Food irradiation

From Wikipedia, the free encyclopedia
Jump to: navigation, search
The international Radura logo, used to show a food has been treated with ionizing radiation.

Food irradiation is the process of exposing foodstuffs to a source of energy capable of stripping electrons from individual atoms in the targeted material (ionizing radiation).[1] The radiation can be emitted by a radioactive substance or generated electrically.

This treatment is used to preserve food, reduce the risk of food borne illness, prevent the spread of invasive pests, delay or eliminate sprouting or ripening, increase juice yield[citation needed], and improve re-hydration[citation needed]. It is permitted by over 50 countries, with 500,000 metric tons of foodstuffs annually processed worldwide.[citation needed]

Food irradiation is criticized because of the potential for irradiation to initiate chemical changes that will be different from the chemical changes due to heating food (Unique Radiolytic Products), and the potential danger of these substances.[citation needed] Research has discovered that all but one family of products are produced when heating food, the unique products are non toxic, and the non-unique products occur in lower or comparable frequency to heating food.[2][3][4][5] Others criticize irradiation because of confusion with radioactive contamination or because of negative impressions of the nuclear industry.

The regulations that dictate how food is to be irradiated, as well as the food allowed to be irradiated, vary greatly from country to country. In Austria, Germany, and many other countries of the European Union only dried herbs, spices, and seasonings can be processed with irradiation and only at a specific dose, while in Brazil all foods are allowed at any dose.[6][7][8][9][10]

Irradiation is also used for non-food applications, such as medical devices, plastics, tubes for gas pipelines, hoses for floor heating, shrink-foils for food packaging, automobile parts, wires and cables (isolation), tires, and even gemstones.[citation needed]

Uses[edit]

Irradiation is used to reduce pathogens, increase shelf life, eliminate pests, increase juice yield,[citation needed] delay sprouting, and improve re-hydration[citation needed].

Irradiation is used to reduce the pathogens in foods. Depending on the dose, some or all of the microorganisms, bacteria (as well as "good bacteria" that inhibit the growth of pathogenic bacteria), and viruses present are destroyed, slowed down, or rendered incapable of reproduction. This reduces or eliminates the risk of food borne illnesses. Some foods are irradiated at sufficient doses to ensure that the product is sterilized and does not add any spoilage or pathogenic microorganisms into the final product.[1]

Irradiation is used to as delay the ripening of fruits and the sprouting of vegetables by slowing down the enzymatic action in foods.

By halting or slowing down spoilage and slowing down the ripening of food, irradiation prolongs the shelf life of goods. Irradiation can not revert spoiled or over ripened food to a fresh state. If this food was processed by irradiation, spoilage would cease and ripening would slow down, yet the irradiation would not destroy the toxins or repair the texture, color, or taste of the food.[11]

Insect pests are sterilized using irradiation at relatively low doses if irradiation. This stops the spread of foreign invasive species across national boundaries, and allows foods to pass quickly through quarantine and avoid spoilage.[12] Depending on the dose, some or all of the insects present are destroyed, or rendered incapable of reproduction.

Public perception and impact[edit]

Irradiation has been approved by the FDA for over 50 years, but the only major growth area for the commercial sale of irradiated foods for human consumption are fruits and vegetables that are irradiated to kill insects for the purpose of quarantine. In the early 2000s in the US irradiated meat was common at some grocery stores, but because of lack of consumer demand it is no longer common. Because consumer demand for irradiated food is low, reducing the spoilage between manufacture and consumer purchase and reducing the risk of food born illness is currently not sufficient incentive for most manufactures to supplement their process with irradiation.[13]

It is widely believed that consumer perception of foods treated with irradiation is more negative than those processed by other means,[14] although some industry studies indicate the number of consumers concerned about the safety of irradiated food has decreased in the last 10 years to levels comparable to those of people concerned about food additives and preservatives.[15] “These irradiated foods are not less safe than others,” Dr. Tarantino said, “and the doses are effective in reducing the level of disease-causing micro-organisms.” "People think the product is radioactive," said Harlan Clemmons, president of Sadex, a food irradiation company based in Sioux City, Iowa.[16]

Some common concerns about food irradiation include the impact of irradiation on food chemistry, as well as the indirect effects of irradiation becoming a prevalent in the food handling process. Irradiation reduces the risk of infection and spoilage, does not make food radioactive, and the food is shown to be safe, but it does cause chemical reactions that alter the food and therefore alters the chemical makeup, nutritional content, and the sensory qualities of the food.[13] The some of the potential secondary impacts of irradiation are hypothetical, while others are demonstrated. These effects include impacts due to the reduction of food quality, the loss of bacteria, and the irradiation process. Because of these concerns and the increased cost of irritated foods, there is not a widespread public demand for the irradiation of foods for human consumption.[13]

Impact of irradiation on food chemistry[edit]

