi |last7=Sonnier |first7=Libbie |last8=Ramey |first8=Sharon L. |last9=Montague |first9=Read |last10=Ramey |first10=Craig T. |title=Randomized Manipulation of Early Cognitive Experience Impacts Adult Brain Structure |journal=Journal of Cognitive Neuroscience |date=2021-05-01 |volume=33 |issue=6 |pages=1197–1209 |doi=10.1162/jocn_a_01709 |pmid=34428792 |hdl=10919/103551 |s2cid=233638156 |hdl-access=free }}</ref>
A 2021 study showed that the [[Abecedarian Early Intervention Project]] [[Cognitive development|resulted in significant changes in midlife brain structure]] in males. [[MRI]] scans showed that several brain regions' and total brain volumes were substantially larger in participants of the childcare program than in [[Treatment and control groups|the control group]].<ref>{{cite news |title=Scientists say active early learning shapes the adult brain |url=https://medicalxpress.com/news/2021-06-scientists-early-adult-brain.html |access-date=14 June 2021 |work=medicalxpress.com |language=en}}</ref><ref name="10.1162/jocn_a_01709">{{cite journal |last1=Farah |first1=Martha J. |last2=Sternberg |first2=Saul |last3=Nichols |first3=Thomas A. |last4=Duda |first4=Jeffrey T. |last5=Lohrenz |first5=Terry |last6=Luo |first6=Yi |last7=Sonnier |first7=Libbie |last8=Ramey |first8=Sharon L. |last9=Montague |first9=Read |last10=Ramey |first10=Craig T. |title=Randomized Manipulation of Early Cognitive Experience Impacts Adult Brain Structure |journal=Journal of Cognitive Neuroscience |date=2021-05-01 |volume=33 |issue=6 |pages=1197–1209 |doi=10.1162/jocn_a_01709 |pmid=34428792 |hdl=10919/103551 |s2cid=233638156 |hdl-access=free }}</ref>


====Other====
====Other====
Correction of mild dehydration<ref>{{cite journal |last1=Meeusen |first1=Romain |last2=Decroix |first2=Lieselot |title=Nutritional Supplements and the Brain |journal=International Journal of Sport Nutrition and Exercise Metabolism |date=1 March 2018 |volume=28 |issue=2 |pages=200–211 |doi=10.1123/ijsnem.2017-0314 |pmid=29252056 |s2cid=4582295 |language=en |issn=1543-2742}}</ref> (which may be especially relevant when chemicals like modafinil have been consumed), listening to various types of music and other audio<ref>{{cite journal |last1=Demarin |first1=Vida |last2=Bedeković |first2=Marina Roje |last3=Puretić |first3=Marijana Bosnar |last4=Pašić |first4=Marija Bošnjak |title=Arts, Brain and Cognition |journal=Psychiatria Danubina |date=December 2016 |volume=28 |issue=4 |pages=343–348 |pmid=27855424 |url=https://pubmed.ncbi.nlm.nih.gov/27855424/ |issn=0353-5053}}</ref><ref>{{cite journal |last1=Dingle |first1=Genevieve A. |last2=Sharman |first2=Leah S. |last3=Bauer |first3=Zoe |last4=Beckman |first4=Emma |last5=Broughton |first5=Mary |last6=Bunzli |first6=Emma |last7=Davidson |first7=Robert |last8=Draper |first8=Grace |last9=Fairley |first9=Sheranne |last10=Farrell |first10=Callyn |last11=Flynn |first11=Libby Maree |last12=Gomersall |first12=Sjaan |last13=Hong |first13=Mengxun |last14=Larwood |first14=Joel |last15=Lee |first15=Chiying |last16=Lee |first16=Jennifer |last17=Nitschinsk |first17=Lewis |last18=Peluso |first18=Natalie |last19=Reedman |first19=Sarah Elizabeth |last20=Vidas |first20=Dianna |last21=Walter |first21=Zoe C. |last22=Wright |first22=Olivia Renee Louise |title=How Do Music Activities Affect Health and Well-Being? A Scoping Review of Studies Examining Psychosocial Mechanisms |journal=Frontiers in Psychology |date=2021 |volume=12 |page=713818 |doi=10.3389/fpsyg.2021.713818 |pmid=34566791 |pmc=8455907 |issn=1664-1078|doi-access=free }}</ref><ref name="10.3390/brainsci9080178"/> (e.g. [[ambient music]], [[binaural beats]] or [[soundscape]]s for focus and other types for mood, motivation or alertness) or noise-reduction<ref name="10.3390/brainsci9080178"/> and, at least certain, fruit (and possibly nut) intake<ref>{{cite journal |last1=Miller |first1=Marshall G. |last2=Shukitt-Hale |first2=Barbara |title=Berry Fruit Enhances Beneficial Signaling in the Brain |journal=Journal of Agricultural and Food Chemistry |date=13 June 2012 |volume=60 |issue=23 |pages=5709–5715 |doi=10.1021/jf2036033 |pmid=22264107 |language=en |issn=0021-8561}}</ref><ref>{{cite journal |last1=Pribis |first1=Peter |last2=Shukitt-Hale |first2=Barbara |title=Cognition: the new frontier for nuts and berries |journal=The American Journal of Clinical Nutrition |date=July 2014 |volume=100 |pages=S347–S352 |doi=10.3945/ajcn.113.071506|pmid=24871475 }}</ref><ref>{{cite journal |last1=Clifford |first1=Tom |last2=Howatson |first2=Glyn |last3=West |first3=Daniel J. |last4=Stevenson |first4=Emma J. |title=The Potential Benefits of Red Beetroot Supplementation in Health and Disease |journal=Nutrients |date=April 2015 |volume=7 |issue=4 |pages=2801–2822 |doi=10.3390/nu7042801 |pmid=25875121 |pmc=4425174 |language=en |issn=2072-6643|doi-access=free }}</ref><ref name="10.1123/ijsnem.2017-0314"/><ref>{{cite journal |last1=George |first1=Elena S |last2=Daly |first2=Robin M |last3=Tey |first3=Siew Ling |last4=Brown |first4=Rachel |last5=Wong |first5=Tommy Hon Ting |last6=Tan |first6=Sze-Yen |title=Perspective: Is it Time to Expand Research on “Nuts” to Include “Seeds”? Justifications and Key Considerations |journal=Advances in Nutrition |date=1 July 2022 |volume=13 |issue=4 |pages=1016–1027 |doi=10.1093/advances/nmac028 |language=en |issn=2161-8313}}</ref>{{additional citation needed|date=March 2023}} can have immediate (acute) significant effects depending on various factors. Targeted [[human microbiome|microbiome]] alterations such as via various [[psychobiotics]],<ref name="10.1038/s41398-020-0697-x"/><ref>{{cite journal |last1=Allen |first1=Andrew P. |last2=Dinan |first2=Timothy G. |last3=Clarke |first3=Gerard |last4=Cryan |first4=John F. |title=A psychology of the human brain-gut-microbiome axis |journal=Social and Personality Psychology Compass |date=April 2017 |volume=11 |issue=4 |pages=e12309 |doi=10.1111/spc3.12309 |pmid=28804508 |pmc=5530613 |language=en}}</ref><ref>{{cite journal |last1=Basso |first1=Melissa |last2=Johnstone |first2=Nicola |last3=Knytl |first3=Paul |last4=Nauta |first4=Arjen |last5=Groeneveld |first5=Andre |last6=Cohen Kadosh |first6=Kathrin |title=A Systematic Review of Psychobiotic Interventions in Children and Adolescents to Enhance Cognitive Functioning and Emotional Behavior |journal=Nutrients |date=January 2022 |volume=14 |issue=3 |pages=614 |doi=10.3390/nu14030614 |pmid=35276975 |pmc=8840038 |language=en |issn=2072-6643|doi-access=free }}</ref><ref name="10.1016/j.tics.2018.04.006">{{cite journal |last1=Sarkar |first1=Amar |last2=Harty |first2=Siobhán |last3=Lehto |first3=Soili M. |last4=Moeller |first4=Andrew H. |last5=Dinan |first5=Timothy G. |last6=Dunbar |first6=Robin I. M. |last7=Cryan |first7=John F. |last8=Burnet |first8=Philip W. J. |title=The Microbiome in Psychology and Cognitive Neuroscience |journal=Trends in Cognitive Sciences |date=1 July 2018 |volume=22 |issue=7 |pages=611–636 |doi=10.1016/j.tics.2018.04.006 |language=en |issn=1364-6613}}</ref><ref>{{cite journal |last1=Vera-Santander |first1=Victor E. |last2=Hernández-Figueroa |first2=Ricardo H. |last3=Jiménez-Munguía |first3=María T. |last4=Mani-López |first4=Emma |last5=López-Malo |first5=Aurelio |title=Health Benefits of Consuming Foods with Bacterial Probiotics, Postbiotics, and Their Metabolites: A Review |journal=Molecules |date=January 2023 |volume=28 |issue=3 |pages=1230 |doi=10.3390/molecules28031230 |language=en |issn=1420-3049}}</ref> [[meditation]],<ref name="10.1021/acschemneuro.8b00571"/><ref name="10.3389/fnsys.2022.1000495"/> and [[Relaxation (psychology)#Physical|physical relaxation techniques]] like {{tooltip|cyclic breathing exercises|e.g. 5 minutes of "cyclic sighing" – deep breaths followed by extended, relatively longer exhales}}<ref>{{cite journal |last1=Balban |first1=Melis Yilmaz |last2=Neri |first2=Eric |last3=Kogon |first3=Manuela M. |last4=Weed |first4=Lara |last5=Nouriani |first5=Bita |last6=Jo |first6=Booil |last7=Holl |first7=Gary |last8=Zeitzer |first8=Jamie M. |last9=Spiegel |first9=David |last10=Huberman |first10=Andrew D. |title=Brief structured respiration practices enhance mood and reduce physiological arousal |journal=Cell Reports Medicine |date=17 January 2023 |volume=4 |issue=1 |page=100895 |doi=10.1016/j.xcrm.2022.100895 |pmid=36630953 |pmc=9873947 |language=English |issn=2666-3791}}
Correction of mild dehydration<ref>{{cite journal |last1=Meeusen |first1=Romain |last2=Decroix |first2=Lieselot |title=Nutritional Supplements and the Brain |journal=International Journal of Sport Nutrition and Exercise Metabolism |date=1 March 2018 |volume=28 |issue=2 |pages=200–211 |doi=10.1123/ijsnem.2017-0314 |pmid=29252056 |s2cid=4582295 |language=en |issn=1543-2742}}</ref> (which may be especially relevant when chemicals like modafinil have been consumed), listening to various types of music and other audio<ref>{{cite journal |last1=Demarin |first1=Vida |last2=Bedeković |first2=Marina Roje |last3=Puretić |first3=Marijana Bosnar |last4=Pašić |first4=Marija Bošnjak |title=Arts, Brain and Cognition |journal=Psychiatria Danubina |date=December 2016 |volume=28 |issue=4 |pages=343–348 |pmid=27855424 |url=https://pubmed.ncbi.nlm.nih.gov/27855424/ |issn=0353-5053}}</ref><ref>{{cite journal |last1=Dingle |first1=Genevieve A. |last2=Sharman |first2=Leah S. |last3=Bauer |first3=Zoe |last4=Beckman |first4=Emma |last5=Broughton |first5=Mary |last6=Bunzli |first6=Emma |last7=Davidson |first7=Robert |last8=Draper |first8=Grace |last9=Fairley |first9=Sheranne |last10=Farrell |first10=Callyn |last11=Flynn |first11=Libby Maree |last12=Gomersall |first12=Sjaan |last13=Hong |first13=Mengxun |last14=Larwood |first14=Joel |last15=Lee |first15=Chiying |last16=Lee |first16=Jennifer |last17=Nitschinsk |first17=Lewis |last18=Peluso |first18=Natalie |last19=Reedman |first19=Sarah Elizabeth |last20=Vidas |first20=Dianna |last21=Walter |first21=Zoe C. |last22=Wright |first22=Olivia Renee Louise |title=How Do Music Activities Affect Health and Well-Being? A Scoping Review of Studies Examining Psychosocial Mechanisms |journal=Frontiers in Psychology |date=2021 |volume=12 |page=713818 |doi=10.3389/fpsyg.2021.713818 |pmid=34566791 |pmc=8455907 |issn=1664-1078|doi-access=free }}</ref><ref name="10.3390/brainsci9080178"/> (e.g. [[ambient music]], [[binaural beats]] or [[soundscape]]s for focus and other types for mood, motivation or alertness) or noise-reduction,<ref name="10.3390/brainsci9080178"/> and intake of, {{tooltip|at least specific|more research is needed and other studies show diets with a high consumption of fruits like the MedDiet are associated with better cognitive results – studies about specific fruits and cognition found so far are about berries like bilberry/blueberry and red beetroot}}, fruits (and possibly nuts)<ref>{{cite journal |last1=Miller |first1=Marshall G. |last2=Shukitt-Hale |first2=Barbara |title=Berry Fruit Enhances Beneficial Signaling in the Brain |journal=Journal of Agricultural and Food Chemistry |date=13 June 2012 |volume=60 |issue=23 |pages=5709–5715 |doi=10.1021/jf2036033 |pmid=22264107 |language=en |issn=0021-8561}}</ref><ref>{{cite journal |last1=Pribis |first1=Peter |last2=Shukitt-Hale |first2=Barbara |title=Cognition: the new frontier for nuts and berries |journal=The American Journal of Clinical Nutrition |date=July 2014 |volume=100 |pages=S347–S352 |doi=10.3945/ajcn.113.071506|pmid=24871475 }}</ref><ref>{{cite journal |last1=Clifford |first1=Tom |last2=Howatson |first2=Glyn |last3=West |first3=Daniel J. |last4=Stevenson |first4=Emma J. |title=The Potential Benefits of Red Beetroot Supplementation in Health and Disease |journal=Nutrients |date=April 2015 |volume=7 |issue=4 |pages=2801–2822 |doi=10.3390/nu7042801 |pmid=25875121 |pmc=4425174 |language=en |issn=2072-6643|doi-access=free }}</ref><ref name="10.1123/ijsnem.2017-0314"/><ref>{{cite journal |last1=George |first1=Elena S |last2=Daly |first2=Robin M |last3=Tey |first3=Siew Ling |last4=Brown |first4=Rachel |last5=Wong |first5=Tommy Hon Ting |last6=Tan |first6=Sze-Yen |title=Perspective: Is it Time to Expand Research on “Nuts” to Include “Seeds”? Justifications and Key Considerations |journal=Advances in Nutrition |date=1 July 2022 |volume=13 |issue=4 |pages=1016–1027 |doi=10.1093/advances/nmac028 |language=en |issn=2161-8313}}</ref>{{additional citation needed|date=March 2023}} can have immediate (acute) significant effects depending on various factors. Targeted [[human microbiome|microbiome]] alterations such as via various [[psychobiotics]],<ref name="10.1038/s41398-020-0697-x"/><ref>{{cite journal |last1=Allen |first1=Andrew P. |last2=Dinan |first2=Timothy G. |last3=Clarke |first3=Gerard |last4=Cryan |first4=John F. |title=A psychology of the human brain-gut-microbiome axis |journal=Social and Personality Psychology Compass |date=April 2017 |volume=11 |issue=4 |pages=e12309 |doi=10.1111/spc3.12309 |pmid=28804508 |pmc=5530613 |language=en}}</ref><ref>{{cite journal |last1=Basso |first1=Melissa |last2=Johnstone |first2=Nicola |last3=Knytl |first3=Paul |last4=Nauta |first4=Arjen |last5=Groeneveld |first5=Andre |last6=Cohen Kadosh |first6=Kathrin |title=A Systematic Review of Psychobiotic Interventions in Children and Adolescents to Enhance Cognitive Functioning and Emotional Behavior |journal=Nutrients |date=January 2022 |volume=14 |issue=3 |pages=614 |doi=10.3390/nu14030614 |pmid=35276975 |pmc=8840038 |language=en |issn=2072-6643|doi-access=free }}</ref><ref name="10.1016/j.tics.2018.04.006">{{cite journal |last1=Sarkar |first1=Amar |last2=Harty |first2=Siobhán |last3=Lehto |first3=Soili M. |last4=Moeller |first4=Andrew H. |last5=Dinan |first5=Timothy G. |last6=Dunbar |first6=Robin I. M. |last7=Cryan |first7=John F. |last8=Burnet |first8=Philip W. J. |title=The Microbiome in Psychology and Cognitive Neuroscience |journal=Trends in Cognitive Sciences |date=1 July 2018 |volume=22 |issue=7 |pages=611–636 |doi=10.1016/j.tics.2018.04.006 |language=en |issn=1364-6613}}</ref><ref>{{cite journal |last1=Vera-Santander |first1=Victor E. |last2=Hernández-Figueroa |first2=Ricardo H. |last3=Jiménez-Munguía |first3=María T. |last4=Mani-López |first4=Emma |last5=López-Malo |first5=Aurelio |title=Health Benefits of Consuming Foods with Bacterial Probiotics, Postbiotics, and Their Metabolites: A Review |journal=Molecules |date=January 2023 |volume=28 |issue=3 |pages=1230 |doi=10.3390/molecules28031230 |language=en |issn=1420-3049}}</ref> [[meditation]],<ref name="10.1021/acschemneuro.8b00571"/><ref name="10.3389/fnsys.2022.1000495"/> and [[Relaxation (psychology)#Physical|physical relaxation techniques]] like {{tooltip|cyclic breathing exercises|e.g. 5 minutes of "cyclic sighing" – deep breaths followed by extended, relatively longer exhales}}<ref>{{cite journal |last1=Balban |first1=Melis Yilmaz |last2=Neri |first2=Eric |last3=Kogon |first3=Manuela M. |last4=Weed |first4=Lara |last5=Nouriani |first5=Bita |last6=Jo |first6=Booil |last7=Holl |first7=Gary |last8=Zeitzer |first8=Jamie M. |last9=Spiegel |first9=David |last10=Huberman |first10=Andrew D. |title=Brief structured respiration practices enhance mood and reduce physiological arousal |journal=Cell Reports Medicine |date=17 January 2023 |volume=4 |issue=1 |page=100895 |doi=10.1016/j.xcrm.2022.100895 |pmid=36630953 |pmc=9873947 |language=English |issn=2666-3791}}
* News article about the study: {{cite news |last1=Gulzar |first1=Ayesha |title=This 5-minute breathing technique can reduce anxiety and stress |url=https://interestingengineering.com/health/cycling-sighing-breathing-technique |access-date=16 February 2023 |work=interestingengineering.com |date=13 February 2023 |archive-date=15 February 2023 |archive-url=https://web.archive.org/web/20230215183929/https://interestingengineering.com/health/cycling-sighing-breathing-technique |url-status=live }}</ref> could have longer-term effects, albeit the research on these interventions is at an early stage with few human trials<ref name="10.1016/j.tics.2018.04.006"/> – which may be needed to for example identify beneficial bacterial species and strains to include in a [[probiotic]] – despite a 2011 study first showing that the [[human gut microbiota|gut microbiota]] "can be exploited as a therapeutic target for cognitive enhancement".<ref>{{cite journal |last1=Parashar |first1=Arun |last2=Udayabanu |first2=Malairaman |title=Gut microbiota regulates key modulators of social behavior |journal=European Neuropsychopharmacology |date=1 January 2016 |volume=26 |issue=1 |pages=78–91 |doi=10.1016/j.euroneuro.2015.11.002 |language=en |issn=0924-977X}}</ref>
* News article about the study: {{cite news |last1=Gulzar |first1=Ayesha |title=This 5-minute breathing technique can reduce anxiety and stress |url=https://interestingengineering.com/health/cycling-sighing-breathing-technique |access-date=16 February 2023 |work=interestingengineering.com |date=13 February 2023 |archive-date=15 February 2023 |archive-url=https://web.archive.org/web/20230215183929/https://interestingengineering.com/health/cycling-sighing-breathing-technique |url-status=live }}</ref> could have longer-term effects, albeit the research on these interventions is at an early stage with few human trials<ref name="10.1016/j.tics.2018.04.006"/> – which may be needed to for example identify beneficial bacterial species and strains to include in a [[probiotic]] – despite a 2011 study first showing that the [[Human microbiome#Gastrointestinal tract|gut microbiota]] "can be exploited as a therapeutic target for cognitive enhancement".<ref>{{cite journal |last1=Parashar |first1=Arun |last2=Udayabanu |first2=Malairaman |title=Gut microbiota regulates key modulators of social behavior |journal=European Neuropsychopharmacology |date=1 January 2016 |volume=26 |issue=1 |pages=78–91 |doi=10.1016/j.euroneuro.2015.11.002 |language=en |issn=0924-977X}}</ref>


Research also investigates [[Learning#Adult learning vs children's learning|differences between adult learning and children's learning]] which may enable interventions to selectively enhance learning in adults and children.
Research also investigates [[Learning#Adult learning vs children's learning|differences between adults' learning and children's learning]] which may enable interventions to selectively enhance learning in adults and children.