The irradiation source supplies energetic particles or waves. As these waves/particles pass through a target material they collide with particles. Around the sites of these collisions chemical bonds are broken, creating short lived radicals (e.g. the Hydroxyl radical, the hydrogen atom and solvated electrons). These radicals cause further chemical changes by bonding with and or striping particles from nearby molecules. When collisions damage DNA or RNA, effective reproduction becomes unlikely, also when collisions occur in cells, cell division is often suppressed.[1]

Irradiated food does not become radioactive as the radioactive source is never in contact with the foodstuffs and energy of radiation is limited below the threshold of induction of radioactivity, but it does reduce the nutritional content and change the flavor (much like cooking), produce radiolytic products, and increase the number of free radicals in the food.[17]

Irradiation causes a multitude of chemical changes. The scale of these chemical changes caused by irradiation are not unique. Cooking, smoking, salting, and other less novel techniques, cause the food to be altered so drastically that its original nature is almost unrecognizable, and must be called by a different name. Storage of food also causes dramatic chemical changes, ones that eventually lead to deterioration and spoilage.[18]

Food quality[edit]

Because of the extent of the chemical reactions, changes to the foods quality after irradiation are inevitable. The nutritional content of food, as well as the sensory qualities (taste, appearance, and texture) are impacted by irradiation. Because of this food advocacy groups consider labeling irradiated food raw as misleading.[19]

The changes in quality and nutrition vary greatly from food to food. The changes in the flavor of fatty foods like meats, nuts and oils are sometimes noticeable, while the changes in lean products like fruits and vegetables are less so. Some studies by the irradiation industry show, for some properly treated fruits and vegetables irradiation is seen by consumers to improve the sensory qualities of the product, when compared to untreated fruits and vegetables.[11]

Radiolytic products and free radicals[edit]

The formation of new, previously unknown chemical compounds (Unique Radiolytic Products) via irradiation is a concern. Research has shown that most of the substances found in irradiated food are also found in food that has been subjected to other food processing treatments, and are therefore not unique. Furthermore, the quantities in which they occur in irradiated food are lower or similar to the quantities formed in heat treatments.[2][3][4][5]

When fatty acids are irradiated, a family of compounds called 2-alkylcyclobutanones (2-ACBs) are produced. These are thought to be unique radiolytic products. Some studies show that these chemicals may be toxic, while others dispute this.[citation needed]

Potentially damaging compounds known as free radicals form when food is irradiated. Most of these are oxidizers (i.e., accept electrons) and some react very strongly. According to the free-radical theory of aging excessive amounts of these free radicals can lead to cell injury and cell death, which may contribute to many diseases.[20]

The radiation doses to cause toxic changes are much higher than the doses needed to accomplish the benefits of irradiation, and taking into account the presence of 2-ABCs along with what is known of free radicals, these results lead to the conclusion that there is no significant risk from radiolytic products.[21]

Misconceptions[edit]

Several national expert groups and two international expert groups evaluated the available data and concluded that any food at any dose is wholesome and safe to consume as long as it remains palatable and maintains its technical properties (e.g. feel, texture, or color).[2][4] Still, a major concern is that irradiation might cause chemical changes that are harmful to the consumer. In particular the argument is that there is a lack of long-term studies, and therefore the safety of irradiated food is not scientifically proven[22] in spite of the fact that hundreds of animal feeding studies of irradiated food, including multigenerational studies, have been performed since 1950.[21] Endpoints investigated have included subchronic and chronic changes in metabolism, histopathology, and function of most systems; reproductive effects; growth; teratogenicity; and mutagenicity. A large number of studies have been performed; meta-studies have supported the safety of irradiated food.[2][4][21][23][24]

The below experiments are cited by food irradiation opponents[weasel words], but could be either not verified in later experiments, could not be clearly attributed to the radiation effect, or could be attributed to an inappropriate design of the experiment etc.[11][21]

  • India's National Institute of Nutrition (NIN) found an elevated rate of cells with more than one set of genes (Polyploidy) in humans and animals when fed wheat that was irradiated recently (within 12 weeks). Upon analysis scientist determined that the techniques used by NIN allowed for too much human error and statistical variation, therefore the results where unreliable. After multiple studies by independent agencies and scientists no correlation between polyploidy and irradiation of food could be found.[11]
  • Change in chronaxie in rats[citation needed]

Indirect effects/cumulative impacts of irradiation[edit]

Many of the concerns and benefits of irradiation are not directly related to the chemical changes that occur when food is irradiated, but instead are related to what would occur if food irradiation was a common process. When food is irradiated some nutrition is lost.[11] Therefore, if the majority of food was irradiated at high enough levels to decrease its nutritional content significantly, there could be an increase in nutritional deficiencies due to a diet composed entirely of irradiated foods.