===Sleep-related===
===Sleep-related===
The [[Sleep and learning|role of sleep in learning]] can be leveraged by interventions such as "cueing memory reactivation during sleep", "stimulating sleep-specific brain oscillations" and "targeting specific neurotransmitter systems pharmacologically", including via "[o]lfactory and auditory cues" during sleep.<ref name="10.3389/fnsys.2014.00046"/>
The [[Sleep and learning|role of sleep in learning]] can be leveraged by interventions such as "targeting specific neurotransmitter systems pharmacologically", "stimulating sleep-specific brain oscillations" and "cueing memory reactivation during sleep", including via "[o]lfactory and auditory cues".<ref name="10.3389/fnsys.2014.00046"/>

Desynchronized [[circadian rhythm]]s have detrimental effects on cognition.<ref>{{cite journal |last1=Gudden |first1=Jip |last2=Arias Vasquez |first2=Alejandro |last3=Bloemendaal |first3=Mirjam |title=The Effects of Intermittent Fasting on Brain and Cognitive Function |journal=Nutrients |date=September 2021 |volume=13 |issue=9 |pages=3166 |doi=10.3390/nu13093166 |pmid=34579042 |pmc=8470960 |language=en |issn=2072-6643|doi-access=free }}</ref> In learning and skill development, the sleep episode following initial skill practice is important for consolidation.<ref name="10.1016/j.jtherbio.2018.09.012"/>


There is research into interventions to enhance sleep as in improving sleep quality, efficiency (sleep latency), and duration (e.g. 7–8 hours for most adults in specific but depending on factors{{additional citation needed|date=March 2023}} [[Familial natural short sleep#Genetics|that include genetics]] and possibly factors{{which|date=March 2023}} of "perceived sleep needs"<ref name="10.1136/bjsports-2020-102025">{{cite journal |last1=Walsh |first1=Neil P. |last2=Halson |first2=Shona L. |last3=Sargent |first3=Charli |last4=Roach |first4=Gregory D. |last5=Nédélec |first5=Mathieu |last6=Gupta |first6=Luke |last7=Leeder |first7=Jonathan |last8=Fullagar |first8=Hugh H. |last9=Coutts |first9=Aaron J. |last10=Edwards |first10=Ben J. |last11=Pullinger |first11=Samuel A. |last12=Robertson |first12=Colin M. |last13=Burniston |first13=Jatin G. |last14=Lastella |first14=Michele |last15=Meur |first15=Yann Le |last16=Hausswirth |first16=Christophe |last17=Bender |first17=Amy M. |last18=Grandner |first18=Michael A. |last19=Samuels |first19=Charles H. |title=Sleep and the athlete: narrative review and 2021 expert consensus recommendations |journal=British Journal of Sports Medicine |date=1 April 2021 |volume=55 |issue=7 |pages=356–368 |doi=10.1136/bjsports-2020-102025 |language=en |issn=0306-3674|doi-access=free}}</ref> and exhausting physical activity<ref name="10.1136/bjsports-2020-102025"/>{{additional citation needed|date=March 2023}}).
Desynchronized [[circadian rhythm]]s have detrimental effects on cognition.<ref>{{cite journal |last1=Gudden |first1=Jip |last2=Arias Vasquez |first2=Alejandro |last3=Bloemendaal |first3=Mirjam |title=The Effects of Intermittent Fasting on Brain and Cognitive Function |journal=Nutrients |date=September 2021 |volume=13 |issue=9 |pages=3166 |doi=10.3390/nu13093166 |pmid=34579042 |pmc=8470960 |language=en |issn=2072-6643|doi-access=free }}</ref>


There is research into interventions to enhance sleep as in improving sleep quality, efficiency (sleep latency), and duration (e.g. 7–8 hours depending on factors [[Familial natural short sleep#Genetics|that include genetics]]). Candidate tools or targets for modulation include [[glycine]], [[melatonin]], diet and exercise, [[tryptophan]], [[valerian]], [[ashwaghanda]],<ref>{{cite journal |last1=Bonilla |first1=Diego A. |last2=Moreno |first2=Yurany |last3=Gho |first3=Camila |last4=Petro |first4=Jorge L. |last5=Odriozola-Martínez |first5=Adrián |last6=Kreider |first6=Richard B. |title=Effects of Ashwagandha (Withania somnifera) on Physical Performance: Systematic Review and Bayesian Meta-Analysis |journal=Journal of Functional Morphology and Kinesiology |date=March 2021 |volume=6 |issue=1 |pages=20 |doi=10.3390/jfmk6010020 |language=en |issn=2411-5142}}</ref><ref>{{cite journal |last1=Lopresti |first1=Adrian L. |last2=Smith |first2=Stephen J. |title=Ashwagandha (Withania somnifera) for the treatment and enhancement of mental and physical conditions: A systematic review of human trials |journal=Journal of Herbal Medicine |date=1 August 2021 |volume=28 |pages=100434 |doi=10.1016/j.hermed.2021.100434 |language=en |issn=2210-8033}}</ref> caffeine and meal timing, circadian rhythm adherence, lightning, screen-use and blue light before sleep, and various optimal sleep environment characteristics.<ref>{{cite journal |last1=Halson |first1=Shona L. |title=Sleep in Elite Athletes and Nutritional Interventions to Enhance Sleep |journal=Sports Medicine |date=1 May 2014 |volume=44 |issue=1 |pages=13–23 |doi=10.1007/s40279-014-0147-0 |pmid=24791913 |pmc=4008810 |language=en |issn=1179-2035}}</ref><ref>{{cite journal |last1=Caddick |first1=Zachary A. |last2=Gregory |first2=Kevin |last3=Arsintescu |first3=Lucia |last4=Flynn-Evans |first4=Erin E. |title=A review of the environmental parameters necessary for an optimal sleep environment |journal=Building and Environment |date=15 March 2018 |volume=132 |pages=11–20 |doi=10.1016/j.buildenv.2018.01.020 |language=en |issn=0360-1323}}</ref>
Candidate tools or targets for modulation (technological,<ref>{{cite news |title=5 Smart(ish) Things to Help You Wake Up Easier |url=https://www.nytimes.com/wirecutter/blog/things-to-help-you-wake-up/ |access-date=17 March 2023 |work=Wirecutter: Reviews for the Real World |date=17 February 2023}}</ref> legal, pharmacological, or otherwise) include [[glycine]], [[melatonin]] (which can have side effects), diet and exercise, post-waking cognitive effort such as via [[alarm clock]]s that are deactivated by solving simple puzzles,<ref>{{cite journal |last1=Oh |first1=Kyue Taek |last2=Shin |first2=Jaemyung |last3=Kim |first3=Jaejeung |last4=Ko |first4=Minsam |title=Analysis of a Wake-Up Task-Based Mobile Alarm App |journal=Applied Sciences |date=January 2020 |volume=10 |issue=11 |pages=3993 |doi=10.3390/app10113993 |language=en |issn=2076-3417}}</ref><ref>{{cite web |last1=Dotson |first1=Noe |title=Puzzle Alarm Clock |url=https://digitalcommons.wou.edu/aes_event/2015/all/88/ |website=Academic Excellence Showcase Schedule |access-date=17 March 2023 |date=28 May 2015}}</ref><ref>{{cite news |last1=Olanoff |first1=Drew |title=Mission Alarm Clock turns waking up into a game - The Next Web |url=https://thenextweb.com/news/mission-alarm-clock-turns-waking-up-into-a-game |access-date=17 March 2023 |work=TNW {{!}} Apps |date=26 October 2011 |language=en}}</ref>{{better citation needed|date=March 2023}} neuromodulation sleeping caps,<ref>{{cite news |title=Brain-cleaning sleeping cap gets US Army funding |url=https://newatlas.com/science/brain-cleaning-skullcap-sleep-glymphatic-system-us-army/ |access-date=17 March 2023 |work=New Atlas |date=1 October 2021}}</ref> [[lemon balm]],<ref>{{cite journal |last1=Bruni |first1=Oliviero |last2=Ferini-Strambi |first2=Luigi |last3=Giacomoni |first3=Elena |last4=Pellegrino |first4=Paolo |title=Herbal Remedies and Their Possible Effect on the GABAergic System and Sleep |journal=Nutrients |date=February 2021 |volume=13 |issue=2 |pages=530 |doi=10.3390/nu13020530 |language=en |issn=2072-6643}}</ref> [[tryptophan]], [[valerian root|valerian]], [[ashwaghanda]],<ref>{{cite journal |last1=Bonilla |first1=Diego A. |last2=Moreno |first2=Yurany |last3=Gho |first3=Camila |last4=Petro |first4=Jorge L. |last5=Odriozola-Martínez |first5=Adrián |last6=Kreider |first6=Richard B. |title=Effects of Ashwagandha (Withania somnifera) on Physical Performance: Systematic Review and Bayesian Meta-Analysis |journal=Journal of Functional Morphology and Kinesiology |date=March 2021 |volume=6 |issue=1 |pages=20 |doi=10.3390/jfmk6010020 |language=en |issn=2411-5142}}</ref><ref>{{cite journal |last1=Lopresti |first1=Adrian L. |last2=Smith |first2=Stephen J. |title=Ashwagandha (Withania somnifera) for the treatment and enhancement of mental and physical conditions: A systematic review of human trials |journal=Journal of Herbal Medicine |date=1 August 2021 |volume=28 |pages=100434 |doi=10.1016/j.hermed.2021.100434 |language=en |issn=2210-8033}}</ref> caffeine-<ref>{{cite journal |last1=Gardiner |first1=Carissa |last2=Weakley |first2=Jonathon |last3=Burke |first3=Louise M. |last4=Roach |first4=Gregory D. |last5=Sargent |first5=Charli |last6=Maniar |first6=Nirav |last7=Townshend |first7=Andrew |last8=Halson |first8=Shona L. |title=The effect of caffeine on subsequent sleep: A systematic review and meta-analysis |journal=Sleep Medicine Reviews |date=1 June 2023 |volume=69 |pages=101764 |doi=10.1016/j.smrv.2023.101764 |language=en |issn=1087-0792}}</ref><ref name="10.1136/bjsports-2020-102025"/> and meal-timing, circadian rhythm adherence, lightning, [[Screen time#Sleep|screen-use]] and <!--[[Biological effects of high-energy visible light]]-->blue light reduction before sleep, and various optimal sleep environment characteristics<ref>{{cite journal |last1=Halson |first1=Shona L. |title=Sleep in Elite Athletes and Nutritional Interventions to Enhance Sleep |journal=Sports Medicine |date=1 May 2014 |volume=44 |issue=1 |pages=13–23 |doi=10.1007/s40279-014-0147-0 |pmid=24791913 |pmc=4008810 |language=en |issn=1179-2035}}</ref><ref>{{cite journal |last1=Caddick |first1=Zachary A. |last2=Gregory |first2=Kevin |last3=Arsintescu |first3=Lucia |last4=Flynn-Evans |first4=Erin E. |title=A review of the environmental parameters necessary for an optimal sleep environment |journal=Building and Environment |date=15 March 2018 |volume=132 |pages=11–20 |doi=10.1016/j.buildenv.2018.01.020 |language=en |issn=0360-1323}}</ref> (which may include [[indoor air quality]], thermal properties of bedding,<ref name="10.1016/j.jtherbio.2018.09.012">{{cite journal |last1=Troynikov |first1=Olga |last2=Watson |first2=Christopher G. |last3=Nawaz |first3=Nazia |title=Sleep environments and sleep physiology: A review |journal=Journal of Thermal Biology |date=1 December 2018 |volume=78 |pages=192–203 |doi=10.1016/j.jtherbio.2018.09.012 |language=en |issn=0306-4565}}</ref> temperature,<ref name="10.1016/j.jtherbio.2018.09.012"/><ref name="10.1136/bjsports-2020-102025"/> noise,<ref name="10.1136/bjsports-2020-102025"/> and [[Light pollution#Public health impact|outdoor light at night]]).


===Augmented reality===
===Augmented reality===
Line 155: Line 164:
* providing "just in time" information<ref>{{cite journal |last1=Buchner |first1=Josef |last2=Buntins |first2=Katja |last3=Kerres |first3=Michael |title=The impact of augmented reality on cognitive load and performance: A systematic review |journal=Journal of Computer Assisted Learning |date=February 2022 |volume=38 |issue=1 |pages=285–303 |doi=10.1111/jcal.12617 |s2cid=243783802 |language=en |issn=0266-4909}}</ref>
* providing "just in time" information<ref>{{cite journal |last1=Buchner |first1=Josef |last2=Buntins |first2=Katja |last3=Kerres |first3=Michael |title=The impact of augmented reality on cognitive load and performance: A systematic review |journal=Journal of Computer Assisted Learning |date=February 2022 |volume=38 |issue=1 |pages=285–303 |doi=10.1111/jcal.12617 |s2cid=243783802 |language=en |issn=0266-4909}}</ref>
* parallel quadcopter operation
* parallel quadcopter operation
* enhancement to detect, classify, and successfully manage (e.g. engage) threats<ref name="10.1007/s41465-020-00167-3">{{cite journal |last1=Brunyé |first1=Tad T. |last2=Brou |first2=Randy |last3=Doty |first3=Tracy Jill |last4=Gregory |first4=Frederick D. |last5=Hussey |first5=Erika K. |last6=Lieberman |first6=Harris R. |last7=Loverro |first7=Kari L. |last8=Mezzacappa |first8=Elizabeth S. |last9=Neumeier |first9=William H. |last10=Patton |first10=Debra J. |last11=Soares |first11=Jason W. |last12=Thomas |first12=Thaddeus P. |last13=Yu |first13=Alfred B. |title=A Review of US Army Research Contributing to Cognitive Enhancement in Military Contexts |journal=Journal of Cognitive Enhancement |date=1 December 2020 |volume=4 |issue=4 |pages=453–468 |doi=10.1007/s41465-020-00167-3 |s2cid=256621326 |language=en |issn=2509-3304}}</ref> {{Crossreference|See also [[Anomaly detection]].}}
* enhancement to detect, classify, and successfully manage (e.g. engage) threats<ref name="10.1007/s41465-020-00167-3">{{cite journal |last1=Brunyé |first1=Tad T. |last2=Brou |first2=Randy |last3=Doty |first3=Tracy Jill |last4=Gregory |first4=Frederick D. |last5=Hussey |first5=Erika K. |last6=Lieberman |first6=Harris R. |last7=Loverro |first7=Kari L. |last8=Mezzacappa |first8=Elizabeth S. |last9=Neumeier |first9=William H. |last10=Patton |first10=Debra J. |last11=Soares |first11=Jason W. |last12=Thomas |first12=Thaddeus P. |last13=Yu |first13=Alfred B. |title=A Review of US Army Research Contributing to Cognitive Enhancement in Military Contexts |journal=Journal of Cognitive Enhancement |date=1 December 2020 |volume=4 |issue=4 |pages=453–468 |doi=10.1007/s41465-020-00167-3 |s2cid=256621326 |language=en |issn=2509-3304}}</ref>
* spatial awareness<ref name="10.1007/s41465-020-00167-3"/>
* spatial awareness<ref name="10.1007/s41465-020-00167-3"/>
* enhancing visual and multisensory perception<ref name="10.1007/s41465-020-00167-3"/>
* enhancing visual and multisensory perception<ref name="10.1007/s41465-020-00167-3"/>
Line 163: Line 172:


===Untested methods===
===Untested methods===
A potential future biochemical strategy for cognitive enhancement is [[human genetic enhancement]] which has only been preliminarily, but successfully, tested in animal models and is currently not an available enhancement option to researchers.<ref name="10.1021/acschemneuro.8b00571"/><ref name="10.3389/fnsys.2022.1000495"/>
A potential future biochemical strategy for cognitive enhancement is [[human genetic enhancement]] which has only been preliminarily, but successfully, tested in animal models and is currently not an available enhancement option to researchers.<ref name="10.1021/acschemneuro.8b00571"/><ref name="10.3389/fnsys.2022.1000495"/><ref>{{cite journal |last1=Lee |first1=Yong-Seok |last2=Silva |first2=Alcino J. |title=The molecular and cellular biology of enhanced cognition |journal=Nature Reviews Neuroscience |date=February 2009 |volume=10 |issue=2 |pages=126–140 |doi=10.1038/nrn2572 |language=en |issn=1471-0048}}</ref>


==Side effects==
==Side effects==
Line 180: Line 189:
If more and more people begin enhancing their minds, people may "eventually feel subtly coerced into enhancing themselves in order to remain competitive in school or the workplace" or [[Supersoldier|in the military]], or experience types of peer-pressure.<ref name="10.1371/journal.pbio.1001289"/><ref name="10.3389/fnhum.2017.00142"/><ref name="10.1016/j.cobeha.2015.05.004"/>
If more and more people begin enhancing their minds, people may "eventually feel subtly coerced into enhancing themselves in order to remain competitive in school or the workplace" or [[Supersoldier|in the military]], or experience types of peer-pressure.<ref name="10.1371/journal.pbio.1001289"/><ref name="10.3389/fnhum.2017.00142"/><ref name="10.1016/j.cobeha.2015.05.004"/>


===Well-being and productivity===
The ethical benefits of neuroenhancement include potentials to improve [[well-being]],<ref name="10.1111/nyas.13040"/><ref>{{cite journal |last1=Marois |first1=Alexandre |last2=Lafond |first2=Daniel |title=Augmenting cognitive work: a review of cognitive enhancement methods and applications for operational domains |journal=Cognition, Technology & Work |date=1 November 2022 |volume=24 |issue=4 |pages=589–608 |doi=10.1007/s10111-022-00715-1 |s2cid=252372408 |language=en |issn=1435-5566}}</ref><ref name="10.1177/1477878511409623"/> reduce unhealthy substance use,<ref name="10.1016/b978-0-12-815298-0.00023-x"/><ref name="10.1016/j.pbb.2011.04.017"/><ref name="10.1007/s40267-021-00874-7"/> to further educational aims,<ref name="10.1177/1477878511409623"/> increase societal productivity<ref name="10.1002/wcs.1306">{{cite journal |last1=Mohamed |first1=Ahmed Dahir |title=Neuroethical issues in pharmacological cognitive enhancement |journal=WIREs Cognitive Science |date=September 2014 |volume=5 |issue=5 |pages=533–549 |doi=10.1002/wcs.1306 |pmid=26308743 |language=en |issn=1939-5078}}</ref><ref name="10.1093/jlb/lsab017">{{cite journal |last1=Jwa |first1=Anita S. |title=Enhancing the developing brain: tensions between parent, child, and state in the United States |journal=Journal of Law and the Biosciences |year=2021 |volume=8 |issue=1 |pages=lsab017 |doi=10.1093/jlb/lsab017|pmid=34188944 |pmc=8223904 }}</ref><ref>{{cite book |last1=Saritas |first1=Ozcan |title=Emerging Technologies for Economic Development |date=2019 |publisher=Springer International Publishing |isbn=978-3-030-04370-4 |pages=243–259 |url=https://link.springer.com/chapter/10.1007/978-3-030-04370-4_11 |language=en |chapter=Emerging Technologies, Trends and Wild Cards in Human Enhancement|series=Science, Technology and Innovation Studies |doi=10.1007/978-3-030-04370-4_11 |s2cid=169759910 }}</ref><ref name="10.1177/1477878511409623"/> in constructive sectors (also relevant to well-being<ref name="10.1093/jlb/lsab017"/><ref name="10.1177/1477878511409623"/> and they may support socioeconomic shifts by "enabling more complex, productive, and inherently fulfilling forms of cooperation"<ref name="10.1177/1477878511409623"/>), enable self-amelioration of widespread mild cognitive deficiencies in cognitively normal individuals,<ref name="10.1093/jlb/lsab017"/> and increase incentives for and effort behind the development of medical therapies, mainly chemicals, that can benefit people affected by various brain diseases, and in some cases other diseases, such as [[Alzheimer's disease]], and by [[brain aging]].
The ethical benefits of neuroenhancement include potentials to improve [[well-being]],<ref name="10.1111/nyas.13040"/><ref>{{cite journal |last1=Marois |first1=Alexandre |last2=Lafond |first2=Daniel |title=Augmenting cognitive work: a review of cognitive enhancement methods and applications for operational domains |journal=Cognition, Technology & Work |date=1 November 2022 |volume=24 |issue=4 |pages=589–608 |doi=10.1007/s10111-022-00715-1 |s2cid=252372408 |language=en |issn=1435-5566}}</ref><ref name="10.1177/1477878511409623"/> reduce unhealthy substance use,<ref name="10.1016/b978-0-12-815298-0.00023-x"/><ref name="10.1016/j.pbb.2011.04.017"/><ref name="10.1007/s40267-021-00874-7"/> to further educational aims,<ref name="10.1177/1477878511409623"/> increase societal productivity<ref name="10.1002/wcs.1306">{{cite journal |last1=Mohamed |first1=Ahmed Dahir |title=Neuroethical issues in pharmacological cognitive enhancement |journal=WIREs Cognitive Science |date=September 2014 |volume=5 |issue=5 |pages=533–549 |doi=10.1002/wcs.1306 |pmid=26308743 |language=en |issn=1939-5078}}</ref><ref name="10.1093/jlb/lsab017">{{cite journal |last1=Jwa |first1=Anita S. |title=Enhancing the developing brain: tensions between parent, child, and state in the United States |journal=Journal of Law and the Biosciences |year=2021 |volume=8 |issue=1 |pages=lsab017 |doi=10.1093/jlb/lsab017|pmid=34188944 |pmc=8223904 }}</ref><ref>{{cite book |last1=Saritas |first1=Ozcan |title=Emerging Technologies for Economic Development |date=2019 |publisher=Springer International Publishing |isbn=978-3-030-04370-4 |pages=243–259 |url=https://link.springer.com/chapter/10.1007/978-3-030-04370-4_11 |language=en |chapter=Emerging Technologies, Trends and Wild Cards in Human Enhancement|series=Science, Technology and Innovation Studies |doi=10.1007/978-3-030-04370-4_11 |s2cid=169759910 }}</ref><ref name="10.1177/1477878511409623"/> in constructive sectors (also relevant to well-being<ref name="10.1093/jlb/lsab017"/><ref name="10.1177/1477878511409623"/> and they may support socioeconomic shifts by "enabling more complex, productive, and inherently fulfilling forms of cooperation"<ref name="10.1177/1477878511409623"/>), enable self-amelioration of widespread mild cognitive deficiencies in cognitively normal individuals,<ref name="10.1093/jlb/lsab017"/> and increase incentives for and the effort behind the development of medical therapies, mainly chemicals, that can benefit people affected by various brain diseases, and in some cases other diseases, such as [[Alzheimer's disease]], and by [[brain aging]].


===Diversity and inequality===
===Diversity and inequality===
Line 191: Line 201:
In general, cognitive diversity – or some "optimum range of diversity" – was found highly valuable. Novel capabilities due to progress in science and technology may raise related ethical issues.<ref>{{cite journal |last1=Anomaly |first1=Jonathan |last2=Gyngell |first2=Christopher |last3=Savulescu |first3=Julian |title=Great minds think different: Preserving cognitive diversity in an age of gene editing |journal=Bioethics |date=January 2020 |volume=34 |issue=1 |pages=81–89 |doi=10.1111/bioe.12585 |pmid=30941781 |pmc=6973122 |language=en |issn=0269-9702}}</ref> There have also been speculations that cognitive enhancement technologies (CETs) may increase population-level cognitive diversity, e.g. as different people will choose to enhance different aspects of their [[cognition]].<ref>{{cite journal |last1=Gyngell |first1=Chris |last2=Easteal |first2=Simon |title=Cognitive Diversity and Moral Enhancement |journal=Cambridge Quarterly of Healthcare Ethics |date=January 2015 |volume=24 |issue=1 |pages=66–74 |doi=10.1017/S0963180114000310 |pmid=25473859 |language=en |issn=0963-1801}}</ref> Moreover, cognitive enhancements might decrease inequality, e.g. by "leveling the playing field".<ref>{{cite journal |last1=Veit |first1=Walter |title=Cognitive Enhancement and the Threat of Inequality |journal=Journal of Cognitive Enhancement |date=1 December 2018 |volume=2 |issue=4 |pages=404–410 |doi=10.1007/s41465-018-0108-x |s2cid=256624542 |language=en |issn=2509-3304}}</ref>
In general, cognitive diversity – or some "optimum range of diversity" – was found highly valuable. Novel capabilities due to progress in science and technology may raise related ethical issues.<ref>{{cite journal |last1=Anomaly |first1=Jonathan |last2=Gyngell |first2=Christopher |last3=Savulescu |first3=Julian |title=Great minds think different: Preserving cognitive diversity in an age of gene editing |journal=Bioethics |date=January 2020 |volume=34 |issue=1 |pages=81–89 |doi=10.1111/bioe.12585 |pmid=30941781 |pmc=6973122 |language=en |issn=0269-9702}}</ref> There have also been speculations that cognitive enhancement technologies (CETs) may increase population-level cognitive diversity, e.g. as different people will choose to enhance different aspects of their [[cognition]].<ref>{{cite journal |last1=Gyngell |first1=Chris |last2=Easteal |first2=Simon |title=Cognitive Diversity and Moral Enhancement |journal=Cambridge Quarterly of Healthcare Ethics |date=January 2015 |volume=24 |issue=1 |pages=66–74 |doi=10.1017/S0963180114000310 |pmid=25473859 |language=en |issn=0963-1801}}</ref> Moreover, cognitive enhancements might decrease inequality, e.g. by "leveling the playing field".<ref>{{cite journal |last1=Veit |first1=Walter |title=Cognitive Enhancement and the Threat of Inequality |journal=Journal of Cognitive Enhancement |date=1 December 2018 |volume=2 |issue=4 |pages=404–410 |doi=10.1007/s41465-018-0108-x |s2cid=256624542 |language=en |issn=2509-3304}}</ref>


====Distributive justice====
Another issue is that of [[distributive justice]], concerned with "who will have access to new cognitive enhancement techniques, and who can experience the cognitive benefits".<ref name="10.3389/fnhum.2017.00142">{{cite journal |last1=Schuijer |first1=Jantien W. |last2=de Jong |first2=Irja M. |last3=Kupper |first3=Frank |last4=van Atteveldt |first4=Nienke M. |title=Transcranial Electrical Stimulation to Enhance Cognitive Performance of Healthy Minors: A Complex Governance Challenge |journal=Frontiers in Human Neuroscience |date=2017 |volume=11 |page=142 |doi=10.3389/fnhum.2017.00142 |pmid=28396631 |pmc=5366312 |issn=1662-5161|doi-access=free }}</ref><ref name="10.1002/wcs.1306"/><ref name="10.1177/1477878511409623"/> A main factor in the [[Medication costs|costs]] of cognitive enhancers is their [[patent]]ability.<ref name="10.1021/acschemneuro.8b00571"/> [[Allen Buchanan]] in a book suggested that "we should embrace the opportunities provided by this emerging pharmacological technology and devote our resources to ensuring that such drugs that are developed and [[Clinical trial|tested]] properly [e.g. see [[confounding]], [[reproducibility]], [[#Research topics]] and [[cognitive test]]] and that access to them is equal and open to avoid injustices and the development of black markets".<ref>{{cite journal |last1=Flower |first1=R. |title=The Osler Lecture 2012 'Pharmacology 2.0, medicines, drugs and human enhancement' |journal=QJM |date=1 September 2012 |volume=105 |issue=9 |pages=823–830 |doi=10.1093/qjmed/hcs105|pmid=22723455 }}</ref>
Another issue is that of [[distributive justice]], concerned with "who will have access to new cognitive enhancement techniques, and who can experience the cognitive benefits".<ref name="10.3389/fnhum.2017.00142">{{cite journal |last1=Schuijer |first1=Jantien W. |last2=de Jong |first2=Irja M. |last3=Kupper |first3=Frank |last4=van Atteveldt |first4=Nienke M. |title=Transcranial Electrical Stimulation to Enhance Cognitive Performance of Healthy Minors: A Complex Governance Challenge |journal=Frontiers in Human Neuroscience |date=2017 |volume=11 |page=142 |doi=10.3389/fnhum.2017.00142 |pmid=28396631 |pmc=5366312 |issn=1662-5161|doi-access=free }}</ref><ref name="10.1002/wcs.1306"/><ref name="10.1177/1477878511409623"/> A main factor in the [[Medication costs|costs]] of cognitive enhancers is their [[patent]]ability.<ref name="10.1021/acschemneuro.8b00571"/> [[Allen Buchanan]] in a book suggested that "we should embrace the opportunities provided by this emerging pharmacological technology and devote our resources to ensuring that such drugs that are developed and [[Clinical trial|tested]] properly [e.g. see [[confounding]], [[reproducibility]], [[#Research topics]] and [[cognitive test]]] and that access to them is equal and open to avoid injustices and the development of black markets".<ref>{{cite journal |last1=Flower |first1=R. |title=The Osler Lecture 2012 'Pharmacology 2.0, medicines, drugs and human enhancement' |journal=QJM |date=1 September 2012 |volume=105 |issue=9 |pages=823–830 |doi=10.1093/qjmed/hcs105|pmid=22723455 }}</ref>


Line 196: Line 207:
{{Excerpt|Cognitive liberty|Freedom to self-determine}}
{{Excerpt|Cognitive liberty|Freedom to self-determine}}


A new [[human right]] to cognitive liberty has been proposed as "[[neurolaw|an update to other existing human rights]] to privacy, freedom of thought and self-determination", including because some neuroenhancement technologies could possibly also be used for ways like "involuntary neural surveillance", be vulnerable to hacking or used for manipulation.<ref>{{cite news |last1=Corbyn |first1=Zoë |title=Prof Nita Farahany: 'We need a new human right to cognitive liberty' |url=https://www.theguardian.com/science/2023/mar/04/prof-nita-farahany-we-need-a-new-human-right-to-cognitive-liberty |access-date=10 March 2023 |work=The Observer |date=4 March 2023}}</ref>
A new [[human right]] to cognitive liberty has been proposed as "[[neurolaw|an update to other existing human rights]] to privacy, freedom of thought and self-determination", partly because some neuroenhancement technologies could possibly also be used for ways like "involuntary neural surveillance", be vulnerable to hacking or used for manipulation.<ref>{{cite news |last1=Corbyn |first1=Zoë |title=Prof Nita Farahany: 'We need a new human right to cognitive liberty' |url=https://www.theguardian.com/science/2023/mar/04/prof-nita-farahany-we-need-a-new-human-right-to-cognitive-liberty |access-date=10 March 2023 |work=The Observer |date=4 March 2023}}</ref>


===In popular culture===
===In popular culture===
Line 208: Line 219:
Proponents of cognitive enhancement have argued that there are vast potential benefits for the workforce, especially for the older segment.<ref name="K" /> Mainly due to advances in medical technology over the last century, the average [[human life expectancy]] has increased significantly. Demographics for developed countries indicate rapid growth of the older segment of the workforce. Advancing age generally shows a pattern in the reduction of the ability to acquire new skills, but integration in the industry today requires employees to be able to acquire and retain new skills more than ever before.<ref name="K" />
Proponents of cognitive enhancement have argued that there are vast potential benefits for the workforce, especially for the older segment.<ref name="K" /> Mainly due to advances in medical technology over the last century, the average [[human life expectancy]] has increased significantly. Demographics for developed countries indicate rapid growth of the older segment of the workforce. Advancing age generally shows a pattern in the reduction of the ability to acquire new skills, but integration in the industry today requires employees to be able to acquire and retain new skills more than ever before.<ref name="K" />


A review noted that "even healthy [non-old] individuals who normally function well, are not always performing normally due to sleep deprivation, jet lag, or other stressors, and some might need cognitive enhancers to perform at their best possible level on some occasions".<ref name="10.1002/wcs.1306"/> Neuroenhancement thus is concerned with improving various cognitive domains to approximate their best possible level at more and specific times as well as raising that level, and improving neuropsychological weaknesses or mild deficits that are not diseases.
A review noted that "even healthy [non-old] individuals who normally function well, are not always performing normally due to sleep deprivation, jet lag, or other stressors, and some might need cognitive enhancers to perform at their best possible level on some occasions".<ref name="10.1002/wcs.1306"/> Neuroenhancement thus is concerned with improving capacities in various cognitive domains to approximate their best possible level at more and specific times as well as raising that level, and improving neuropsychological weaknesses or mild deficits that are not diseases.


Concerning public policy and neuroenhancement-related institutionalized structures like education systems, it is not known whether the scope of neuroenhancement also includes the purposes and content that cognition is enhanced for – the ends of cognitive enhancement such as curricula learned in educational institutions or ultimate purposes of tasks at workplaces or, by extension, the methods and frameworks by which such are e.g. selected. It also has not been clarified whether cognitive enhancement also encompasses behavioral interventions or methods (such as [[mnemonic techniques]]<ref name="10.1021/acschemneuro.8b00571"/><ref name="10.3389/fnsys.2022.1000495"/> like the [[method of loci]]<ref name="10.1038/s41398-020-0697-x"/>) and differential teaching modes and [[Teaching method|methods]], albeit some studies indicate behavioral interventions fall into the scope of neuroenhancement.
Concerning public policy and neuroenhancement-related institutionalized structures like education systems, it is not known whether the scope of neuroenhancement also includes the purposes and content that cognition is enhanced for – the ends of cognitive enhancement such as curricula learned in educational institutions or ultimate purposes of tasks at workplaces or, by extension, the methods and frameworks by which such are e.g. selected. It also has not been clarified whether cognitive enhancement also encompasses behavioral interventions or methods (such as [[mnemonic techniques]]<ref name="10.1021/acschemneuro.8b00571"/><ref name="10.3389/fnsys.2022.1000495"/> like the [[method of loci]]<ref name="10.1038/s41398-020-0697-x"/>) and differential teaching modes and [[Teaching method|methods]], albeit some studies indicate behavioral interventions fall into the scope of neuroenhancement.
Line 237: Line 248:
* [[Cyborg]]
* [[Cyborg]]
* [[Development of the nervous system in humans#Adult neural development]]
* [[Development of the nervous system in humans#Adult neural development]]
* [[Differential psychology]]
* [[Intelligence amplification]]
* [[Intelligence amplification]]
* [[List of drugs used by militaries]]
* [[List of drugs used by militaries]]
* [[Superintelligence#Feasibility of biological superintelligence]]
* [[Superintelligence#Feasibility of biological superintelligence]]
* [[Wearable technology]]
* [[Wearable technology]]
;Concepts and topics related to neurodiminishment
* [[Criticism of democracy#Criticism of Process]]
* [[Dumbing down]]
* [[Dysgenics]]
* [[Indoctrination]]
* [[Internet manipulation]]
* [[Media studies]]
* [[Misinformation]]
* [[Neuromarketing]]
;Other and sub-types
;Other and sub-types
* [[Alertness]]
* [[Alertness]]
Line 264: Line 285:


[[Category:Nootropics|*]]
[[Category:Nootropics|*]]
[[Category:Intelligence]]
[[Category:Neuroscience]]
[[Category:Neuroscience]]
[[Category:Neurotechnology]]
[[Category:Mind]]
[[Category:Mind]]
[[Category:Transhumanism]]
[[Category:Transhumanism]]

Revision as of 19:15, 17 March 2023

Neuroenhancement or cognitive enhancement refers to the targeted enhancement and extension of cognitive and affective abilities based on an understanding of their underlying neurobiology in healthy persons who do not have any mental illness and outcomes in experimental research.[1][2][3][4][5][6] As such, it can be thought of as an umbrella term that encompasses pharmacological and non-pharmacological methods of improving neurological functionality, especially interventions designed to improve human form or functioning beyond what is necessary to sustain or restore good health, as well as the overarching ethico-legal discourse that accompanies these aims and practices.[7][8]

Neuroenhancers reliably engender substantial cognitive, social, psychological, mood, or motor benefits beyond normal functioning in healthy individuals,[8] whilst causing few side effects, albeit broader definitions also include the use of psychoactive substances that are deemed unhealthy or to have substantial side effects. Pharmacological neuroenhancement agents include well-validated nootropics, such as modafinil,[12] citicoline,[13] Bacopa monnieri,[14][15][16] phosphatidylserine,[6] and caffeine[24] as well as other drugs used for treating patients with neurological disorders.

Non-pharmacological measures of cognitive enhancement include behavioral methods (activities, techniques, and changes),[25] non-invasive brain stimulation, which has been employed to improve various cognitive and affective functions, and brain-machine interfaces, which hold much potential to extend the repertoire of motor and cognitive capacities.[26]

Pharmacological

There are many nootropics, which include smart drugs and dietary supplements, and all or many of these are relevant to neuroenhancement, albeit many or most only have small effect sizes in healthy individuals or common major side effects. The most common, popular[27][28] or notable[29] pharmacological agents in neuroenhancement with potentials for significant effect sizes (as in at least as effective[30][11] or similar to caffeine)[8] include modafinil and methylphenidate (Ritalin).

Stimulants in general[17][19] and various antidementives,[17][19][31][32] anxiolytics,[31] empathogens,[33] types of microdosing (mainly of psychedelics),[33][34][35][36] and antidepressants[17][19] may also fall into the scope of neuroenhancement despite not necessarily being considered nootropics.

Although consideration of individual neuroenhancement agents is usually triggered by success in clinical and technological fields, they have also been used to attempt to help people with a lack of normal cognitive, motor, and affective abilities: for example, social skills and empathy. In this case, neuroenhancement drugs try to increase oxytocin and decrease cortisol levels helping people better their communication and social interaction skills.[5]

Neuroenhancement is not only concerned with, short- and longer-term, enhancement of intelligence (by various types of measures), learning (e.g. general memory enhancement), focus,[8][37][38][39] and related cognitive domains or measures but also:

Enhancers are multidimensional[29] and can be clustered into biochemical, physical, and behavioral enhancement strategies.[29] N-acetylcysteine (NAC) is an example of a low side effects cognitive enhancer relevant to both unhealthy substance use change[48][49][58] and mood stabilization.[59][60][61][62][63]

Modafinil

3D structure of modafinil
PubMed search results for "Modafinil" in title or abstract[64]

Modafinil is a wakefulness-promoting drug that decreases fatigue, increases vigilance, reduces daytime sleepiness, and improves mood.[4][5][9] Modafinil is currently licensed for treating patients with disorders such as narcolepsy, sleep apnea, and shift work sleep disorder.[2][5] This drug also seems promising in the treatment of depression and bipolar disorder.[5] Modafinil is currently being used by United States Air Force personnel for missions of great duration in an attempt to decrease fatigue amongst aircrew. It has become more popular amongst the general public. In an online poll conducted by Nature magazine, 8.8% of 1400 corresponding readers admitted use of modafinil for non-medical reasons. Their reasoning behind its use was for increasing concentration and focus on a specific task or to counteract sleep deficit and jetlag.[2] A comparison between the sales of modafinil to the number of patients revealed a disproportionate ratio, indicating high abuse.[2]

Modafinil has been reported to improve executive function in healthy non-sleep-deprived individuals, as well as potentially improving attention and learning and memory.[1] Effects on sleep-deprived individuals are even more striking: a single dose resulted in enhanced wakefulness, executive functions, and memory.[9] In the case of sustained sleep deprivation, repeated intake of modafinil helped individuals maintain higher levels of wakefulness than the placebo, but did not help attention and executive function.[2][9] Since the majority of these trials were conducted on military personnel, further research needs to be conducted on the effects of modafinil on the general population. Modafinil may impair one's self-monitoring ability. A common trend found in research studies indicated that participants rated their performances on cognitive tests higher than it was, suggesting an "overconfidence" effect.[2]

Modafinil is becoming increasingly popular among the general population.[7] Apart from a consumer's want to increase his neurological performance, there are financial incentives for manufacturers as well. Modafinil has a market share of more than $700 million a year, indicating a high degree of off-label use.[4] Modafinil is also one of the more easily available neuroenhancement drugs in the market today. Modafinil can be bought from many websites – mostly from Asian countries – as well as from darknet markets.[4][65][66] Modafinil first came into public attention when world champion runner Kelli White was tested positive for illegally consuming modafinil in the Athletics World Championship in 2003, resulting in the loss of her two gold medals.[4]

For research comparing modafinil with similar compounds, investigating combinations and showing trade-off type issues, see #Research topics below.

Methylphenidate

3D structure of methylphenidate

Methylphenidate (MPH), also known as Ritalin, is a stimulant that is used to treat attention-deficit hyperactivity disorder (ADHD). MPH is known to be highly abused by the general population, especially college students.[2][4] In an online poll conducted by Nature magazine, 12.4% of 1400 corresponding readers admitted use of MPH for non-medical reasons. Their reasoning behind its use was for increasing concentration, sleep deficit, and jetlag.[2]

A comparison between the sales of MPH to the number of patients revealed a disproportionate ratio, indicating high abuse.[2] MPH is believed to have a positive effect on memory consolidation, but studies have not been able to conclusively verify this claim.[2][9] Popular opinion that MPH enhances attention could not be verified.[2][9] Studies of MPH have reported improved problem-solving skills. However, when these studies were repeated to replicate the results, the placebo group scored higher, indicating that MPH may even impair performance.[4]

These inconclusive, and generally negative, results for memory improvement are insufficient to explain the use of MPH for non-medical reasons. Users may have motives other than genuine neuroenhancement that propels its unprescribed use, such as subjective and recreational effects.[2] The lack of any result, positive or negative, indicated that the 10–20 mg dosage may be too low for the drug.[2] Further studies need to be conducted, looking at different doses of MPH.[2][9]

Memantine

Memantine is an NMDA receptor antagonist and is used to treat patients with moderate to severe Alzheimer's disease, but is also used as a neuroenhancement drug.[3] Studies conducted on memantine were unable to conclusively verify neuroenhancement capability of the drug. Since most of these studies were single-dose tests of memantine, it is possible that these drugs would only show some effect, positive or negative, after continuous intake. Until then, single-dose studies of memantine are not enough to reveal the drug's actual potential.[3]

Donepezil

Donepezil is an acetylcholinesterase inhibitor (AChEI) that is used to treat patients with mild to moderate Alzheimer's disease. While many AChEIs could be potential neuroenhancement substances, donepezil is the most commonly used AChEIs by the general population due to its widespread use for treating Alzheimer's disease.[3]

Most studies on donepezil are unable to conclusively verify the neuroenhancement capability of the drug.[3] In such studies, it was seen participants who took donepezil scored higher than those that took the placebo. Donepezil helps individuals retain training tasks, verbal memory, and episodic memory.[3] In sleep deprivation studies, while donepezil had no effect on well-rested patients, it had a positive effect on patients with 24 hours of sleep deprivation. Such patients benefited from increased memory performance and attention that would otherwise be a deficit in such sleep-deprived conditions.[3] However, this effect was only seen in individuals whose performance declined significantly due to sleep deprivation.[3]

Research and candidates

Studies about neuroenhancement: PubMed search results for a query (for titles and abstracts)[67]

Research also explores derivatives (such as N-acetylcysteine amide for NAC) of already existing cognitive enhancers that have or could have higher bioavailability.[68]

Differential half-lives may also be a topic of research and development. Modafinil substantially increases alertness but, having a long half-life of approximately 13 hours,[69] can delay or impair sleep-onset,[70][18] with there being no marketed shorter-acting version. According to two 2009 studies, armodafinil is eliminated approximately three times more slowly than the S-isomer of racemic modafinil.[71][69]

Research may also investigate:

  • general safety and efficacy in healthy people in particular[38]
  • different protocols (e.g. dosages,[56] timing and scheduling)
  • combinations (e.g. concurrent, cyclic or sequential and precursors, depletions[72][73] and cofactors)
    • An example of one combination under research is the concurrent combination of l-theanine with caffeine.[74][75][76]
    • One study investigated high-dosage modafinil combined with low-dosage caffeine – 200 mg of each.[77][examples needed]
  • factors of effects outcomes (including situational, personal (e.g. genetic or baseline-skill-levels),[56][57] protocol-related, etc)[29]
  • interactions (e.g. polypharmacy and combinations)[23]
  • trade-off-type issues[29][78]
    • Modafinil can (e.g. in a subset of users) at or around the time of consumption:
      • impair sleep due to its long half-life[69][70][18]
      • (slightly) increase the resting heart rate and blood pressure[11][79]
      • impair some types of creativity[1][29]
      • both decrease or increase anxiety[80][81][82][1]
      • have a possible effect of overconfidence[2]
      • have risks for side effects like headache[1][79] and have low abuse/addiction potential[1][79]
    • Some pharmacological agents may have issues due to which some may consider them as not viable for enhancement or not consider them to be neuroenhancers – for example "nicotine and amphetamines (such as Adderall)" may result "in substantial loss of cholinergic and dopaminergic receptor responsivity and may ultimately lead to their epigenetic downregulation". (see e.g. Dopamine receptor#Dopamine regulation)[39] Various recreational drugs are partly used due to cognitive enhancement effects[23][33][83] on e.g. sociability, mood and/or creativity – in the exemplary case of alcohol this can have substantial effects on health, including long-term negative consequences on cognitive functions.[33] They can also induce tolerance for the effects and addiction could develop from long-term drug instrumentalization.[83]
  • differential effects (e.g. comparisons between substances/strategies[29] and per task, cognitive domain[29] or purpose)
    • For example, it was found that methylphenidate (Ritalin) increases alertness more on simple tasks than on difficult ones, while modafinil increases concentration or attention,[18][2] reportedly may significantly outperform methylphenidate "for cognitive enhancement in healthy individuals, 'especially on people undergoing sleep deprivation'",[84] and is thought to also have an impact on decision-making, planning and moral reasoning[85][86][additional citation(s) needed] and motivation.[37][34][35][87] Modafinil has replaced dextroamphetamine in certain types of military operations due to its superior side effects profile.[77]
  • general underlying neurobiology such as the neurobiological neurobiology underlying attention and focus or attentional processing (e.g. neurotransmitter systems, neuropeptides, etc)[39]

Intrabrain bioengineering

Advanced cognitive enhancement that is not viable for use by humans in the near future could benefit from research in which researchers design receptors to activate or inhibit neurons with proteins, e.g. using "Designer Receptors Exclusively Activated by Designer Drugs".[88] If organic neuromorphic devices reach a certain point and become biocompatible, novel brain implants could be possible.[89] Genetically modified neurons may enable connecting external components to nerves.[90] Researcher reported in 2020 that they bioengineered C. elegans worms to synthesize, fabricate, and assemble bioelectronic materials in its brain cells. They enabled modulation of membrane properties in specific neuron populations and manipulation of behavior in the living animals.[91][92][93] There also is research of potentially implantable[94] physical artificial neurons.[95] Bioimplants of genetically engineered or stem-cell grown neural tissue may become possible as well.[96]

Dietary components and supplements

Various compounds contained in foods or consumed in isolated forms or herbs such as cinnamon,[97] cocoa powder,[98][40][99][100][76] anthocyanins,[101] dietary nitrate (in beet root),[76] epicatechin,[102][103] levodopa[38] l-phenylalanine[104][105] and l-tyrosine,[106][72] phenethylamine (PEA),[107] carotenoids like lycopene (in tomato sauce),[107] l-theanine,[108] apigenin (or chamomile),[109][110] ginger,[111][100][105] herbal infusions (notably lemon balm, rosemary, peppermint and caffeinated drinks),[112][113][114][115][23][105] rhodiola rosea,[116][117][105][118][119] creatine,[120][121][122] omega 3 (e.g. sustainably algae-derived),[123][124][107] and other nutrients and phytonutrients[118][122] as well as correction of prevalent micronutrient deficiencies[125][126][105][127] are investigated for potential minor but significant or additive impacts on cognition (e.g. mild stimulation and/or mood modulation) in healthy non-old individuals. (see also #Diet below)

The dietary component glucose (and its glycogen form) is the main energy sources for the brain, with some researchers considering it a "[b]iochemical enhancer" despite of the health impacts of direct consumption. A constant supply of it is needed and simple sugars can spike blood glucose and their glucose supply does not last long. Slowly absorbed carbohydrate-containing food or low-GI food would lead to a slower release of glucose than a quickly absorbed or high-GI food.[128][76][29][105] There is very little research on links between brain glucose metabolism and cognition, despite it also being relevant to neurodegenerative disorders.[129]

Medications

Notable potentially viable pharmacological agents – as final products or as prototypes for similar ones – under early-stage research with potential for substantial effect sizes for specific purposes in specific situations (such as learning periods) also in healthy non-old humans but, in at least most cases, largely unknown effects in humans and safety profiles: orexin-A,[84] FGL, PTEN-PDZ, and PI3K-activator PTD4-PI3KAc,[130] dihexa,[131][132][133] d-cycloserine,[134][135][136][137] DAT blockers CE-123 and CE-158,[138] ampakines like IDRA-21 and CX717,[139][140][105] neuropeptide cerebrolysin,[19][141] rapastinel,[142][143][144] ISRIB,[145][146] selective receptor modulators such as MRK-016 which targets subtypes of GABAA receptors,[147] modafinil-analogs CRL-40,940 and modafiendz,[79] modafinil-inspired/hybrid TRI JZ-IV-10 and JZAD-IV-22,[148][149][150] pterostilbene,[151][152] CRM acyl-ghrelin mimetics and agonists like ibutamoren,[153][154] and pitolisant.[155][156]

Some medications like sociability-related GABA receptor agonist phenibut can have durable major side-effects and addiction potential for some at least at some dosages, albeit not necessarily.[157][158][44]

Non-pharmacological

Neurostimulation

Neurostimulation methods are being researched and developed. Results indicate details of the stimulation procedures are crucial, with some applications impairing rather than enhancing cognition and questions being raised about whether this approach can deliver any meaningful results for cognitive domains. Stimulation methods include electrical stimulation, magnetic stimulation, optical stimulation with lasers, several forms of acoustic stimulation, and physical methods like forms of neurofeedback.[29][88] There are ideas to integrate such headgear into helmets.[84][88]

Transcranial direct current stimulation

While neuroenhancement drugs are a potential method for cognitive performance enhancement, transcranial direct current stimulation (tDCS) over the motor cortex (MC) is being seen as another potential method.[159] Although it was originally intended to help patients with brain injuries such as stroke, there has been a lot of interest in the last few years on tDCS's capabilities for healthy individuals as well. Recent studies have already shown improved neuroplasticity from tDCS to facilitate motor learning in young humans, and it may be possible to apply this method to the older segment of the workforce as well.[159]

Stimulating higher cognitive functions of the brain, such as the language function, with tDCS in one study resulted in improved word retrieval. tDCS works by enhancing the connectivity in a given stimulated network, providing neural efficiency in highly specific brain areas critical for task performance.[160] During this time, fMRI images also showed reduced activity in the semantic retrieval processes, suggesting more efficient processing in task-critical areas of the brain.[160] Reduced activity in circumscribed task-related areas has been attributed to consolidation of motor learning and superior memory performance. New research in tDCS is trying to localize the stimulation to affect the desired subset of highly specific task-relevant neurons.[160] In 2022, scientists demonstrated that transcranial alternating current stimulation (tACS) can, depending on the frequency, for one month improve (either) short-term memory or long-term memory in 65–88-years-old people.[161]

Deep brain stimulation

Illustration showing an electrode placed deep-seated in the brain

Deep brain stimulation (DBS) is another form of neuroenhancement. Unlike tDCS, though, DBS involves the implantation of a medical device, and is restricted for use for only a few, severe diseases such as Parkinson's disease and dystonia.[162] In one study, DBS improved movement by 39%, reduced disability by 38%, and improved quality of life by 30% for patients with dystonia over a course of 3 months.[162] The patients had a reduction in dystonia symptoms by 50%.[162] Improvement was noticeable within hours to days after DBS application. The benefits of DBS as of now are far more than those of high-dosage trihexyphenidyl, a powerful drug used in the treatment for dystonia.

Brainwave entrainment

Brainwave entrainment, also referred to as brainwave synchronization or neural entrainment, refers to the observation that brainwaves (large-scale electrical oscillations in the brain) will naturally synchronize to the rhythm of periodic external stimuli, such as flickering lights,[163] speech,[164] music,[165] or tactile stimuli.

As different conscious states can be associated with different dominant brainwave frequencies,[166] it is hypothesized that brainwave entrainment might induce a desired state. Researchers have found, for instance, that acoustic entrainment of delta waves in slow wave sleep had the functional effect of improving memory in healthy subjects.[167]

A study showed that a "visual flicker paradigm to entrain individuals at their own brain rhythm (i.e. peak alpha frequency)" resulted in substantially faster perceptual visual learning, maintained the day following training. In particular, the entrainment substantially accelerated learning (this group "improved at least three times faster than control groups") in a discrimination task to detect targets embedded in background clutter or to identify radial vs. concentric Glass patterns embedded in noise compared to entrainment that does not match an individual's alpha frequency.[168]

Conventional methods and foundational strategies

Enhancement can also be based on conventional methods; this may be considered neuroenhancement[169] if they are targeted, especially when they are applied to an advanced level[additional citation(s) needed] or if they are considered from a collective public health intervention[169] perspective. From this perspective, "failing to encourage the pursuit of healthy behaviours" has "adverse effects on population cognitive health".[169] Conventional methods include those that delay or mitigate brain aging (which is one major preoccupation of neuro-enhancement),[170] including adequate sleep, optimized diet (see also above), and physical activity (which has many neuroeffects).[169][171][52][21][19][34][20] However, they may also be considered as "co-strategies" in parallel to "neuroenhancement", rather than as techniques of cognitive enhancement.[172]

Cognitively stimulating and social activities can also have positive effects on the brain.[20] Environmental protection measures can also secure or enhance cognitive abilities – for example studies have well-validated extensive harmful effects of ubiqutous air pollution (outdoor[173][174][175][176] and e.g. PM2.5 and CO2 concentrations indoor[177]) and shown that half of the US population has been exposed to substantially detrimental lead levels in early childhood (mainly from car exhaust whose lead pollution peaked in the 1970s and caused widespread loss in cognitive ability).[178] Nutrition also plays an important role during early brain development.[179]

Education- and time-use-related

Development of education may also be part of neuroenhancement.[examples needed] Results in neuroscience and software – e.g. AI – can be relevant to this development.[180][181] Educational software may also fall into the scope of neuroenhancement (which may depend on the kinds or types of use or features of such).[19][37] Applications of augmented reality technologies (see below) are investigated for general memory enhancement, extending perception and learning-assistance.[182][183][88][additional citation(s) needed] It has been suggested that providing a mix of stimuli that also stimulates the visual association cortex via digital narratives, comic books, video games, and graphic poems, "may improve overall task approach"[clarification needed] and increase "task motivation".[184] Lifelong learning may be considered a way of cognitive enhancement.[37] For the scope of neuroenhancement relating to education and work, see #Scope for cognitive enhancement.

Lifetime-use between 15 and 64[185]

How people spend their time or activities may have major effects on cognition[20][186][25] (and vice versa) and be modulatable in various non-pharmacological ways such as decision-making, prioritization, routines, reflective practices, reasoning-related technologies, gamification,[37] incentives (e.g. economics, economic policy, media policy, curricula, social feedback, norms, etc), and so on.[additional citation(s) needed] There is time-use research and research on various types of media uses on cognition. Impacts of screen time as well as play behavior on cognition may depend heavily on the types of activities, contexts, substituted activities and contents.[186][187] (see also Reality#Media) Play behavior may also extend to the choice of toys, as social-emotional and cognitive skills are developed and enhanced as children play. A study recommends toys[which?] that encourage the child to be mentally and physically active.[188] For example, construction toys like Meccano could facilitate children to learn skills that are embedded in the act of designing and creative thinking.[189][190][example needed] Concerning screen use, children's exposure to computers as part of school curricula is important to the development of computer literacy.[191]

The Internet is sometimes considered as a "powerful cognitive enhancement technology"[181] or as enabling "Internet-extended cognition" or "Web-extended minds" or "human-extended machine cognition".[192][193][194] However, it is not "a simple, uniform technology, either in its composition, or in its use" and as "an informational resource currently fails to enhance cognition", partly due to issues that include information overload, misinformation and persuasive design. Substantial neuroenhancement potential therefor may lie in measures such as individual empowerment (possibly via existing education systems), software development and better collaborative systems for sorting and categorizing information.[181]

Integration of digital tool use may increase cognitive capacity and flexibility, lower cognitive load and foster digital fluency.[195] Skills in critical thinking, technology-supported inquiry learning,[196] scientific reasoning abilities (e.g. compare with religious education and the "cognitive style of religious thinking"[197][198]) and problem-solving may be related to the cognitive domain or represent "metacognitive skills".[199][200][201] Improvements to education could be considered cognitive enhancements and "educators" may commonly commit to a fallacy whereby it is assumed that if "individual distinct cognitive processes can be enhanced [...] [this] must enhance cognition overall" when they deploy "'teaching to the test'" and prioritize "memorization over generalizable skills such as critical thinking and problem solving".[202]

What could be described as "human-computer symbiosis" already permeates daily life, including for example humans' use of Web search software for research or machine translation.[203] A "gradual transition from document-centric to more data-centric modes of information representation", as envisioned by Semantic Web developments, could "provide new opportunities for cognitive augmentation and enhancement". This would enable targeted retrieval of specific pieces of task-relevant information and highly flexible modes of information display, in a way that is more advanced or integrated than conventional desktop computer Web search querying.[204]

Motivations to make use of pharmacological ways include "time optimization" and "increase in time awake".[18] Time requirements for neuroenhancers may be an important factor in their selection or adoption.

A 2021 study showed that the Abecedarian Early Intervention Project resulted in significant changes in midlife brain structure in males. MRI scans showed that several brain regions' and total brain volumes were substantially larger in participants of the childcare program than in the control group.[205][206]

Other

Correction of mild dehydration[207] (which may be especially relevant when chemicals like modafinil have been consumed), listening to various types of music and other audio[208][209][11] (e.g. ambient music, binaural beats or soundscapes for focus and other types for mood, motivation or alertness) or noise-reduction,[11] and intake of, at least specific, fruits (and possibly nuts)[210][211][212][76][213][additional citation(s) needed] can have immediate (acute) significant effects depending on various factors. Targeted microbiome alterations such as via various psychobiotics,[182][214][215][216][217] meditation,[29][25] and physical relaxation techniques like cyclic breathing exercises[218] could have longer-term effects, albeit the research on these interventions is at an early stage with few human trials[216] – which may be needed to for example identify beneficial bacterial species and strains to include in a probiotic – despite a 2011 study first showing that the gut microbiota "can be exploited as a therapeutic target for cognitive enhancement".[219]

Research also investigates differences between adults' learning and children's learning which may enable interventions to selectively enhance learning in adults and children.

Sleep-related

The role of sleep in learning can be leveraged by interventions such as "targeting specific neurotransmitter systems pharmacologically", "stimulating sleep-specific brain oscillations" and "cueing memory reactivation during sleep", including via "[o]lfactory and auditory cues".[136]

Desynchronized circadian rhythms have detrimental effects on cognition.[220] In learning and skill development, the sleep episode following initial skill practice is important for consolidation.[221]

There is research into interventions to enhance sleep as in improving sleep quality, efficiency (sleep latency), and duration (e.g. 7–8 hours for most adults in specific but depending on factors[additional citation(s) needed] that include genetics and possibly factors[which?] of "perceived sleep needs"[222] and exhausting physical activity[222][additional citation(s) needed]).

Candidate tools or targets for modulation (technological,[223] legal, pharmacological, or otherwise) include glycine, melatonin (which can have side effects), diet and exercise, post-waking cognitive effort such as via alarm clocks that are deactivated by solving simple puzzles,[224][225][226][better source needed] neuromodulation sleeping caps,[227] lemon balm,[228] tryptophan, valerian, ashwaghanda,[229][230] caffeine-[231][222] and meal-timing, circadian rhythm adherence, lightning, screen-use and blue light reduction before sleep, and various optimal sleep environment characteristics[232][233] (which may include indoor air quality, thermal properties of bedding,[221] temperature,[221][222] noise,[222] and outdoor light at night).

Augmented reality

Applications of augmented reality technologies are investigated for:[182][183][88]

  • general memory enhancement
  • providing "just in time" information[234]
  • parallel quadcopter operation
  • enhancement to detect, classify, and successfully manage (e.g. engage) threats[235]
  • spatial awareness[235]
  • enhancing visual and multisensory perception[235]
  • learning-assistance

Challenges for adoption include "short- and long-term risks of distraction, mental workload, visual occlusion, and technology-induced complacency and skill degradation".[235]

Untested methods

A potential future biochemical strategy for cognitive enhancement is human genetic enhancement which has only been preliminarily, but successfully, tested in animal models and is currently not an available enhancement option to researchers.[29][25][236]

Side effects

Common neuroenhancements drugs are typically well tolerated by healthy humans.[2][3] These drugs are already in mainstream use to treat patients with different kinds of psychiatric disorders. Since most of the information on neuroenhancements and their capabilities are drawn from research experiments, the best way to determine adverse effects are drop-out rates and subjective rating.[2][3] The drop-out rates were minimal or non-existent for donepezil, memantine, MPH, and modafinil.[2][3] In the drug trials, participants reported the following adverse reactions to the consumption of donepezil, memantine, MPH, or modafinil: gastrointestinal complaints (nausea), headache, dizziness, nightmares, anxiety, drowsiness, nervousness, restlessness, sleep disturbances, and insomnia.[3] The side effects normally ceased in the course of treatment.[3] Although there were no reported side effects from DBS, 18% of the patients reported device-related complications such as infections due to lead dislodgment or breakage.[162] Various factors such as dosage, timing and concurrent behavior may shape or determine the appearance of side-effects. There may be risks of dehydration (inadequate concurrent hydration).[11][additional citation(s) needed]

Ethical, social and legal issues

Adverse health impacts and dependence

Parents and healthcare providers are concerned about the safety and well-being of those that consume various neuroenhancements.[237]

In a recent article published by Jayne Lucke, the concept of neuroenhancement is compared to sildenafil. The author states that "recreational users of [sildenafil] had lower confidence in their ability to achieve an erection than non-users, even though they had a significantly better erectile function. They become psychologically dependent on these drugs." The author believes a similar issue can be seen in neuroenhancement users.[237] Moreover, expectations or overestimations regarding the effectiveness of interventions can exceed their actual effects and they can induce overconfidence.[2][21]

If more and more people begin enhancing their minds, people may "eventually feel subtly coerced into enhancing themselves in order to remain competitive in school or the workplace" or in the military, or experience types of peer-pressure.[84][238][43]

Well-being and productivity

The ethical benefits of neuroenhancement include potentials to improve well-being,[38][239][96] reduce unhealthy substance use,[48][49][51] to further educational aims,[96] increase societal productivity[78][240][241][96] in constructive sectors (also relevant to well-being[240][96] and they may support socioeconomic shifts by "enabling more complex, productive, and inherently fulfilling forms of cooperation"[96]), enable self-amelioration of widespread mild cognitive deficiencies in cognitively normal individuals,[240] and increase incentives for and the effort behind the development of medical therapies, mainly chemicals, that can benefit people affected by various brain diseases, and in some cases other diseases, such as Alzheimer's disease, and by brain aging.

Diversity and inequality

Neuroenhancement is often seen analogous to the issue of doping in sports, due to which it is sometimes called brain doping.[237][20][157][22][20] A common concern raised is an unfair advantage of people who consume enhancing drugs over people who don't. Many athletes, however, feel that the only way for them to win against athletes that take performance-enhancing drugs (PED) is for them to take PEDs as well; a similar thought process has developed within the general population in regard to people that consume neuroenhancement drugs.[237] In a research study of 18- to 34-year-olds, 50% of them had little or no objection to the concept of doping.[237] Students, in particular, often feel that cognitive neuroenhancers are acceptable.[237]

Generally, the moral acceptability (including fairness perceptions) of such substances for the purpose of neuroenhancement are an important factor in the decision to use or not use such drugs. Studies found that moral objections against such substances strongly decrease the willingness to use them.[242][243][244]

Many argue that the only option for regulation of neuroenhancements is to allow it to everyone, thus minimizing cheating. Banning the drugs, on the other hand, may have detrimental consequences to society.[7] Not only would it create a black market, amplifying issues caused by illicit use, it would also increase the cost to society from enforcing the law.[237] Neuroenhancement drugs need to be assessed further for their merits and adverse effects, making it easier for policy makers to make a call on the regulation of such drugs.[9]

In general, cognitive diversity – or some "optimum range of diversity" – was found highly valuable. Novel capabilities due to progress in science and technology may raise related ethical issues.[245] There have also been speculations that cognitive enhancement technologies (CETs) may increase population-level cognitive diversity, e.g. as different people will choose to enhance different aspects of their cognition.[246] Moreover, cognitive enhancements might decrease inequality, e.g. by "leveling the playing field".[247]

Distributive justice

Another issue is that of distributive justice, concerned with "who will have access to new cognitive enhancement techniques, and who can experience the cognitive benefits".[238][78][96] A main factor in the costs of cognitive enhancers is their patentability.[29] Allen Buchanan in a book suggested that "we should embrace the opportunities provided by this emerging pharmacological technology and devote our resources to ensuring that such drugs that are developed and tested properly [e.g. see confounding, reproducibility, #Research topics and cognitive test] and that access to them is equal and open to avoid injustices and the development of black markets".[248]

Cognitive liberty and autonomy

Where the first obligation seeks to protect individuals from interference with cognitive processes by the state, corporations or other individuals, this second obligation seeks to ensure that individuals have the freedom to alter or enhance their own consciousness.[249] An individual who enjoys this aspect of cognitive liberty has the freedom to alter their mental processes in any way they wish to, whether through indirect methods such as meditation, yoga or prayer, or through direct cognitive intervention through psychoactive drugs or neurotechnology.

As psychotropic drugs are a powerful method of altering cognitive function, many advocates of cognitive liberty are also advocates of drug law reform, claiming that the "war on drugs" is in fact a "war on mental states".[250] The CCLE, as well as other cognitive liberty advocacy groups such as Cognitive Liberty UK, have lobbied for the re-examination and reform of prohibited drug law; one of the CCLE's key guiding principles is that "governments should not criminally prohibit cognitive enhancement or the experience of any mental state".[251] Calls for reform of restrictions on the use of prescription cognitive-enhancement drugs (also called smart drugs or nootropics) such as Prozac, Ritalin and Adderall have also been made on the grounds of cognitive liberty.[252]

This element of cognitive liberty is also of great importance to proponents of the transhumanist movement, a key tenet of which is the enhancement of human mental function. Wrye Sententia has emphasized the importance of cognitive liberty in ensuring the freedom to pursue human mental enhancement, as well as the freedom to choose against enhancement.[253] Sententia argues that the recognition of a "right to (and not to) direct, modify, or enhance one's thought processes" is vital to the free application of emerging neurotechnology to enhance human cognition and that something beyond the current conception of freedom of thought is needed.[254] Sententia claims that "cognitive liberty's strength is that it protects those who do want to alter their brains, but also those who do not".[253]

A new human right to cognitive liberty has been proposed as "an update to other existing human rights to privacy, freedom of thought and self-determination", partly because some neuroenhancement technologies could possibly also be used for ways like "involuntary neural surveillance", be vulnerable to hacking or used for manipulation.[255]

In popular culture

Neuroenhancement drugs play a key role in some recent novels and movies, such as Limitless (2011), which may to some degree probe and explore opportunities and threats of using neuro-enhancers in an imaginative way.[256]

Scope for cognitive enhancement

Past and projected age of the human world population through time as of 2021[257]

Major preoccupations of neuro-enhancement include optimization of child development factors and delaying, reversing or mitigating brain aging.[170]

Proponents of cognitive enhancement have argued that there are vast potential benefits for the workforce, especially for the older segment.[159] Mainly due to advances in medical technology over the last century, the average human life expectancy has increased significantly. Demographics for developed countries indicate rapid growth of the older segment of the workforce. Advancing age generally shows a pattern in the reduction of the ability to acquire new skills, but integration in the industry today requires employees to be able to acquire and retain new skills more than ever before.[159]

A review noted that "even healthy [non-old] individuals who normally function well, are not always performing normally due to sleep deprivation, jet lag, or other stressors, and some might need cognitive enhancers to perform at their best possible level on some occasions".[78] Neuroenhancement thus is concerned with improving capacities in various cognitive domains to approximate their best possible level at more and specific times as well as raising that level, and improving neuropsychological weaknesses or mild deficits that are not diseases.

Concerning public policy and neuroenhancement-related institutionalized structures like education systems, it is not known whether the scope of neuroenhancement also includes the purposes and content that cognition is enhanced for – the ends of cognitive enhancement such as curricula learned in educational institutions or ultimate purposes of tasks at workplaces or, by extension, the methods and frameworks by which such are e.g. selected. It also has not been clarified whether cognitive enhancement also encompasses behavioral interventions or methods (such as mnemonic techniques[29][25] like the method of loci[182]) and differential teaching modes and methods, albeit some studies indicate behavioral interventions fall into the scope of neuroenhancement.

Neurohacking and DIY

Neurohacking is a subclass of biohacking, focused specifically on the brain. Neurohackers seek to better themselves or others by “hacking the brain” to improve reflexes, learn faster, or treat psychological disorders.[258] The modern neurohacking movement has been around since the 1980s. However, herbal supplements have been used to increase brain function for hundreds of years. After a brief period marked by a lack of research in the area, neurohacking started regaining interest in the early 2000s.[259][260] Currently, most neurohacking is performed via do-it-yourself (DIY) methods by in-home users.[258]

Simple uses of neurohacking include the use of chemical supplements to increase brain function.[261] More complex medical devices can be implanted to treat psychological disorders and illnesses.[262]

Online communities

The Reddit forum (subreddit) on nootropics has many readers[263] and enables communication including about topics or questions not yet studied directly or not easily findable in health information on the Internet, experience-based exchange, and other content for users of cognitive enhancers. Researchers have analyzed reports on these websites, such as conducting content analysis of the subreddit r/microdosing.[36][additional citation(s) needed]

Opinion

General public

The opinion of the general public on the issue of neuroenhancement is scattered.[237][264] In general, the younger population under the age of 25 feel that neuroenhancements are acceptable or that the decision lies in the hand of that individual. Healthcare officials and parents feel concerned due to safety factors, lack of complete information on these drugs, and possible irreversible adverse effects.[237] Such concerns have been shown to reduce the willingness to take such drugs.[265][266][243]

A recent German study among 6.454 employees found a rather low life-time prevalence of cognitive enhancement drug use (namely 2.96%), while the willingness to take such drugs was found in every tenth respondent (10.45%).[267] Studies have estimated that between 7–9% of the college population in the United States consumes neuroenhancement drugs. Some studies estimate this figure to be as high as 12% or even 20%.[264] A large-scale survey using a random sample of more than 5.000 German university students found a relatively low 30-days prevalence of 1.2%, 2.3% indicated the use of such drugs within the last 6 months, 3.2% within the last 12 months and during 4.6% during their lifetime, respectively.[265] Of those students, who used such substances during the last 6 months, 39.4% reported their use once in this period, 24.2% twice, 12.1% three times and 24.2% more than three times. It has been shown that consumers of neuroenhancement drugs are much more willing to also use them in the future, e.g. due to positive experiences or a tendency towards addiction.[244][268] Students primarily attribute consumption of these drugs for increased concentration, improved alertness, or to "get high".[237][264] Neuroenhancement drug users rated the positive potential of neuroenhancement drugs higher than non-users, and rated the adverse effects of these drugs lower than non-users, showing more confidence in the result of these drugs. In a survey of 1324 German students, 32% of participants that do not consume neuroenhancement drugs felt they had positive cognitive effects while 12% felt they had a relaxation effect.[264] In contrast, 54% of participants that do consume neuroenhancement drugs felt they had a positive cognitive effect while 25% felt they had a relaxation effect.

A table for the results of a survey conducted on physicians[6]

The need to remain "alert" and "focused" can also been seen in the trend of caffeine consumption. The caffeine consumption for both students and the general population of the US is around 90%.[264][269] Students who consume neuroenhancements also had a higher frequency of consuming psychoactive lifestyle drugs such as cannabis.[264]

A study among German university teachers (including professors) found a very low prevalence of neuroenhancement drug use.[244] Only 0.9% of the respondents reported the use of such drugs. However, 10% of the respondents are willing to take such drugs in the future, what might indicate a potential increase of the prevalence. One reason to use such drugs was work-related stress.

Physicians

Physicians play an important role in determining the potential abuse of neuroenhancing drugs. While some neuroenhancing drugs do not require a prescription and are easily available, others that require prescription are up to the discretion of the physician. In a survey conducted among Swiss psychiatrists and general practitioners, the majority of surveyed physicians agreed that their criteria to determine whether or not a dysfunction should be considered a disease is if the patient indicates subjective suffering and/or negative consequences for everyday ability to work.[6] The surveyed physicians, however, were in majority agreement that they do not prescribe medication without a clear indication of such a dysfunction.[6]

See also

Concepts and topics related to neurodiminishment
Other and sub-types

References

  1. ^ a b c d e f g Battleday, Ruairidh; Brem, Anna-Katharine (28 July 2015). "Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: a systematic review". European Neuropsychopharmacology. 25 (11): 1865–1881. doi:10.1016/j.euroneuro.2015.07.028. PMID 26381811. S2CID 23319688.
  2. ^ a b c d e f g h i j k l m n o p q r s t Repantis, Dimitris; Schlattmann, Peter (2010). "Modafinil and methylphenidate for neuroenhancement in healthy individuals: A systematic review". Pharmacological Research. 62 (3): 187–206. doi:10.1016/j.phrs.2010.04.002. PMID 20416377.
  3. ^ a b c d e f g h i j k l m Repantis, Dimitris (June 2010). "Acetylcholinesterase inhibitors and memantine for neuroenhancement in healthy individuals: A systematic review". Pharmacological Research. 61 (6): 473–481. doi:10.1016/j.phrs.2010.02.009. PMID 20193764.
  4. ^ a b c d e f g h Normann, Claus; Berger, Mathias (November 2008). "Neuroenhancement: status quo and perspectives" (PDF). European Archives of Psychiatry and Clinical Neuroscience. 258: 110–114. doi:10.1007/s00406-008-5022-2. PMID 18985306. S2CID 9733191.[1]
  5. ^ a b c d e f Normann, Claus; Nissen, C (November 2012). "Neuroenhancement strategies for psychiatric disorders: rationale, status quo and perspectives". European Archives of Psychiatry and Clinical Neuroscience. 262: 113–116. doi:10.1007/s00406-012-0356-1. PMID 22932721. S2CID 42536705.
  6. ^ a b c d e Ott, R. (2012). "Neuroenhancement - perspectives of Swiss psychiatrists and general practitioners". Swiss Medical Weekly. 142: w13707. doi:10.4414/smw.2012.13707. PMID 23254869.
  7. ^ a b c Veit, Walter (2018). "Cognitive Enhancement and the Threat of Inequality". Journal of Cognitive Enhancement. 2 (4): 404–410. doi:10.1007/s41465-018-0108-x. S2CID 158643005.
  8. ^ a b c d e Franke, A. G.; Northoff, R.; Hildt, E. (November 2015). "The Case of Pharmacological Neuroenhancement: Medical, Judicial and Ethical Aspects from a German Perspective". Pharmacopsychiatry. 48 (7): 256–264. doi:10.1055/s-0035-1559640. PMID 26252723. S2CID 7179775.
  9. ^ a b c d e f g h Ragan, Ian; Bard, I; Singh, I; Independent Scientific Committee on Drugs (February 2013). "What should we do about student use of cognitive enhancers? An analysis of current evidence". Neuropharmacology. 64: 588–595. doi:10.1016/j.neuropharm.2012.06.016. PMID 22732441. S2CID 207227699.
  10. ^ Mereu, Maddalena; Bonci, Antonello; Newman, Amy Hauck; Tanda, Gianluigi (1 October 2013). "The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders". Psychopharmacology. 229 (3): 415–434. doi:10.1007/s00213-013-3232-4. ISSN 1432-2072. PMC 3800148. PMID 23934211.
  11. ^ a b c d e f g h Al-Shargie, Fares; Tariq, Usman; Mir, Hasan; Alawar, Hamad; Babiloni, Fabio; Al-Nashash, Hasan (August 2019). "Vigilance Decrement and Enhancement Techniques: A Review". Brain Sciences. 9 (8): 178. doi:10.3390/brainsci9080178. ISSN 2076-3425. PMC 6721323. PMID 31357524.
  12. ^ [1][4][5][9][10][11]
  13. ^ Tardner, P. (2020-08-30). "The use of citicoline for the treatment of cognitive decline and cognitive impairment: A meta-analysis of pharmacological literature • International Journal of Environmental Science & Technology". International Journal of Environmental Science & Technology. Retrieved 2020-08-31.
  14. ^ Kongkeaw, Chuenjid; Dilokthornsakul, Piyameth; Thanarangsarit, Phurit; Limpeanchob, Nanteetip; Norman Scholfield, C. (10 January 2014). "Meta-analysis of randomized controlled trials on cognitive effects of Bacopa monnieri extract". Journal of Ethnopharmacology. 151 (1): 528–535. doi:10.1016/j.jep.2013.11.008. ISSN 0378-8741. PMID 24252493.
  15. ^ Aguiar, Sebastian; Borowski, Thomas (1 August 2013). "Neuropharmacological Review of the Nootropic Herb Bacopa monnieri". Rejuvenation Research. 16 (4): 313–326. doi:10.1089/rej.2013.1431. ISSN 1549-1684. PMC 3746283. PMID 23772955.
  16. ^ Kean, James D.; Downey, Luke A.; Stough, Con (December 2017). "Systematic Overview of Bacopa monnieri (L.) Wettst. Dominant Poly-Herbal Formulas in Children and Adolescents". Medicines. 4 (4): 86. doi:10.3390/medicines4040086. ISSN 2305-6320.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  17. ^ a b c d Franke, A.G.; Lieb, K. (1 August 2010). "Pharmakologisches Neuroenhancement und "Hirndoping"". Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz (in German). 53 (8): 853–860. doi:10.1007/s00103-010-1105-0. ISSN 1437-1588. PMID 20700786.
  18. ^ a b c d e Esposito, Massimiliano; Cocimano, Giuseppe; Ministrieri, Federica; Rosi, Giuseppe Li; Nunno, Nunzio Di; Messina, Giovanni; Sessa, Francesco; Salerno, Monica (30 August 2021). "Smart drugs and neuroenhancement: what do we know?". Frontiers in Bioscience-Landmark. 26 (8): 347–359. doi:10.52586/4948. ISSN 2768-6701. PMID 34455764.
  19. ^ a b c d e f g Losch, D.; Schulze, J. (1 November 2019). "Neuroenhancement". Zentralblatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie (in German). 69 (6): 368–371. doi:10.1007/s40664-019-0340-y. ISSN 2198-0713. S2CID 240645044.
  20. ^ a b c d e f Iglseder, Bernhard (1 February 2018). "Doping für das Gehirn". Zeitschrift für Gerontologie und Geriatrie (in German). 51 (2): 143–148. doi:10.1007/s00391-017-1351-y. ISSN 1435-1269. PMID 29209802.
  21. ^ a b c Caviola, Lucius; Faber, Nadira S. (2015). "Pills or Push-Ups? Effectiveness and Public Perception of Pharmacological and Non-Pharmacological Cognitive Enhancement". Frontiers in Psychology. 6: 1852. doi:10.3389/fpsyg.2015.01852. ISSN 1664-1078. PMC 4667098. PMID 26696922.
  22. ^ a b c Daubner, Johanna; Arshaad, Muhammad Imran; Henseler, Christina; Hescheler, Jürgen; Ehninger, Dan; Broich, Karl; Rawashdeh, Oliver; Papazoglou, Anna; Weiergräber, Marco (13 January 2021). "Pharmacological Neuroenhancement: Current Aspects of Categorization, Epidemiology, Pharmacology, Drug Development, Ethics, and Future Perspectives". Neural Plasticity. 2021: 1–27. doi:10.1155/2021/8823383. ISSN 1687-5443. PMC 7817276. PMID 33519929.
  23. ^ a b c d Tang, Siu W.; Tang, Wayne H.; Leonard, Brian E. (July 2017). "Managing interactions between cognitive enhancers and other psychotropics:". International Clinical Psychopharmacology. 32 (4): 175–183. doi:10.1097/YIC.0000000000000172.
  24. ^ [17][8][11][18][19][20][21][22][23]
  25. ^ a b c d e Jangwan, Nitish Singh; Ashraf, Ghulam Md; Ram, Veerma; Singh, Vinod; Alghamdi, Badrah S.; Abuzenadah, Adel Mohammad; Singh, Mamta F. (2022). "Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects". Frontiers in Systems Neuroscience. 16. doi:10.3389/fnsys.2022.1000495.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  26. ^ Nair, Prashant (2013-11-12). "Brain–machine interface". Proceedings of the National Academy of Sciences. 110 (46): 18343. Bibcode:2013PNAS..11018343N. doi:10.1073/pnas.1319310110. ISSN 0027-8424. PMC 3831969. PMID 24222678.
  27. ^ Wood, Suzanne; Sage, Jennifer R.; Shuman, Tristan; Anagnostaras, Stephan G. (1 January 2014). "Psychostimulants and Cognition: A Continuum of Behavioral and Cognitive Activation". Pharmacological Reviews. 66 (1): 193–221. doi:10.1124/pr.112.007054. ISSN 0031-6997. PMC 3880463. PMID 24344115.
  28. ^ Schifano, Fabrizio; Catalani, Valeria; Sharif, Safia; Napoletano, Flavia; Corkery, John Martin; Arillotta, Davide; Fergus, Suzanne; Vento, Alessandro; Guirguis, Amira (1 April 2022). "Benefits and Harms of 'Smart Drugs' (Nootropics) in Healthy Individuals". Drugs. 82 (6): 633–647. doi:10.1007/s40265-022-01701-7. ISSN 1179-1950. PMID 35366192. S2CID 247860331.
  29. ^ a b c d e f g h i j k l m n Dresler, Martin; Sandberg, Anders; Bublitz, Christoph; Ohla, Kathrin; Trenado, Carlos; Mroczko-Wąsowicz, Aleksandra; Kühn, Simone; Repantis, Dimitris (20 March 2019). "Hacking the Brain: Dimensions of Cognitive Enhancement". ACS Chemical Neuroscience. 10 (3): 1137–1148. doi:10.1021/acschemneuro.8b00571. ISSN 1948-7193. PMC 6429408. PMID 30550256.
  30. ^ Wingelaar-Jagt, Yara Q.; Bottenheft, Charelle; Riedel, Wim J.; Ramaekers, Johannes G. (February 2023). "Effects of modafinil and caffeine on night-time vigilance of air force crewmembers: A randomized controlled trial". Journal of Psychopharmacology. 37 (2): 172–180. doi:10.1177/02698811221142568. ISSN 0269-8811. PMC 9912306. PMID 36515156.
  31. ^ a b c Graf, William D.; Nagel, Saskia K.; Epstein, Leon G.; Miller, Geoffrey; Nass, Ruth; Larriviere, Dan (26 March 2013). "Pediatric neuroenhancement: Ethical, legal, social, and neurodevelopmental implications". Neurology. 80 (13): 1251–1260. doi:10.1212/WNL.0b013e318289703b. ISSN 0028-3878. PMID 23486879. S2CID 207122859.
  32. ^ a b Weiergräber, Marco; Ehninger, Dan; Broich, Karl (1 April 2017). "Neuroenhancement and mood enhancement – Physiological and pharmacodynamical background". Medizinische Monatsschrift fur Pharmazeuten. 40 (4): 154–164. ISSN 0342-9601. PMID 29952165.
  33. ^ a b c d e Marazziti, Donatella; Avella, Maria Teresa; Ivaldi, Tea; Palermo, Stefania; Massa, Lucia; Della Vecchia, Alessandra; Basile, Lucia; Mucci, Federico (June 2021). "Neuroenhancement: state of the art and future perspectives". Clinical Neuropsychiatry. 18 (3): 137–169. doi:10.36131/cnfioritieditore20210303. PMC 8629054. PMID 34909030.
  34. ^ a b c d e d'Angelo, L-S Camilla; Savulich, George; Sahakian, Barbara J (October 2017). "Lifestyle use of drugs by healthy people for enhancing cognition, creativity, motivation and pleasure: Lifestyle use of drugs by healthy people". British Journal of Pharmacology. 174 (19): 3257–3267. doi:10.1111/bph.13813. PMC 5595759. PMID 28427114.
  35. ^ a b c d Brühl, Annette B.; d’Angelo, Camilla; Sahakian, Barbara J. (January 2019). "Neuroethical issues in cognitive enhancement: Modafinil as the example of a workplace drug?". Brain and Neuroscience Advances. 3: 239821281881601. doi:10.1177/2398212818816018. PMC 7058249. PMID 32166175.
  36. ^ a b Bornemann, Joel (7 August 2020). "The Viability of Microdosing Psychedelics as a Strategy to Enhance Cognition and Well-being - An Early Review". Journal of Psychoactive Drugs. 52 (4): 300–308. doi:10.1080/02791072.2020.1761573. ISSN 0279-1072.
  37. ^ a b c d e f g Sahakian, Barbara J.; Bruhl, Annette B.; Cook, Jennifer; Killikelly, Clare; Savulich, George; Piercy, Thomas; Hafizi, Sepehr; Perez, Jesus; Fernandez-Egea, Emilio; Suckling, John; Jones, Peter B. (19 September 2015). "The impact of neuroscience on society: cognitive enhancement in neuropsychiatric disorders and in healthy people". Philosophical Transactions of the Royal Society B: Biological Sciences. 370 (1677): 20140214. doi:10.1098/rstb.2014.0214. ISSN 0962-8436. PMC 4528826. PMID 26240429.
  38. ^ a b c d e f g Brühl, Annette B.; Sahakian, Barbara J. (2016). "Drugs, games, and devices for enhancing cognition: implications for work and society". Annals of the New York Academy of Sciences. 1369 (1): 195–217. Bibcode:2016NYASA1369..195B. doi:10.1111/nyas.13040. PMID 27043232. S2CID 5111793.
  39. ^ a b c Burk, Joshua A.; Blumenthal, Sarah A.; Maness, Eden B. (15 September 2018). "Neuropharmacology of attention". European Journal of Pharmacology. 835: 162–168. doi:10.1016/j.ejphar.2018.08.008. ISSN 0014-2999.
  40. ^ a b Tuenter, Emmy; Foubert, Kenn; Pieters, Luc (August 2018). "Mood Components in Cocoa and Chocolate: The Mood Pyramid". Planta Medica. 84 (12/13): 839–844. doi:10.1055/a-0588-5534. ISSN 0032-0943. PMID 29539647. S2CID 3912460.
  41. ^ Tambalis, Konstantinos D.; Arnaoutis, Giannis (2022). "The role of caffeine consumption on individuals' health and athletic performance: An overview". International Journal of Physiology, Nutrition and Physical Education. 7 (1): 215–224. doi:10.22271/journalofsport.2022.v7.i1d.2466. ISSN 2456-0057. S2CID 247771299.
  42. ^ Marcora, Samuele (1 January 2016). "Can Doping be a Good Thing? Using Psychoactive Drugs to Facilitate Physical Activity Behaviour". Sports Medicine. 46 (1): 1–5. doi:10.1007/s40279-015-0412-x. ISSN 1179-2035. PMID 26497149. S2CID 13448073.
  43. ^ a b c Porsdam Mann, Sebastian; Sahakian, Barbara J (1 August 2015). "The increasing lifestyle use of modafinil by healthy people: safety and ethical issues". Current Opinion in Behavioral Sciences. 4: 136–141. doi:10.1016/j.cobeha.2015.05.004. ISSN 2352-1546. S2CID 53198934.
  44. ^ a b Mun, Monique; Wong, Andrew (14 December 2020). "Kratom and Phenibut: A Concise Review for Psychiatric Trainees". American Journal of Psychiatry Residents' Journal. 16 (2): 6–8. doi:10.1176/appi.ajp-rj.2020.160203. ISSN 2474-4662. S2CID 230589322.
  45. ^ Peele, Stanton; Brodsky, Archie (10 November 2000). "Exploring psychological benefits associated with moderate alcohol use: a necessary corrective to assessments of drinking outcomes?". Drug and Alcohol Dependence. 60 (3): 221–247. doi:10.1016/S0376-8716(00)00112-5. ISSN 0376-8716. PMID 11053757.
  46. ^ Wudarczyk, Olga A.; Earp, Brian D.; Guastella, Adam; Savulescu, Julian (September 2013). "Could intranasal oxytocin be used to enhance relationships? Research imperatives, clinical policy, and ethical considerations". Current Opinion in Psychiatry. 26 (5): 474–484. doi:10.1097/YCO.0b013e3283642e10. PMC 3935449. PMID 23880593.
  47. ^ Buckner, Julia D.; Morris, Paige E.; Abarno, Cristina N.; Glover, Nina I.; Lewis, Elizabeth M. (17 April 2021). "Biopsychosocial Model Social Anxiety and Substance Use Revised". Current Psychiatry Reports. 23 (6): 35. doi:10.1007/s11920-021-01249-5. ISSN 1535-1645. PMID 33864136. S2CID 233261493.
  48. ^ a b c Peltier, MacKenzie R.; Sofuoglu, Mehmet (1 January 2020). "Chapter 23 - Pharmacological cognitive enhancers". Cognition and Addiction. Academic Press: 303–320. doi:10.1016/b978-0-12-815298-0.00023-x. ISBN 9780128152980. S2CID 208471773.
  49. ^ a b c Brady, Kathleen T.; Gray, Kevin M.; Tolliver, Bryan K. (1 August 2011). "Cognitive enhancers in the treatment of substance use disorders: Clinical evidence". Pharmacology Biochemistry and Behavior. 99 (2): 285–294. doi:10.1016/j.pbb.2011.04.017. ISSN 0091-3057. PMC 3114106. PMID 21557964.
  50. ^ Kampman, Kyle M. (4 October 2019). "The treatment of cocaine use disorder". Science Advances. 5 (10): eaax1532. Bibcode:2019SciA....5.1532K. doi:10.1126/sciadv.aax1532. ISSN 2375-2548. PMC 6795516. PMID 31663022.
  51. ^ a b Fluyau, Dimy; Cook, Sarah Clare; Chima, Ashmeer; Kailasam, Vasanth Kattalai; Revadigar, Neelambika (1 November 2021). "Pharmacological management of psychoactive substance withdrawal syndrome". Drugs & Therapy Perspectives. 37 (11): 519–535. doi:10.1007/s40267-021-00874-7. ISSN 1179-1977. S2CID 244583239.
  52. ^ a b Erler, Alexandre; Forlini, Cynthia (2020). "Neuroenhancement". Routledge Encyclopedia of Philosophy Online. Retrieved 9 March 2023.
  53. ^ Beda, Zsolt; Smith, Steven M.; Orr, Joseph (1 August 2020). "Creativity on demand – Hacking into creative problem solving". NeuroImage. 216: 116867. doi:10.1016/j.neuroimage.2020.116867. ISSN 1053-8119. PMID 32325208. S2CID 215823256.
  54. ^ Tennison, Michael N.; Moreno, Jonathan D. (2017). "Neuroenhancement and Therapy in National Defense Contexts". The Routledge Handbook of Neuroethics. pp. 150–165. doi:10.4324/9781315708652-12. ISBN 9781315708652.
  55. ^ "Neuroenhancement in Military Personnel: Conceptual and Methodological Promises and Challenge". Retrieved 10 March 2023.
  56. ^ a b c Crawford, Cindy; Teo, Lynn; Lafferty, Lynn; Drake, Angela; Bingham, John J.; Gallon, Matthew D.; O’Connell, Meghan L.; Chittum, Holly K.; Arzola, Sonya M.; Berry, Kevin (June 2017). "Caffeine to optimize cognitive function for military mission-readiness: a systematic review and recommendations for the field". Nutrition Reviews. 75 (suppl_2): 17–35. doi:10.1093/nutrit/nux007. PMID 28969341.
  57. ^ a b Bagot, Kara Simone; Kaminer, Yifrah (2014). "Efficacy of stimulants for cognitive enhancement in non-attention deficit hyperactivity disorder youth: a systematic review". Addiction. 109 (4): 547–557. doi:10.1111/add.12460. PMC 4471173. PMID 24749160.
  58. ^ Sherman, Brian J.; McRae-Clark, Aimee L. (May 2016). "Treatment of Cannabis Use Disorder: Current Science and Future Outlook". Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 36 (5): 511–535. doi:10.1002/phar.1747. PMC 4880536. PMID 27027272.
  59. ^ Bortolato, Beatrice; Miskowiak, Kamilla W.; Köhler, Cristiano A.; Maes, Michael; Fernandes, Brisa S.; Berk, Michael; Carvalho, André F. (22 January 2016). "Cognitive remission: a novel objective for the treatment of major depression?". BMC Medicine. 14 (1): 9. doi:10.1186/s12916-016-0560-3. ISSN 1741-7015. PMC 4724131. PMID 26801406.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  60. ^ Ooi, Soo Liang; Green, Ruth; Pak, Sok Cheon (22 October 2018). "N-Acetylcysteine for the Treatment of Psychiatric Disorders: A Review of Current Evidence". BioMed Research International. 2018: e2469486. doi:10.1155/2018/2469486. ISSN 2314-6133. PMC 6217900. PMID 30426004.
  61. ^ Nery, Fabiano G.; Li, Wenbin; DelBello, Melissa P.; Welge, Jeffrey A. (15 January 2021). "N‐acetylcysteine as an adjunctive treatment for bipolar depression: A systematic review and meta‐analysis of randomized controlled trials". Bipolar Disorders. 23 (7): 707–714. doi:10.1111/bdi.13039. ISSN 1398-5647. PMID 33354859. S2CID 229692736.
  62. ^ Colpo, Gabriela D.; Leboyer, Marion; Dantzer, Robert; Trivedi, Mahdukar H.; Teixeira, Antonio L. (1 February 2018). "Immune-based strategies for mood disorders: facts and challenges". Expert Review of Neurotherapeutics. 18 (2): 139–152. doi:10.1080/14737175.2018.1407242. ISSN 1473-7175. PMC 5819337. PMID 29179585.
  63. ^ Fernandes, Brisa S.; Dean, Olivia M.; Dodd, Seetal; Malhi, Gin S.; Berk, Michael (27 April 2016). "N-Acetylcysteine in Depressive Symptoms and Functionality: A Systematic Review and Meta-Analysis". The Journal of Clinical Psychiatry. 77 (4): e457-66. doi:10.4088/JCP.15r09984. ISSN 0160-6689. PMID 27137430. S2CID 40688371.
  64. ^ ""Modafinil"[Title/Abstract] - Search Results - PubMed". PubMed. Retrieved 13 March 2023.
  65. ^ Woolf, Nicky (31 May 2015). "Silk Road sentencing: why governments can't win the war on darknet drugs". The Guardian. Retrieved 30 December 2016.
  66. ^ Valette, Jean-Jacques (9 September 2016). "Du commerce illicite à la liberté d'expression totale, on a plongé dans le darknet". We Demain. Retrieved 30 December 2016.
  67. ^ "("enhance"[Title/Abstract] AND "cognition"[Title/Abstract]) OR ("neuroenhancement"[Title/Abstract]) OR ("cognitive enhancement"[Title/Abstract]) - Search Results - PubMed". PubMed. Retrieved 13 March 2023.
  68. ^ Hara, Y.; McKeehan, N.; Dacks, P. A.; Fillit, H. M. (1 September 2017). "Evaluation of the neuroprotective potential of n-acetylcysteine for prevention and treatment of cognitive aging and dementia". Journal of Prevention of Alzheimer's Disease. J Prev Alz Dis 20174 (3): 201–206. doi:10.14283/jpad.2017.22. PMID 29182711. S2CID 45647979.
  69. ^ a b c Darwish, Mona; Kirby, Mary; Hellriegel, Edward T.; Robertson, Philmore (1 September 2009). "Armodafinil and Modafinil Have Substantially Different Pharmacokinetic Profiles Despite Having the Same Terminal Half-Lives". Clinical Drug Investigation. 29 (9): 613–623. doi:10.2165/11315280-000000000-00000. ISSN 1179-1918. PMID 19663523. S2CID 6607186.
  70. ^ a b Sheng, Ping; Hou, Lijun; Wang, Xiang; Wang, Xiaowen; Huang, Chengguang; Yu, Mingkun; Han, Xi; Dong, Yan (3 December 2013). "Efficacy of Modafinil on Fatigue and Excessive Daytime Sleepiness Associated with Neurological Disorders: A Systematic Review and Meta-Analysis". PLOS ONE. 8 (12): e81802. Bibcode:2013PLoSO...881802S. doi:10.1371/journal.pone.0081802. PMC 3849275. PMID 24312590.
  71. ^ Darwish, Mona; Kirby, Mary; Hellriegel, Edward T.; Yang, Ronghua; Robertson, Philmore (1 February 2009). "Pharmacokinetic Profile of Armodafinil in Healthy Subjects". Clinical Drug Investigation. 29 (2): 87–100. doi:10.2165/0044011-200929020-00003. ISSN 1179-1918. PMID 19133704. S2CID 24886727.
  72. ^ a b Fernstrom, John D.; Fernstrom, Madelyn H. (1 June 2007). "Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain". The Journal of Nutrition. 137 (6): S1539–S1547. doi:10.1093/jn/137.6.1539S. ISSN 0022-3166. PMID 17513421.
  73. ^ Riedel, Wim J; Klaassen, Tineke; Schmitt, Jeroen A. J (1 October 2002). "Tryptophan, mood, and cognitive function". Brain, Behavior, and Immunity. 16 (5): 581–589. doi:10.1016/S0889-1591(02)00013-2. ISSN 0889-1591. PMID 12401472. S2CID 42931109. [...] As noted above two experiments addressed the question how [acute tryptophan depletion (ATD)] affects cognitive functions in healthy individuals. These experiments shared one common dependent variable, which was the memory task. In the first study it was shown that ATD impaired long-term memory consolidation when a new word list was learned at 6 h after start of depletion [...]
  74. ^ Camfield, David A; Stough, Con; Farrimond, Jonathon; Scholey, Andrew B (August 2014). "Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and meta-analysis". Nutrition Reviews. 72 (8): 507–522. doi:10.1111/nure.12120. PMID 24946991.
  75. ^ Sohail, Anas Anas; Ortiz, Fernando; Varghese, Teresa; Fabara, Stephanie P.; Batth, Arshdeep S.; Sandesara, Darshan P.; Sabir, Ahtesham; Khurana, Mahika; Datta, Shae; Patel, Urvish K.; Sohail, Anas Anas; Ortiz, Juan Fernando; Varghese, Teresa; Fabara, Stephanie P.; Batth, Arshdeep S.; Sandesara, Darshan P.; Sabir, Ahtesham; Khurana, Mahika; Datta, Shae; Patel, Urvish K. (30 December 2021). "The Cognitive-Enhancing Outcomes of Caffeine and L-theanine: A Systematic Review". Cureus. 13 (12): e20828. doi:10.7759/cureus.20828. ISSN 2168-8184. PMC 8794723. PMID 35111479.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  76. ^ a b c d e Meeusen, Romain; Decroix, Lieselot (1 March 2018). "Nutritional Supplements and the Brain". International Journal of Sport Nutrition and Exercise Metabolism. 28 (2): 200–211. doi:10.1123/ijsnem.2017-0314. ISSN 1543-2742.
  77. ^ a b Gunzelmann, Glenn; M. James, Stephen; Caldwell, Jo Lynn (1 January 2019). "Basic and applied science interactions in fatigue understanding and risk mitigation". Chapter 8 - Basic and applied science interactions in fatigue understanding and risk mitigation. Progress in Brain Research. Vol. 246. Elsevier. pp. 177–204. doi:10.1016/bs.pbr.2019.03.022. ISBN 9780444642509. PMID 31072561. S2CID 145885926.
  78. ^ a b c d Mohamed, Ahmed Dahir (September 2014). "Neuroethical issues in pharmacological cognitive enhancement". WIREs Cognitive Science. 5 (5): 533–549. doi:10.1002/wcs.1306. ISSN 1939-5078. PMID 26308743.
  79. ^ a b c d Sousa, Ana; Dinis-Oliveira, Ricardo Jorge (2 April 2020). "Pharmacokinetic and pharmacodynamic of the cognitive enhancer modafinil: Relevant clinical and forensic aspects". Substance Abuse. 41 (2): 155–173. doi:10.1080/08897077.2019.1700584. ISSN 0889-7077. PMID 31951804. S2CID 210709160.
  80. ^ Minzenberg, Michael J; Carter, Cameron S (June 2008). "Modafinil: A Review of Neurochemical Actions and Effects on Cognition". Neuropsychopharmacology. 33 (7): 1477–1502. doi:10.1038/sj.npp.1301534. PMID 17712350. S2CID 13752498.
  81. ^ Hofmann, Stefan G.; Mundy, Elizabeth A.; Curtiss, Joshua; Hofmann, Stefan G.; Mundy, Elizabeth A.; Curtiss, Joshua (2015). "Neuroenhancement of Exposure Therapy in Anxiety Disorders". AIMS Neuroscience. 2 (3): 123–138. doi:10.3934/Neuroscience.2015.3.123. PMC 4545667. PMID 26306326.
  82. ^ Zager, Adriano (1 August 2020). "Modulating the immune response with the wake-promoting drug modafinil: A potential therapeutic approach for inflammatory disorders". Brain, Behavior, and Immunity. 88: 878–886. doi:10.1016/j.bbi.2020.04.038. ISSN 0889-1591. PMID 32311496. S2CID 215807973.
  83. ^ a b Müller, Christian P. (15 July 2020). "Drug instrumentalization". Behavioural Brain Research. 390: 112672. doi:10.1016/j.bbr.2020.112672. ISSN 0166-4328.
  84. ^ a b c d Tennison, Michael N.; Moreno, Jonathan D. (20 March 2012). "Neuroscience, Ethics, and National Security: The State of the Art". PLOS Biology. 10 (3): e1001289. doi:10.1371/journal.pbio.1001289. ISSN 1545-7885. PMC 3308927. PMID 22448146.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  85. ^ Ngo, Thao; Ghio, Marta; Kuchinke, Lars; Roser, Patrik; Bellebaum, Christian (1 September 2019). "Moral decision making under modafinil: a randomized placebo-controlled double-blind crossover fMRI study". Psychopharmacology. 236 (9): 2747–2759. doi:10.1007/s00213-019-05250-y. ISSN 1432-2072. PMID 31037409. S2CID 253751563.
  86. ^ Earp, Brian D.; Douglas, Thomas; Savulescu, Julian (2017). "Moral Neuroenhancement". The Routledge Handbook of Neuroethics. Routledge. ISBN 978-1-138-89829-5.
  87. ^ Mann, Sebastian Porsdam; Sahakian, Barbara J. "Modafinil and the Increasing Lifestyle Use of Smart Drugs by Healthy People: Neuroethical and Societal Issues". The Routledge Handbook of Neuroethics.
  88. ^ a b c d e Tennison, Michael N.; Moreno, Jonathan D. "Neuroenhancement and Therapy in National Defense Contexts". The Routledge Handbook of Neuroethics.
  89. ^ Bolakhe, Saugat. "Lego Robot with an Organic 'Brain' Learns to Navigate a Maze". Scientific American. Retrieved 1 February 2022.
  90. ^ "Genetically modified neurons could help us connect to implants". New Scientist. Retrieved 1 February 2022.
  91. ^ "Scientists program cells to carry out gene-guided construction projects". phys.org. Retrieved 5 April 2020.
  92. ^ Otto, Kevin J.; Schmidt, Christine E. (20 March 2020). "Neuron-targeted electrical modulation". Science. 367 (6484): 1303–1304. Bibcode:2020Sci...367.1303O. doi:10.1126/science.abb0216. PMID 32193309. S2CID 213192749.
  93. ^ Liu, Jia; Kim, Yoon Seok; Richardson, Claire E.; Tom, Ariane; Ramakrishnan, Charu; Birey, Fikri; Katsumata, Toru; Chen, Shucheng; Wang, Cheng; Wang, Xiao; Joubert, Lydia-Marie; Jiang, Yuanwen; Wang, Huiliang; Fenno, Lief E.; Tok, Jeffrey B.-H.; Pașca, Sergiu P.; Shen, Kang; Bao, Zhenan; Deisseroth, Karl (20 March 2020). "Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals". Science. 367 (6484): 1372–1376. Bibcode:2020Sci...367.1372L. doi:10.1126/science.aay4866. PMC 7527276. PMID 32193327. S2CID 213191980.
  94. ^ Sample, Ian (3 December 2019). "Bionic neurons could enable implants to restore failing brain circuits". The Guardian. Retrieved 27 February 2023.
  95. ^ Abu-Hassan, Kamal; Taylor, Joseph D.; Morris, Paul G.; Donati, Elisa; Bortolotto, Zuner A.; Indiveri, Giacomo; Paton, Julian F. R.; Nogaret, Alain (3 December 2019). "Optimal solid state neurons". Nature Communications. 10 (1): 5309. Bibcode:2019NatCo..10.5309A. doi:10.1038/s41467-019-13177-3. ISSN 2041-1723. PMC 6890780. PMID 31796727.
  96. ^ a b c d e f g Buchanan, Allen (July 2011). "Cognitive enhancement and education". Theory and Research in Education. 9 (2): 145–162. doi:10.1177/1477878511409623. ISSN 1477-8785.
  97. ^ Nakhaee, Samaneh; Kooshki, Alireza; Hormozi, Ali; Akbari, Aref; Mehrpour, Omid; Farrokhfall, Khadijeh (18 January 2023). "Cinnamon and cognitive function: a systematic review of preclinical and clinical studies". Nutritional Neuroscience: 1–15. doi:10.1080/1028415X.2023.2166436. ISSN 1028-415X. PMID 36652384. S2CID 255969320.
  98. ^ Gratton, Gabriele; Weaver, Samuel R.; Burley, Claire V.; Low, Kathy A.; Maclin, Edward L.; Johns, Paul W.; Pham, Quang S.; Lucas, Samuel J. E.; Fabiani, Monica; Rendeiro, Catarina (24 November 2020). "Dietary flavanols improve cerebral cortical oxygenation and cognition in healthy adults". Scientific Reports. 10 (1): 19409. Bibcode:2020NatSR..1019409G. doi:10.1038/s41598-020-76160-9. ISSN 2045-2322. PMC 7687895. PMID 33235219.
  99. ^ Melzer, Thayza Martins; Manosso, Luana Meller; Yau, Suk-yu; Gil-Mohapel, Joana; Brocardo, Patricia S. (January 2021). "In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function". International Journal of Molecular Sciences. 22 (9): 5026. doi:10.3390/ijms22095026. ISSN 1422-0067.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  100. ^ a b Socci, Valentina; Tempesta, Daniela; Desideri, Giovambattista; De Gennaro, Luigi; Ferrara, Michele (2017). "Enhancing Human Cognition with Cocoa Flavonoids". Frontiers in Nutrition. 4: 19. doi:10.3389/fnut.2017.00019. ISSN 2296-861X. PMC 5432604. PMID 28560212.
  101. ^ Kent, K.; Charlton, K. E.; Netzel, M.; Fanning, K. (June 2017). "Food-based anthocyanin intake and cognitive outcomes in human intervention trials: a systematic review". Journal of Human Nutrition and Dietetics. 30 (3): 260–274. doi:10.1111/jhn.12431. PMID 27730693. S2CID 4344504.
  102. ^ Guerrieri, Davide; Moon, Hyo Youl; van Praag, Henriette (1 January 2017). "Exercise in a Pill: The Latest on Exercise-Mimetics". Brain Plasticity. 2 (2): 153–169. doi:10.3233/BPL-160043. ISSN 2213-6304.
  103. ^ Haskell-Ramsay, Crystal F.; Schmitt, Jeroen; Actis-Goretta, Lucas (August 2018). "The Impact of Epicatechin on Human Cognition: The Role of Cerebral Blood Flow". Nutrients. 10 (8): 986. doi:10.3390/nu10080986. ISSN 2072-6643.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  104. ^ Strasser, Barbara; Gostner, Johanna M.; Fuchs, Dietmar (January 2016). "Mood, food, and cognition: role of tryptophan and serotonin". Current Opinion in Clinical Nutrition and Metabolic Care. 19 (1): 55–61. doi:10.1097/MCO.0000000000000237. PMID 26560523. S2CID 12387611.
  105. ^ a b c d e f g Pranav, Joshi C. (2013). "A review on natural memory enhancers (nootropics)" (PDF). Unique Journal of Engineering and Advanced Sciences.
  106. ^ Jongkees, Bryant J.; Hommel, Bernhard; Kühn, Simone; Colzato, Lorenza S. (1 November 2015). "Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands—A review". Journal of Psychiatric Research. 70: 50–57. doi:10.1016/j.jpsychires.2015.08.014. ISSN 0022-3956. PMID 26424423.
  107. ^ a b c McCarthy, Bozena; O’Neill, Graham; Abu-Ghannam, Nissreen (August 2022). "Potential Psychoactive Effects of Microalgal Bioactive Compounds for the Case of Sleep and Mood Regulation: Opportunities and Challenges". Marine Drugs. 20 (8): 493. doi:10.3390/md20080493. ISSN 1660-3397. PMC 9410000. PMID 36005495.
  108. ^ Lee, Gihyun; Bae, Hyunsu (2017). "Therapeutic Effects of Phytochemicals and Medicinal Herbs on Depression". BioMed Research International. 2017: 1–11. doi:10.1155/2017/6596241.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  109. ^ Venigalla, Madhuri; Gyengesi, Erika; Münch, Gerald (August 2015). "Curcumin and Apigenin – novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease". Neural Regeneration Research. 10 (8): 1181–1185. doi:10.4103/1673-5374.162686. ISSN 1673-5374. PMC 4590215. PMID 26487830.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  110. ^ Salehi, Bahare; Venditti, Alessandro; Sharifi-Rad, Mehdi; Kręgiel, Dorota; Sharifi-Rad, Javad; Durazzo, Alessandra; Lucarini, Massimo; Santini, Antonello; Souto, Eliana B.; Novellino, Ettore; Antolak, Hubert; Azzini, Elena; Setzer, William N.; Martins, Natália (January 2019). "The Therapeutic Potential of Apigenin". International Journal of Molecular Sciences. 20 (6): 1305. doi:10.3390/ijms20061305. ISSN 1422-0067. PMC 6472148. PMID 30875872.
  111. ^ Arcusa, Raúl; Villaño, Débora; Marhuenda, Javier; Cano, Miguel; Cerdà, Begoña; Zafrilla, Pilar (2022). "Potential Role of Ginger (Zingiber officinale Roscoe) in the Prevention of Neurodegenerative Diseases". Frontiers in Nutrition. 9: 809621. doi:10.3389/fnut.2022.809621. ISSN 2296-861X. PMC 8971783. PMID 35369082.
  112. ^ Etheridge, Christopher John; Derbyshire, Emma (1 January 2020). "Herbal infusions and health: A review of findings from human studies, mechanisms and future research directions". Nutrition & Food Science. 50 (5): 969–985. doi:10.1108/NFS-08-2019-0263. ISSN 0034-6659. S2CID 211002387.
  113. ^ Howes, Melanie‐Jayne R.; Perry, Nicolette S.L.; Vásquez‐Londoño, Carlos; Perry, Elaine K. (March 2020). "Role of phytochemicals as nutraceuticals for cognitive functions affected in ageing". British Journal of Pharmacology. 177 (6): 1294–1315. doi:10.1111/bph.14898. ISSN 0007-1188. PMC 7056459. PMID 31650528.
  114. ^ Roe, Amy L.; Venkataraman, Arvind (September 2021). "The Safety and Efficacy of Botanicals with Nootropic Effects". Current Neuropharmacology. 19 (9): 1442–1467. doi:10.2174/1570159X19666210726150432. PMC 8762178. PMID 34315377.
  115. ^ Hussain, S. M.; Syeda, A. F.; Alshammari, M.; Alnasser, S.; Alenzi, N. D.; Alanazi, S. T.; Nandakumar, K. (9 February 2022). "Cognition enhancing effect of rosemary (Rosmarinus officinalis L.) in lab animal studies: a systematic review and meta-analysis". Brazilian Journal of Medical and Biological Research. 55: e11593. doi:10.1590/1414-431X2021e11593. ISSN 0100-879X. PMC 8851910. PMID 35170682.
  116. ^ Onaolapo, Adejoke Yetunde; Obelawo, Adebimpe Yemisi; Onaolapo, Olakunle James (2019). "Brain Ageing, Cognition and Diet: A Review of the Emerging Roles of Food-Based Nootropics in Mitigating Age-related Memory Decline". Current Aging Science. 12 (1): 2–14. doi:10.2174/1874609812666190311160754. PMC 6971896. PMID 30864515.
  117. ^ Malík, Matěj; Tlustoš, Pavel (January 2022). "Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs". Nutrients. 14 (16): 3367. doi:10.3390/nu14163367. ISSN 2072-6643. PMC 9415189. PMID 36014874.
  118. ^ a b Lewis, John E.; Poles, Jillian; Shaw, Delaney P.; Karhu, Elisa; Khan, Sher Ali; Lyons, Annabel E.; Sacco, Susana Barreiro; McDaniel, H. Reginald (26 August 2021). "The effects of twenty-one nutrients and phytonutrients on cognitive function: A narrative review". Journal of Clinical and Translational Research. 7 (4): 575–620. doi:10.18053/jctres.07.202104.014. ISSN 2424-810X. PMC 8445631. PMID 34541370.
  119. ^ Suliman, Noor Azuin; Mat Taib, Che Norma; Mohd Moklas, Mohamad Aris; Adenan, Mohd Ilham; Hidayat Baharuldin, Mohamad Taufik; Basir, Rusliza (30 August 2016). "Establishing Natural Nootropics: Recent Molecular Enhancement Influenced by Natural Nootropic". Evidence-Based Complementary and Alternative Medicine. 2016: e4391375. doi:10.1155/2016/4391375. ISSN 1741-427X. PMC 5021479. PMID 27656235.
  120. ^ Roschel, Hamilton; Gualano, Bruno; Ostojic, Sergej M.; Rawson, Eric S. (February 2021). "Creatine Supplementation and Brain Health". Nutrients. 13 (2): 586. doi:10.3390/nu13020586. ISSN 2072-6643. PMC 7916590. PMID 33578876.
  121. ^ Dolan, Eimear; Gualano, Bruno; Rawson, Eric S. (2 January 2019). "Beyond muscle: the effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury". European Journal of Sport Science. 19 (1): 1–14. doi:10.1080/17461391.2018.1500644. ISSN 1746-1391. PMID 30086660. S2CID 51936612.
  122. ^ a b Crawford, Cindy; Boyd, Courtney; Deuster, Patricia A. (1 November 2021). "Dietary Supplement Ingredients for Optimizing Cognitive Performance Among Healthy Adults: A Systematic Review". The Journal of Alternative and Complementary Medicine. 27 (11): 940–958. doi:10.1089/acm.2021.0135. ISSN 1075-5535. PMID 34370563. S2CID 236969310.
  123. ^ Dyall, Simon C. (2015). "Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA". Frontiers in Aging Neuroscience. 7: 52. doi:10.3389/fnagi.2015.00052. ISSN 1663-4365. PMC 4404917. PMID 25954194.
  124. ^ Singh, Jessica E. (1 September 2020). "Dietary Sources of Omega-3 Fatty Acids Versus Omega-3 Fatty Acid Supplementation Effects on Cognition and Inflammation". Current Nutrition Reports. 9 (3): 264–277. doi:10.1007/s13668-020-00329-x. ISSN 2161-3311. PMID 32621236. S2CID 220306807.
  125. ^ Muscaritoli, Maurizio (2021). "The Impact of Nutrients on Mental Health and Well-Being: Insights From the Literature". Frontiers in Nutrition. 8: 656290. doi:10.3389/fnut.2021.656290. ISSN 2296-861X. PMC 7982519. PMID 33763446.
  126. ^ Stevens, Gretchen A.; Beal, Ty; Mbuya, Mduduzi N. N.; Luo, Hanqi; Neufeld, Lynnette M.; Addo, O. Yaw; Adu-Afarwuah, Seth; Alayón, Silvia; Bhutta, Zulfiqar; Brown, Kenneth H.; Jefferds, Maria Elena; Engle-Stone, Reina; Fawzi, Wafaie; Hess, Sonja Y.; Johnston, Robert; Katz, Joanne; Krasevec, Julia; McDonald, Christine M.; Mei, Zuguo; Osendarp, Saskia; Paciorek, Christopher J.; Petry, Nicolai; Pfeiffer, Christine M.; Ramirez-Luzuriaga, Maria J.; Rogers, Lisa M.; Rohner, Fabian; Sethi, Vani; Suchdev, Parminder S.; Tessema, Masresha; Villapando, Salvador; Wieringa, Frank T.; Williams, Anne M.; Woldeyahannes, Meseret; Young, Melissa F. (1 November 2022). "Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: a pooled analysis of individual-level data from population-representative surveys". The Lancet Global Health. 10 (11): e1590–e1599. doi:10.1016/S2214-109X(22)00367-9. ISSN 2214-109X. PMID 36240826. S2CID 252857990.
  127. ^ Enderami, Athena; Zarghami, Mehran; Darvishi-Khezri, Hadi (1 October 2018). "The effects and potential mechanisms of folic acid on cognitive function: a comprehensive review". Neurological Sciences. 39 (10): 1667–1675. doi:10.1007/s10072-018-3473-4. ISSN 1590-3478. PMID 29936555. S2CID 49421574.
  128. ^ Philippou, Elena; Constantinou, Marios (1 March 2014). "The Influence of Glycemic Index on Cognitive Functioning: A Systematic Review of the Evidence". Advances in Nutrition. 5 (2): 119–130. doi:10.3945/an.113.004960. ISSN 2161-8313.
  129. ^ Rebelos, Eleni; Rinne, Juha O.; Nuutila, Pirjo; Ekblad, Laura L. (January 2021). "Brain Glucose Metabolism in Health, Obesity, and Cognitive Decline—Does Insulin Have Anything to Do with It? A Narrative Review". Journal of Clinical Medicine. 10 (7): 1532. doi:10.3390/jcm10071532. ISSN 2077-0383.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  130. ^ Asua, Diego; Bougamra, Ghassen; Calleja-Felipe, María; Morales, Miguel; Knafo, Shira (1 February 2018). "Peptides Acting as Cognitive Enhancers". Neuroscience. 370: 81–87. doi:10.1016/j.neuroscience.2017.10.002. ISSN 0306-4522. PMID 29030286. S2CID 10269993.
  131. ^ Wright, John W.; Harding, Joseph W. (1 January 2015). "The Brain Hepatocyte Growth Factor/c-Met Receptor System: A New Target for the Treatment of Alzheimer's Disease". Journal of Alzheimer's Disease. 45 (4): 985–1000. doi:10.3233/JAD-142814. ISSN 1387-2877.
  132. ^ Ho, Jean K.; Nation, Daniel A. (1 September 2018). "Cognitive benefits of angiotensin IV and angiotensin-(1–7): A systematic review of experimental studies". Neuroscience & Biobehavioral Reviews. 92: 209–225. doi:10.1016/j.neubiorev.2018.05.005. ISSN 0149-7634.
  133. ^ Hallberg, Mathias; Larhed, Mats (2020). "From Angiotensin IV to Small Peptidemimetics Inhibiting Insulin-Regulated Aminopeptidase". Frontiers in Pharmacology. 11. doi:10.3389/fphar.2020.590855. ISSN 1663-9812.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  134. ^ Stern, Sarah A.; Alberini, Cristina M. (January 2013). "Mechanisms of memory enhancement". WIREs Systems Biology and Medicine. 5 (1): 37–53. doi:10.1002/wsbm.1196. ISSN 1939-5094. PMC 3527655. PMID 23151999.
  135. ^ Hofmann, Stefan G.; Fang, Angela; Gutner, Cassidy A. (1 January 2014). "Cognitive enhancers for the treatment of anxiety disorders". Restorative Neurology and Neuroscience. 32 (1): 183–195. doi:10.3233/RNN-139002. ISSN 0922-6028. PMID 23542909.
  136. ^ a b Diekelmann, Susanne (2014). "Sleep for cognitive enhancement". Frontiers in Systems Neuroscience. 8: 46. doi:10.3389/fnsys.2014.00046. ISSN 1662-5137. PMC 3980112. PMID 24765066.
  137. ^ Merlo, Emiliano; Milton, Amy L; Everitt, Barry J (1 August 2015). "Enhancing cognition by affecting memory reconsolidation" (PDF). Current Opinion in Behavioral Sciences. 4: 41–47. doi:10.1016/j.cobeha.2015.02.003. ISSN 2352-1546. S2CID 53170506.
  138. ^ Desibhatla, Mukund (1 May 2021). "The Development and Evaluation of Novel DA Transport Inhibitors and their Effects on Effort-Related Motivation: A Review". Honors Scholar Theses.
  139. ^ Froestl, Wolfgang; Muhs, Andreas; Pfeifer, Andrea (1 January 2012). "Cognitive Enhancers (Nootropics). Part 1: Drugs Interacting with Receptors". Journal of Alzheimer's Disease. 32 (4): 793–887. doi:10.3233/JAD-2012-121186. ISSN 1387-2877. PMID 22886028.
  140. ^ Partin, Kathryn M (1 February 2015). "AMPA receptor potentiators: from drug design to cognitive enhancement". Current Opinion in Pharmacology. 20: 46–53. doi:10.1016/j.coph.2014.11.002. ISSN 1471-4892. PMC 4318786. PMID 25462292.
  141. ^ Daubner, Johanna; Arshaad, Muhammad Imran; Henseler, Christina; Hescheler, Jürgen; Ehninger, Dan; Broich, Karl; Rawashdeh, Oliver; Papazoglou, Anna; Weiergräber, Marco (13 January 2021). "Pharmacological Neuroenhancement: Current Aspects of Categorization, Epidemiology, Pharmacology, Drug Development, Ethics, and Future Perspectives". Neural Plasticity. 2021: e8823383. doi:10.1155/2021/8823383. ISSN 2090-5904. PMC 7817276. PMID 33519929.
  142. ^ Kato, Taro; Duman, Ronald S. (1 January 2020). "Rapastinel, a novel glutamatergic agent with ketamine-like antidepressant actions: Convergent mechanisms". Pharmacology Biochemistry and Behavior. 188: 172827. doi:10.1016/j.pbb.2019.172827. ISSN 0091-3057.
  143. ^ Burgdorf, Jeffrey; Zhang, Xiao-lei; Weiss, Craig; Matthews, Elizabeth; Disterhoft, John F.; Stanton, Patric K.; Moskal, Joseph R. (1 April 2011). "The N-methyl-d-aspartate receptor modulator GLYX-13 enhances learning and memory, in young adult and learning impaired aging rats". Neurobiology of Aging. 32 (4): 698–706. doi:10.1016/j.neurobiolaging.2009.04.012. ISSN 0197-4580.
  144. ^ R. Moskal, Joseph; S. Burgdorf, Jeffrey; K. Stanton, Patric; A. Kroes, Roger; F. Disterhoft, John; M. Burch, Ronald; Amin Khan, M. (2017). "The Development of Rapastinel (Formerly GLYX-13); A Rapid Acting and Long Lasting Antidepressant". Current Neuropharmacology.
  145. ^ Costa-Mattioli, Mauro; Walter, Peter (24 April 2020). "The integrated stress response: From mechanism to disease". Science. 368 (6489): eaat5314. doi:10.1126/science.aat5314. ISSN 0036-8075. PMC 8997189. PMID 32327570.
  146. ^ Jin, Yang; Saatcioglu, Fahri (1 February 2020). "Targeting the Unfolded Protein Response in Hormone-Regulated Cancers". Trends in Cancer. 6 (2): 160–171. doi:10.1016/j.trecan.2019.12.001. ISSN 2405-8033. PMID 32061305. S2CID 211136354.
  147. ^ Atack, John R. "GABAA Receptor Subtype-Selective Modulators. II. α5-Selective Inverse Agonists for Cognition Enhancement". Current Topics in Medicinal Chemistry. 11 (9): 1203–1214. doi:10.2174/156802611795371314.
  148. ^ Kleczkowska, Patrycja (January 2022). "Chimeric Structures in Mental Illnesses—"Magic" Molecules Specified for Complex Disorders". International Journal of Molecular Sciences. 23 (7): 3739. doi:10.3390/ijms23073739. ISSN 1422-0067. PMC 8998808. PMID 35409098.
  149. ^ Sharma, Horrick; Santra, Soumava; Dutta, Aloke (November 2015). "Triple reuptake inhibitors as potential next-generation antidepressants: a new hope?". Future Medicinal Chemistry. 7 (17): 2385–2406. doi:10.4155/fmc.15.134. PMC 4976848. PMID 26619226.
  150. ^ Subbaiah, Murugaiah A. M. (22 March 2018). "Triple Reuptake Inhibitors as Potential Therapeutics for Depression and Other Disorders: Design Paradigm and Developmental Challenges". Journal of Medicinal Chemistry. 61 (6): 2133–2165. doi:10.1021/acs.jmedchem.6b01827. ISSN 0022-2623. PMID 28731336.
  151. ^ Poulose, Shibu M.; Thangthaeng, Nopporn; Miller, Marshall G.; Shukitt-Hale, Barbara (1 October 2015). "Effects of pterostilbene and resveratrol on brain and behavior". Neurochemistry International. 89: 227–233. doi:10.1016/j.neuint.2015.07.017. ISSN 0197-0186. PMID 26212523. S2CID 33577543.
  152. ^ McCormack, Denise; McFadden, David (4 April 2013). "A Review of Pterostilbene Antioxidant Activity and Disease Modification". Oxidative Medicine and Cellular Longevity. 2013: e575482. doi:10.1155/2013/575482. ISSN 1942-0900. PMC 3649683. PMID 23691264.
  153. ^ Buntwal, Luke; Sassi, Martina; Morgan, Alwena H.; Andrews, Zane B.; Davies, Jeffrey S. (1 November 2019). "Ghrelin-Mediated Hippocampal Neurogenesis: Implications for Health and Disease". Trends in Endocrinology & Metabolism. 30 (11): 844–859. doi:10.1016/j.tem.2019.07.001. ISSN 1043-2760. PMID 31445747. S2CID 201126380.
  154. ^ Morgan, A. H.; Andrews, Z. B.; Davies, J. S. (October 2017). "Less is more: Caloric regulation of neurogenesis and adult brain function". Journal of Neuroendocrinology. 29 (10): e12512. doi:10.1111/jne.12512. PMID 28771924. S2CID 3070497.
  155. ^ Harwell, Victoria; Fasinu, Pius (1 September 2020). "Pitolisant and Other Histamine-3 Receptor Antagonists—An Update on Therapeutic Potentials and Clinical Prospects". Medicines. 7 (9): 55. doi:10.3390/medicines7090055. PMC 7554886. PMID 32882898.
  156. ^ Schlicker, Eberhard; Kathmann, Markus (2017). "Role of the Histamine H3 Receptor in the Central Nervous System". Histamine and Histamine Receptors in Health and Disease. Handbook of Experimental Pharmacology. 241. Springer International Publishing: 277–299. doi:10.1007/164_2016_12. ISBN 978-3-319-58192-7. PMID 27787717.
  157. ^ a b Lapin, Izyaslav (7 June 2006). "Phenibut (β-Phenyl-GABA): A Tranquilizer and Nootropic Drug". CNS Drug Reviews. 7 (4): 471–481. doi:10.1111/j.1527-3458.2001.tb00211.x. PMC 6494145. PMID 11830761.
  158. ^ Kupats, Einars; Vrublevska, Jelena; Zvejniece, Baiba; Vavers, Edijs; Stelfa, Gundega; Zvejniece, Liga; Dambrova, Maija (September 2020). "Safety and Tolerability of the Anxiolytic and Nootropic Drug Phenibut: A Systematic Review of Clinical Trials and Case Reports". Pharmacopsychiatry. 53 (5): 201–208. doi:10.1055/a-1151-5017. ISSN 0176-3679. PMID 32340063. S2CID 216593771.
  159. ^ a b c d Zimerman, Maximo; Nitsch, M; Giraux, P; Gerloff, C; Cohen, LG; Hummel, FC (2013). "Neuroenhancement of the Aging Brain: Restoring Skill Acquisition in Old Subjects". Annals of Neurology. 73 (1): 10–15. doi:10.1002/ana.23761. PMC 4880032. PMID 23225625.
  160. ^ a b c Meinzer, Marcus; Antonenko, D; Lindenberg, R; Hetzer, S; Ulm, L; Avirame, K; Flaisch, T; Flöel, A (2012). "Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation". The Journal of Neuroscience. 32 (5): 1859–1866. doi:10.1523/JNEUROSCI.4812-11.2012. PMC 6703352. PMID 22302824.
  161. ^ Grover, Shrey; Wen, Wen; Viswanathan, Vighnesh; Gill, Christopher T.; Reinhart, Robert M. G. (September 2022). "Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation". Nature Neuroscience. 25 (9): 1237–1246. doi:10.1038/s41593-022-01132-3. ISSN 1546-1726. PMID 35995877. S2CID 251742309.
  162. ^ a b c d Kupsch, Andreas; Benecke, Reiner; Müller, Jörg; Trottenberg, Thomas; Schneider, Gerd-Helge; Poewe, Werner; Eisner, Wilhelm; Wolters, Alexander; Müller, Jan-Uwe; Deuschl, Günther; Pinsker, Marcus O.; Skogseid, Inger Marie; Roeste, Geir Ketil; Vollmer-Haase, Juliane; Brentrup, Angela; Krause, Martin; Tronnier, Volker; Schnitzler, Alfons; Voges, Jürgen; Nikkhah, Guido; Vesper, Jan; Naumann, Markus; Volkmann, Jens; Deep-Brain Stimulation for Dystonia Study Group (2006). "Pallidal Deep-Brain Stimulation in Primary Generalized or Segmental Dystonia". New England Journal of Medicine. 355 (19): 1978–1990. doi:10.1056/NEJMoa063618. PMID 17093249.
  163. ^ Notbohm, Annika; Kurths, Jürgen; Herrmann, Christoph S. (2016). "Modification of Brain Oscillations via Rhythmic Light Stimulation Provides Evidence for Entrainment but Not for Superposition of Event-Related Responses". Frontiers in Human Neuroscience. 10: 10. doi:10.3389/fnhum.2016.00010. ISSN 1662-5161. PMC 4737907. PMID 26869898.
  164. ^ Ding, Nai; Simon, Jonathan Z. (2014). "Cortical entrainment to continuous speech: functional roles and interpretations". Frontiers in Human Neuroscience. 8: 311. doi:10.3389/fnhum.2014.00311. ISSN 1662-5161. PMC 4036061. PMID 24904354.
  165. ^ Thaut, Michael H. (2015-01-01), Altenmüller, Eckart; Finger, Stanley; Boller, François (eds.), "Chapter 13 - The discovery of human auditory–motor entrainment and its role in the development of neurologic music therapy", Progress in Brain Research, Music, Neurology, and Neuroscience: Evolution, the Musical Brain, Medical Conditions, and Therapies, 217, Elsevier: 253–266, doi:10.1016/bs.pbr.2014.11.030, ISBN 9780444635518, PMID 25725919, retrieved 2021-12-01
  166. ^ Cantor, David S.; Evans, James R. (2013-10-18). Clinical Neurotherapy: Application of Techniques for Treatment. Academic Press. ISBN 9780123972910.
  167. ^ Diep, Charmaine; Ftouni, Suzanne; Manousakis, Jessica E; Nicholas, Christian L; Drummond, Sean P A; Anderson, Clare (2019-11-06). "Acoustic slow wave sleep enhancement via a novel, automated device improves executive function in middle-aged men". Sleep. 43 (1). doi:10.1093/sleep/zsz197. ISSN 0161-8105. PMID 31691831.
  168. ^ Michael, Elizabeth; Covarrubias, Lorena Santamaria; Leong, Victoria; Kourtzi, Zoe (9 November 2022). "Learning at your brain's rhythm: individualized entrainment boosts learning for perceptual decisions". Cerebral Cortex. doi:10.1093/cercor/bhac426. PMID 36352510.
  169. ^ a b c d Lucke, Jayne; Partridge, Brad (1 August 2013). "Towards a Smart Population: A Public Health Framework for Cognitive Enhancement". Neuroethics. 6 (2): 419–427. doi:10.1007/s12152-012-9167-3. ISSN 1874-5504. S2CID 255510188.
  170. ^ a b O’Connor, Cliodhna; Nagel, Saskia K. (2017). "Neuro-Enhancement Practices across the Lifecourse: Exploring the Roles of Relationality and Individualism". Frontiers in Sociology. 2. doi:10.3389/fsoc.2017.00001. ISSN 2297-7775.
  171. ^ Cancer, Alice; Schulz, Peter J.; Castaldi, Silvana; Antonietti, Alessandro (1 December 2018). "Neuroethical Issues in Cognitive Enhancement: the Undergraduates' Point of View". Journal of Cognitive Enhancement. 2 (4): 323–330. doi:10.1007/s41465-018-0110-3. ISSN 2509-3304. S2CID 256624023.
  172. ^ Heller, Sebastian; Tibubos, Ana Nanette; Hoff, Thilo A.; Werner, Antonia M.; Reichel, Jennifer L.; Mülder, Lina M.; Schäfer, Markus; Pfirrmann, Daniel; Stark, Birgit; Rigotti, Thomas; Simon, Perikles; Beutel, Manfred E.; Letzel, Stephan; Dietz, Pavel (18 January 2022). "Potential risk groups and psychological, psychosocial, and health behavioral predictors of pharmacological neuroenhancement among university students in Germany". Scientific Reports. 12 (1): 937. Bibcode:2022NatSR..12..937H. doi:10.1038/s41598-022-04891-y. ISSN 2045-2322. PMC 8766436. PMID 35042938.
  173. ^ Julvez, Jordi; López-Vicente, Mónica; Warembourg, Charline; Maitre, Lea; Philippat, Claire; Gützkow, Kristine B.; Guxens, Monica; Evandt, Jorunn; Andrusaityte, Sandra; Burgaleta, Miguel; Casas, Maribel; Chatzi, Leda; de Castro, Montserrat; Donaire-González, David; Gražulevičienė, Regina; Hernandez-Ferrer, Carles; Heude, Barbara; Mceachan, Rosie; Mon-Williams, Mark; Nieuwenhuijsen, Mark; Robinson, Oliver; Sakhi, Amrit K.; Sebastian-Galles, Nuria; Slama, Remy; Sunyer, Jordi; Tamayo-Uria, Ibon; Thomsen, Cathrine; Urquiza, Jose; Vafeiadi, Marina; Wright, John; Basagaña, Xavier; Vrijheid, Martine (1 September 2021). "Early life multiple exposures and child cognitive function: A multi-centric birth cohort study in six European countries". Environmental Pollution. 284: 117404. doi:10.1016/j.envpol.2021.117404. ISSN 0269-7491. PMC 8287594. PMID 34077897.
  174. ^ Costa, Lucio G.; Cole, Toby B.; Dao, Khoi; Chang, Yu-Chi; Coburn, Jacki; Garrick, Jacqueline M. (June 2020). "Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders". Pharmacology & Therapeutics. 210: 107523. doi:10.1016/j.pharmthera.2020.107523. ISSN 1879-016X. PMC 7245732. PMID 32165138.
  175. ^ Volk, Heather E.; Perera, Frederica; Braun, Joseph M.; Kingsley, Samantha L.; Gray, Kimberly; Buckley, Jessie; Clougherty, Jane E.; Croen, Lisa A.; Eskenazi, Brenda; Herting, Megan; Just, Allan C.; Kloog, Itai; Margolis, Amy; McClure, Leslie A.; Miller, Rachel; Levine, Sarah; Wright, Rosalind (1 May 2021). "Prenatal air pollution exposure and neurodevelopment: A review and blueprint for a harmonized approach within ECHO". Environmental Research. 196: 110320. Bibcode:2021ER....196k0320V. doi:10.1016/j.envres.2020.110320. ISSN 0013-9351. PMC 8060371. PMID 33098817.
  176. ^ Shang, Li; Yang, Liren; Yang, Wenfang; Huang, Liyan; Qi, Cuifang; Yang, Zixuan; Fu, Zhuxuan; Chung, Mei Chun (1 July 2020). "Effects of prenatal exposure to NO2 on children's neurodevelopment: a systematic review and meta-analysis". Environmental Science and Pollution Research. 27 (20): 24786–24798. doi:10.1007/s11356-020-08832-y. ISSN 1614-7499. PMC 7329770. PMID 32356052. S2CID 216650267.
  177. ^ Cedeño Laurent, Jose Guillermo; MacNaughton, Piers; Jones, Emily; Young, Anna S; Bliss, Maya; Flanigan, Skye; Vallarino, Jose; Chen, Ling Jyh; Cao, Xiaodong; Allen, Joseph G (1 September 2021). "Associations between acute exposures to PM2.5 and carbon dioxide indoors and cognitive function in office workers: a multicountry longitudinal prospective observational study". Environmental Research Letters. 16 (9): 094047. Bibcode:2021ERL....16i4047C. doi:10.1088/1748-9326/ac1bd8. ISSN 1748-9326. PMC 8942432. PMID 35330988. S2CID 237462480.
  178. ^ McFarland, Michael J.; Hauer, Matt E.; Reuben, Aaron (15 March 2022). "Half of US population exposed to adverse lead levels in early childhood". Proceedings of the National Academy of Sciences. 119 (11): e2118631119. Bibcode:2022PNAS..11918631M. doi:10.1073/pnas.2118631119. ISSN 0027-8424. PMC 8931364. PMID 35254913.
  179. ^ Black, Maureen M. (2018). "Impact of Nutrition on Growth, Brain, and Cognition". Recent Research in Nutrition and Growth. Nestlé Nutrition Institute Workshop Series. 89: 185–195. doi:10.1159/000486502. ISBN 978-3-318-06351-6. PMID 29991042.
  180. ^ Dündar-Coecke, Selma (1 December 2021). "Future avenues for education and neuroenhancement". New Ideas in Psychology. 63: 100875. doi:10.1016/j.newideapsych.2021.100875. ISSN 0732-118X. S2CID 236312270.
  181. ^ a b c Voinea, Cristina; Vică, Constantin; Mihailov, Emilian; Savulescu, Julian (1 August 2020). "The Internet as Cognitive Enhancement". Science and Engineering Ethics. 26 (4): 2345–2362. doi:10.1007/s11948-020-00210-8. ISSN 1471-5546.
  182. ^ a b c d Schneider, Felicitas; Horowitz, Alan; Lesch, Klaus-Peter; Dandekar, Thomas (21 January 2020). "Delaying memory decline: different options and emerging solutions". Translational Psychiatry. 10 (1): 13. doi:10.1038/s41398-020-0697-x. ISSN 2158-3188. PMC 7026464. PMID 32066684.
  183. ^ a b Moreno, Jonathan; Gross, Michael L.; Becker, Jack; Hereth, Blake; Shortland, Neil D.; Evans, Nicholas G. (2022). "The ethics of AI-assisted warfighter enhancement research and experimentation: Historical perspectives and ethical challenges". Frontiers in Big Data. 5: 978734. doi:10.3389/fdata.2022.978734. ISSN 2624-909X. PMC 9500287. PMID 36156934.
  184. ^ Sanacore, Joseph; Piro, Joseph (1 August 2014). "Multimodalities, Neuroenhancement, and Literacy Learning". International Journal of Progressive Education. 10 (2): 56–72. ISSN 1554-5210.
  185. ^ Ortiz-Ospina, Esteban; Giattino, Charlie; Roser, Max (29 November 2020). "Time Use". Our World in Data. Retrieved 11 March 2023.
  186. ^ a b Vedechkina, Maria; Borgonovi, Francesca (2021). "A Review of Evidence on the Role of Digital Technology in Shaping Attention and Cognitive Control in Children". Frontiers in Psychology. 12: 611155. doi:10.3389/fpsyg.2021.611155. ISSN 1664-1078. PMC 7943608. PMID 33716873.
  187. ^ Gashaj, Venera; Dapp, Laura C.; Trninic, Dragan; Roebers, Claudia M. (1 December 2021). "The effect of video games, exergames and board games on executive functions in kindergarten and 2nd grade: An explorative longitudinal study". Trends in Neuroscience and Education. 25: 100162. doi:10.1016/j.tine.2021.100162. ISSN 2211-9493. PMID 34844694. S2CID 237631258.
  188. ^ "Selecting Appropriate Toys for Young Children in the Digital Era". Pediatrics. 2019. doi:10.1542/peds.2018-3348.
  189. ^ Schweikardt, Eric; Gross, Mark D (March 2007). "A Brief Survey of Distributed Computational Toys". 2007 First IEEE International Workshop on Digital Game and Intelligent Toy Enhanced Learning (DIGI℡'07): 57–64. doi:10.1109/DIGI℡.2007.4.
  190. ^ Merrick, Kathryn E. (2013). "Novelty and Beyond: Towards Combined Motivation Models and Integrated Learning Architectures". Intrinsically Motivated Learning in Natural and Artificial Systems. Springer: 209–233. doi:10.1007/978-3-642-32375-1_9.
  191. ^ Poynton, Timothy A. (1 November 2005). "Computer literacy across the lifespan: a review with implications for educators". Computers in Human Behavior. 21 (6): 861–872. doi:10.1016/j.chb.2004.03.004. ISSN 0747-5632.
  192. ^ Smart, Paul (1 September 2017). "Extended Cognition and the Internet". Philosophy & Technology. 30 (3): 357–390. doi:10.1007/s13347-016-0250-2. ISSN 2210-5441.
  193. ^ Smart, Paul R. (22 November 2013). "The Web-Extended Mind". Philosophical Engineering. John Wiley & Sons, Ltd: 116–133. doi:10.1002/9781118700143.ch8.
  194. ^ Smart, Paul R. "Human-extended machine cognition". Cognitive Systems Research. doi:10.1016/j.cogsys.2017.11.001.
  195. ^ Caton, Amy; Bradshaw-Ward, Danita; Kinshuk, Kinshuk; Savenye, Wilhelmina (21 November 2022). "Future Directions for Digital Literacy Fluency using Cognitive Flexibility Research: A Review of Selected Digital Literacy Paradigms and Theoretical Frameworks". Journal of Learning for Development. 9 (3): 381–393. doi:10.56059/jl4d.v9i3.818. ISSN 2311-1550. S2CID 254004509.
  196. ^ Wang, Feng; Kinzie, Mable B.; McGuire, Patrick; Pan, Edward (1 March 2010). "Applying Technology to Inquiry-Based Learning in Early Childhood Education". Early Childhood Education Journal. 37 (5): 381–389. doi:10.1007/s10643-009-0364-6. ISSN 1573-1707. S2CID 143666182.
  197. ^ Riegel, Ulrich; Mendl, Hans (4 May 2014). "What should religious education in Germany be about and how does religiosity fit into this picture? An empirical study of pre-service religious education teachers' beliefs on the aims of RE". Journal of Beliefs & Values. 35 (2): 165–174. doi:10.1080/13617672.2014.953300. ISSN 1361-7672. S2CID 144001680.
  198. ^ Kittelmann Flensner, Karin (2017). Discourses of religion and secularism in religious education classrooms. Cham, Switzerland: Springer. ISBN 978-3-319-60949-2.
  199. ^ Setyowidodo, I; Jatmiko, B; Susantini, E; Handayani, A D; Pramesti, Y S (1 April 2020). "The role of science project based peer interaction on improving collaborative skills and physical problem solving: a mini review". Journal of Physics: Conference Series. 1521 (2): 022032. Bibcode:2020JPhCS1521b2032S. doi:10.1088/1742-6596/1521/2/022032. S2CID 219448364.
  200. ^ Norman, Geoff (1 January 2009). "Teaching basic science to optimize transfer". Medical Teacher. 31 (9): 807–811. doi:10.1080/01421590903049814. ISSN 0142-159X. PMID 19811185. S2CID 26691454.
  201. ^ Kalyuga, Slava; Renkl, Alexander; Paas, Fred (1 June 2010). "Facilitating Flexible Problem Solving: A Cognitive Load Perspective". Educational Psychology Review. 22 (2): 175–186. doi:10.1007/s10648-010-9132-9. ISSN 1573-336X. S2CID 56420974.
  202. ^ Edgren, Nora; Dubljević, Veljko (1 February 2023). "The ubiquuity of the fallacy of composition in cognitive enhancement and in education". Theoretical Medicine and Bioethics. 44 (1): 41–56. doi:10.1007/s11017-022-09595-y. ISSN 1573-1200.
  203. ^ "Cognitive collaboration". Deloitte Insights. Retrieved 17 March 2023.
  204. ^ Smart, Paul R. "The Cognitive Machine: Cognitive Extension and Coalition Operations". Retrieved 17 March 2023.
  205. ^ "Scientists say active early learning shapes the adult brain". medicalxpress.com. Retrieved 14 June 2021.
  206. ^ Farah, Martha J.; Sternberg, Saul; Nichols, Thomas A.; Duda, Jeffrey T.; Lohrenz, Terry; Luo, Yi; Sonnier, Libbie; Ramey, Sharon L.; Montague, Read; Ramey, Craig T. (2021-05-01). "Randomized Manipulation of Early Cognitive Experience Impacts Adult Brain Structure". Journal of Cognitive Neuroscience. 33 (6): 1197–1209. doi:10.1162/jocn_a_01709. hdl:10919/103551. PMID 34428792. S2CID 233638156.
  207. ^ Meeusen, Romain; Decroix, Lieselot (1 March 2018). "Nutritional Supplements and the Brain". International Journal of Sport Nutrition and Exercise Metabolism. 28 (2): 200–211. doi:10.1123/ijsnem.2017-0314. ISSN 1543-2742. PMID 29252056. S2CID 4582295.
  208. ^ Demarin, Vida; Bedeković, Marina Roje; Puretić, Marijana Bosnar; Pašić, Marija Bošnjak (December 2016). "Arts, Brain and Cognition". Psychiatria Danubina. 28 (4): 343–348. ISSN 0353-5053. PMID 27855424.
  209. ^ Dingle, Genevieve A.; Sharman, Leah S.; Bauer, Zoe; Beckman, Emma; Broughton, Mary; Bunzli, Emma; Davidson, Robert; Draper, Grace; Fairley, Sheranne; Farrell, Callyn; Flynn, Libby Maree; Gomersall, Sjaan; Hong, Mengxun; Larwood, Joel; Lee, Chiying; Lee, Jennifer; Nitschinsk, Lewis; Peluso, Natalie; Reedman, Sarah Elizabeth; Vidas, Dianna; Walter, Zoe C.; Wright, Olivia Renee Louise (2021). "How Do Music Activities Affect Health and Well-Being? A Scoping Review of Studies Examining Psychosocial Mechanisms". Frontiers in Psychology. 12: 713818. doi:10.3389/fpsyg.2021.713818. ISSN 1664-1078. PMC 8455907. PMID 34566791.
  210. ^ Miller, Marshall G.; Shukitt-Hale, Barbara (13 June 2012). "Berry Fruit Enhances Beneficial Signaling in the Brain". Journal of Agricultural and Food Chemistry. 60 (23): 5709–5715. doi:10.1021/jf2036033. ISSN 0021-8561. PMID 22264107.
  211. ^ Pribis, Peter; Shukitt-Hale, Barbara (July 2014). "Cognition: the new frontier for nuts and berries". The American Journal of Clinical Nutrition. 100: S347–S352. doi:10.3945/ajcn.113.071506. PMID 24871475.
  212. ^ Clifford, Tom; Howatson, Glyn; West, Daniel J.; Stevenson, Emma J. (April 2015). "The Potential Benefits of Red Beetroot Supplementation in Health and Disease". Nutrients. 7 (4): 2801–2822. doi:10.3390/nu7042801. ISSN 2072-6643. PMC 4425174. PMID 25875121.
  213. ^ George, Elena S; Daly, Robin M; Tey, Siew Ling; Brown, Rachel; Wong, Tommy Hon Ting; Tan, Sze-Yen (1 July 2022). "Perspective: Is it Time to Expand Research on "Nuts" to Include "Seeds"? Justifications and Key Considerations". Advances in Nutrition. 13 (4): 1016–1027. doi:10.1093/advances/nmac028. ISSN 2161-8313.
  214. ^ Allen, Andrew P.; Dinan, Timothy G.; Clarke, Gerard; Cryan, John F. (April 2017). "A psychology of the human brain-gut-microbiome axis". Social and Personality Psychology Compass. 11 (4): e12309. doi:10.1111/spc3.12309. PMC 5530613. PMID 28804508.
  215. ^ Basso, Melissa; Johnstone, Nicola; Knytl, Paul; Nauta, Arjen; Groeneveld, Andre; Cohen Kadosh, Kathrin (January 2022). "A Systematic Review of Psychobiotic Interventions in Children and Adolescents to Enhance Cognitive Functioning and Emotional Behavior". Nutrients. 14 (3): 614. doi:10.3390/nu14030614. ISSN 2072-6643. PMC 8840038. PMID 35276975.
  216. ^ a b Sarkar, Amar; Harty, Siobhán; Lehto, Soili M.; Moeller, Andrew H.; Dinan, Timothy G.; Dunbar, Robin I. M.; Cryan, John F.; Burnet, Philip W. J. (1 July 2018). "The Microbiome in Psychology and Cognitive Neuroscience". Trends in Cognitive Sciences. 22 (7): 611–636. doi:10.1016/j.tics.2018.04.006. ISSN 1364-6613.
  217. ^ Vera-Santander, Victor E.; Hernández-Figueroa, Ricardo H.; Jiménez-Munguía, María T.; Mani-López, Emma; López-Malo, Aurelio (January 2023). "Health Benefits of Consuming Foods with Bacterial Probiotics, Postbiotics, and Their Metabolites: A Review". Molecules. 28 (3): 1230. doi:10.3390/molecules28031230. ISSN 1420-3049.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  218. ^ Balban, Melis Yilmaz; Neri, Eric; Kogon, Manuela M.; Weed, Lara; Nouriani, Bita; Jo, Booil; Holl, Gary; Zeitzer, Jamie M.; Spiegel, David; Huberman, Andrew D. (17 January 2023). "Brief structured respiration practices enhance mood and reduce physiological arousal". Cell Reports Medicine. 4 (1): 100895. doi:10.1016/j.xcrm.2022.100895. ISSN 2666-3791. PMC 9873947. PMID 36630953.
  219. ^ Parashar, Arun; Udayabanu, Malairaman (1 January 2016). "Gut microbiota regulates key modulators of social behavior". European Neuropsychopharmacology. 26 (1): 78–91. doi:10.1016/j.euroneuro.2015.11.002. ISSN 0924-977X.
  220. ^ Gudden, Jip; Arias Vasquez, Alejandro; Bloemendaal, Mirjam (September 2021). "The Effects of Intermittent Fasting on Brain and Cognitive Function". Nutrients. 13 (9): 3166. doi:10.3390/nu13093166. ISSN 2072-6643. PMC 8470960. PMID 34579042.
  221. ^ a b c Troynikov, Olga; Watson, Christopher G.; Nawaz, Nazia (1 December 2018). "Sleep environments and sleep physiology: A review". Journal of Thermal Biology. 78: 192–203. doi:10.1016/j.jtherbio.2018.09.012. ISSN 0306-4565.
  222. ^ a b c d e Walsh, Neil P.; Halson, Shona L.; Sargent, Charli; Roach, Gregory D.; Nédélec, Mathieu; Gupta, Luke; Leeder, Jonathan; Fullagar, Hugh H.; Coutts, Aaron J.; Edwards, Ben J.; Pullinger, Samuel A.; Robertson, Colin M.; Burniston, Jatin G.; Lastella, Michele; Meur, Yann Le; Hausswirth, Christophe; Bender, Amy M.; Grandner, Michael A.; Samuels, Charles H. (1 April 2021). "Sleep and the athlete: narrative review and 2021 expert consensus recommendations". British Journal of Sports Medicine. 55 (7): 356–368. doi:10.1136/bjsports-2020-102025. ISSN 0306-3674.
  223. ^ "5 Smart(ish) Things to Help You Wake Up Easier". Wirecutter: Reviews for the Real World. 17 February 2023. Retrieved 17 March 2023.
  224. ^ Oh, Kyue Taek; Shin, Jaemyung; Kim, Jaejeung; Ko, Minsam (January 2020). "Analysis of a Wake-Up Task-Based Mobile Alarm App". Applied Sciences. 10 (11): 3993. doi:10.3390/app10113993. ISSN 2076-3417.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  225. ^ Dotson, Noe (28 May 2015). "Puzzle Alarm Clock". Academic Excellence Showcase Schedule. Retrieved 17 March 2023.
  226. ^ Olanoff, Drew (26 October 2011). "Mission Alarm Clock turns waking up into a game - The Next Web". TNW | Apps. Retrieved 17 March 2023.
  227. ^ "Brain-cleaning sleeping cap gets US Army funding". New Atlas. 1 October 2021. Retrieved 17 March 2023.
  228. ^ Bruni, Oliviero; Ferini-Strambi, Luigi; Giacomoni, Elena; Pellegrino, Paolo (February 2021). "Herbal Remedies and Their Possible Effect on the GABAergic System and Sleep". Nutrients. 13 (2): 530. doi:10.3390/nu13020530. ISSN 2072-6643.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  229. ^ Bonilla, Diego A.; Moreno, Yurany; Gho, Camila; Petro, Jorge L.; Odriozola-Martínez, Adrián; Kreider, Richard B. (March 2021). "Effects of Ashwagandha (Withania somnifera) on Physical Performance: Systematic Review and Bayesian Meta-Analysis". Journal of Functional Morphology and Kinesiology. 6 (1): 20. doi:10.3390/jfmk6010020. ISSN 2411-5142.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  230. ^ Lopresti, Adrian L.; Smith, Stephen J. (1 August 2021). "Ashwagandha (Withania somnifera) for the treatment and enhancement of mental and physical conditions: A systematic review of human trials". Journal of Herbal Medicine. 28: 100434. doi:10.1016/j.hermed.2021.100434. ISSN 2210-8033.
  231. ^ Gardiner, Carissa; Weakley, Jonathon; Burke, Louise M.; Roach, Gregory D.; Sargent, Charli; Maniar, Nirav; Townshend, Andrew; Halson, Shona L. (1 June 2023). "The effect of caffeine on subsequent sleep: A systematic review and meta-analysis". Sleep Medicine Reviews. 69: 101764. doi:10.1016/j.smrv.2023.101764. ISSN 1087-0792.
  232. ^ Halson, Shona L. (1 May 2014). "Sleep in Elite Athletes and Nutritional Interventions to Enhance Sleep". Sports Medicine. 44 (1): 13–23. doi:10.1007/s40279-014-0147-0. ISSN 1179-2035. PMC 4008810. PMID 24791913.
  233. ^ Caddick, Zachary A.; Gregory, Kevin; Arsintescu, Lucia; Flynn-Evans, Erin E. (15 March 2018). "A review of the environmental parameters necessary for an optimal sleep environment". Building and Environment. 132: 11–20. doi:10.1016/j.buildenv.2018.01.020. ISSN 0360-1323.
  234. ^ Buchner, Josef; Buntins, Katja; Kerres, Michael (February 2022). "The impact of augmented reality on cognitive load and performance: A systematic review". Journal of Computer Assisted Learning. 38 (1): 285–303. doi:10.1111/jcal.12617. ISSN 0266-4909. S2CID 243783802.
  235. ^ a b c d Brunyé, Tad T.; Brou, Randy; Doty, Tracy Jill; Gregory, Frederick D.; Hussey, Erika K.; Lieberman, Harris R.; Loverro, Kari L.; Mezzacappa, Elizabeth S.; Neumeier, William H.; Patton, Debra J.; Soares, Jason W.; Thomas, Thaddeus P.; Yu, Alfred B. (1 December 2020). "A Review of US Army Research Contributing to Cognitive Enhancement in Military Contexts". Journal of Cognitive Enhancement. 4 (4): 453–468. doi:10.1007/s41465-020-00167-3. ISSN 2509-3304. S2CID 256621326.
  236. ^ Lee, Yong-Seok; Silva, Alcino J. (February 2009). "The molecular and cellular biology of enhanced cognition". Nature Reviews Neuroscience. 10 (2): 126–140. doi:10.1038/nrn2572. ISSN 1471-0048.
  237. ^ a b c d e f g h i j Lucke, Jayne C.; Bell, Stephanie K.; Patridge, Bradley J.; Hall, Wayne D. (2011). "Academic Doping or Viagra for the brain?". EMBO Rep. 12 (3): 197–201. doi:10.1038/embor.2011.15. PMC 3059919. PMID 21311560.
  238. ^ a b Schuijer, Jantien W.; de Jong, Irja M.; Kupper, Frank; van Atteveldt, Nienke M. (2017). "Transcranial Electrical Stimulation to Enhance Cognitive Performance of Healthy Minors: A Complex Governance Challenge". Frontiers in Human Neuroscience. 11: 142. doi:10.3389/fnhum.2017.00142. ISSN 1662-5161. PMC 5366312. PMID 28396631.
  239. ^ Marois, Alexandre; Lafond, Daniel (1 November 2022). "Augmenting cognitive work: a review of cognitive enhancement methods and applications for operational domains". Cognition, Technology & Work. 24 (4): 589–608. doi:10.1007/s10111-022-00715-1. ISSN 1435-5566. S2CID 252372408.
  240. ^ a b c Jwa, Anita S. (2021). "Enhancing the developing brain: tensions between parent, child, and state in the United States". Journal of Law and the Biosciences. 8 (1): lsab017. doi:10.1093/jlb/lsab017. PMC 8223904. PMID 34188944.
  241. ^ Saritas, Ozcan (2019). "Emerging Technologies, Trends and Wild Cards in Human Enhancement". Emerging Technologies for Economic Development. Science, Technology and Innovation Studies. Springer International Publishing. pp. 243–259. doi:10.1007/978-3-030-04370-4_11. ISBN 978-3-030-04370-4. S2CID 169759910.
  242. ^ "The Rationale for Consuming Cognitive Enhancement Drugs in University Students and Teachers". PLOS ONE. 8 (7): e68821. 2013. Bibcode:2013PLoSO...868821S. doi:10.1371/journal.pone.0068821. PMC 3714277. PMID 23874778. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  243. ^ a b "Impact of Contextual Factors and Substance Characteristics on Perspectives toward Cognitive Enhancement". PLOS ONE. 8 (8): e71452. 2013. Bibcode:2013PLoSO...871452S. doi:10.1371/journal.pone.0071452. PMC 3733969. PMID 23940757. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  244. ^ a b c "Work-related stress and cognitive enhancement among university teachers". Anxiety, Stress & Coping. 29 (1): 1–18. 2015. doi:10.1080/10615806.2015.1025764. PMID 25747817. S2CID 22273733. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  245. ^ Anomaly, Jonathan; Gyngell, Christopher; Savulescu, Julian (January 2020). "Great minds think different: Preserving cognitive diversity in an age of gene editing". Bioethics. 34 (1): 81–89. doi:10.1111/bioe.12585. ISSN 0269-9702. PMC 6973122. PMID 30941781.
  246. ^ Gyngell, Chris; Easteal, Simon (January 2015). "Cognitive Diversity and Moral Enhancement". Cambridge Quarterly of Healthcare Ethics. 24 (1): 66–74. doi:10.1017/S0963180114000310. ISSN 0963-1801. PMID 25473859.
  247. ^ Veit, Walter (1 December 2018). "Cognitive Enhancement and the Threat of Inequality". Journal of Cognitive Enhancement. 2 (4): 404–410. doi:10.1007/s41465-018-0108-x. ISSN 2509-3304. S2CID 256624542.
  248. ^ Flower, R. (1 September 2012). "The Osler Lecture 2012 'Pharmacology 2.0, medicines, drugs and human enhancement'". QJM. 105 (9): 823–830. doi:10.1093/qjmed/hcs105. PMID 22723455.
  249. ^ Boire, Part I
  250. ^ Boire, Richard Glen (2000). "On Cognitive Liberty Part II". Journal of Cognitive Liberties. 1 (2). Archived from the original on 2017-02-10. Retrieved 2015-05-16.
  251. ^ "Keeping Freedom in Mind". Center for Cognitive Liberty and Ethics. Archived from the original on 24 April 2018. Retrieved 3 May 2014.
  252. ^ Blitz, 1058-1060
  253. ^ a b Sententia (2013), 356
  254. ^ Sententia (2013), 355-6
  255. ^ Corbyn, Zoë (4 March 2023). "Prof Nita Farahany: 'We need a new human right to cognitive liberty'". The Observer. Retrieved 10 March 2023.
  256. ^ Zwart H. (2014). "Limitless as a neuro-pharmaceutical experiment and as a Daseinsanalyse: on the use of fiction in preparatory debates on cognitive enhancement" (PDF). Medicine, Health Care and Philosophy. 17 (1): 29–38. doi:10.1007/s11019-013-9481-5. PMID 23585022. S2CID 29893291.
  257. ^ Garmany, Armin; Yamada, Satsuki; Terzic, Andre (23 September 2021). "Longevity leap: mind the healthspan gap". NPJ Regenerative Medicine. 6 (1): 57. doi:10.1038/s41536-021-00169-5. ISSN 2057-3995. PMC 8460831. PMID 34556664.
  258. ^ a b Wexler, Anna (2017). "The Social Context of "Do-It-Yourself" Brain Stimulation: Neurohackers, Biohackers, and Lifehackers". Frontiers in Human Neuroscience. 11: 224. doi:10.3389/fnhum.2017.00224. ISSN 1662-5161. PMC 5423946. PMID 28539877.
  259. ^ Onaolapo, Adejoke Yetunde; Obelawo, Adebimpe Yemisi; Onaolapo, Olakunle James (May 2019). "Brain Ageing, Cognition and Diet: A Review of the Emerging Roles of Food-Based Nootropics in Mitigating Age-Related Memory Decline". Current Aging Science. 12 (1): 2–14. doi:10.2174/1874609812666190311160754. ISSN 1874-6098. PMC 6971896. PMID 30864515.
  260. ^ Katz, Sylvan. "Forum: Roses are black, violets are green - The emergence of amateur genetic engineers". New Scientist. Retrieved 2020-04-03.
  261. ^ Knapton, Sarah (2019-11-02). "Neurohacking cream which helps you learn guitar faster available in five years". The Telegraph. ISSN 0307-1235. Retrieved 2020-04-03.
  262. ^ Health, Center for Devices and Radiological (2019-02-09). "Vercise Deep Brain Stimulation (DBS) System - P150031". FDA.
  263. ^ Wexler, Anna (10 May 2017). "The Social Context of "Do-It-Yourself" Brain Stimulation: Neurohackers, Biohackers, and Lifehackers". Frontiers in Human Neuroscience. 11: 224. doi:10.3389/fnhum.2017.00224. ISSN 1662-5161.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  264. ^ a b c d e f Eickenhorst, Patrick; Vitzthum, Karin; Klapp, Burghard F.; Groneberg, David; Mache, Stefanie (2012). "Neuroenhancement Among German University Students: Motives, Expectations, and Relationship with Psychoactive Lifestyle Drugs". Journal of Psychoactive Drugs. 44 (5): 418–427. doi:10.1080/02791072.2012.736845. PMID 23457893. S2CID 6621896.
  265. ^ a b "Cognitive test anxiety and cognitive enhancement: the influence of students' worries on their use of performance-enhancing drugs". Substance Use and Misuse. 48 (3): 220–32. 2013. doi:10.3109/10826084.2012.751426. PMID 23302063. S2CID 34698382. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  266. ^ "The Rationale for Consuming Cognitive Enhancement Drugs in University Students and Teachers". PLOS ONE. 8 (7): e68821. 2013. Bibcode:2013PLoSO...868821S. doi:10.1371/journal.pone.0068821. PMC 3714277. PMID 23874778. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  267. ^ "Associations Between the Big Five Personality Traits and the Non-Medical Use of Prescription Drugs for Cognitive Enhancement". Frontiers in Psychology. 6: 1971. 2016. doi:10.3389/fpsyg.2015.01971. PMC 4700267. PMID 26779083. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  268. ^ "Evaluating the drivers of and obstacles to the willingness to use cognitive enhancement drugs: the influence of drug characteristics, social environment, and personal characteristics". Substance Abuse Treatment, Prevention, and Policy. 9: 8. 2014. doi:10.1186/1747-597X-9-8. PMC 3928621. PMID 24484640. {{cite journal}}: Cite uses deprecated parameter |authors= (help)CS1 maint: unflagged free DOI (link)
  269. ^ Olsen, Nicole (2013). "Caffeine Consumption Habits and Perceptions among University of New Hampshire Students". Honors Theses.

Further reading