If irradiation was to become common in the food handling process there would be a reduction of the prevalence of food born illnesses due to pathogens and potentially the eradication of specific pathogens.[25] Multiple studies support that an increased rate of pathogen growth may occur when irradiated food is cross-contaminated with a pathogen, as the competing spoilage organisms are no longer present.[26] This would seem to contradict the assertion there would be a reduction of the prevalence of food born illnesses, but this impact would be outweighed by the decrease illnesses due to a non cross contaminated source, and the decrease in the possibility of cross contamination.

The ability to remove bacterial contamination through post processing by irradiation may reduces the fear of mishandling food. Because of this, the introduction of more non bacteria based contaminates could increase due to irradiation. Concerns that the pasteurization of milk would lead to increased contamination of milk where prevalent when mandatory pasteurization was introduced. These fears never materialized after adoption of this law. Therefore, it is unlikely for irradiation to cause an increase of illness due to non bacteria based contamination.[27]

If irradiation becomes a standard process there are concerns that irradiating food might create dangerous or radiation tolerant pathogens. Cycles of irradiation treatment have been shown to produce irradiation tolerant bacteria. Because of this some are worried that pathogens will develop resistance to irradiation the way that strains of bacteria have developed resistance to antibiotics.[28] When the irradiation dose is chosen to target a specific species of microbe, it is calibrated to doses doses several times the value required to target the species. This ensures that the process can destroy all members of a target species making the process random with respect to irradiation tolerance for this target species.[citation needed] Therefore, irradiation does not encourage the growth of irradiation tolerant bacteria in the target species. Furthermore, cycles of heat treatment have been shown to produce heat tolerant bacteria, yet no problems have appeared so far in pasteurization plants.[28]

Impact on cats of highly irradiated food to the complete diet[edit]

A series of fatal cat incidents with irradiated pet food[29] in Australia led the cat food company responsible to recall any product from the market. Irradiation at elevated doses or heat sterilization was compulsory at the time of this incident. The company and several scientist speculated these incidents where caused by Vitamin A depletion. Treatment with irradiation is known to deplete vitamin A in some foods. Over 40 cats were reported to have been euthanized after severe paralysis subsequent to being fed a particular brand of cat food.[30]

There is consensus in the scientific community that the problem was specific to the lot, not the irradiation process because: [30][31][32]

  • The series of incidents was linked only to a single batch of the brand's product and no illness was linked to any of that brand's other irradiated batches of the same product or to any other brand of irradiated cat food,
  • There was no evidence of Vitamin A depletion in any of the cats studied, although there were not enough cats sampled to prove conclusively that there were no cases of Vitamin A depletion.
  • Histopathological damage to the white matter of spinal cord and brain was seen. No gross abnormalities were found during postmortem examination. The report by the Australian Veterinary Journal states that there is no known mechanism by which changes induced in foods by irradiation could result in this kind of damage.

Radiation processing of imported cat food has now been banned in Australia. The AQIS announced on June 6, 2009 that the alternative of radiation processing for cat food is no longer acceptable and that irradiated dog food is required to be labeled "Must not be fed to cats".[33]

Since 2009, no study has been published contributing to clearing-up this issue.

Treatment[edit]

Up to the point where the food is processed by irradiation, the food is processed in the same way as all other food. To treat the foodstuffs, they are exposed to a radioactive source, for a set period of time to achieve a desired dose. Radiation may be emitted by a radioactive substance, or by X-ray and electron beam accelerators. Special precautions are taken to ensure the food stuffs never come in contact with the radioactive substances and that the personnel and the environment are protected from exposure radiation.[citation needed]

Irradiation treatments are typically classified by dose (high, medium, and low), but are sometimes classified by the effects of the treatment[34] (radappertization, radicidation and radurization). Food irradiation is sometimes referred to as "cold pasteurization"[35] or "electronic pasteurization"[36] because ionizing the food does not heat the food to high temperatures during the process, and the effect is similar to heat pasteurization. The term "cold pasteurization" is controversial because the term may be used to disguise the fact the food has been irradiated and pasteurization and irradiation are fundamentally different processes.

Treatment costs vary as a function of dose and facility usage. A pallet or tote is typically exposed for several minutes to hours depending on dose. Low-dose applications such as disinfestation of fruit range between US$0.01/lbs and US$0.08/lbs while higher-dose applications can cost as much as US$0.20/lbs.[37]

Process[edit]

Typically, when the food is being irradiated, pallets of food are exposed a source of radiation for a specific time. Dosimeters are embedded in the pallet (at various locations) of food to determine what dose was achieved.[citation needed]

Most irradiated food is processed by gamma irradiation.[38] Special precautions are taken because gamma rays are continuously emitted by the radioactive material. In most designs, to nullify the effects of radiation, the radioisotope is lowered into a water-filled storage pool, which absorbs the radiation but does not become radioactive. This allows pallets of the products to be added and removed from the irradiation chamber and other maintenance to be done.[citation needed] Sometimes movable shields are used to reduce radiation levels in areas of the irradiation chamber instead of submerging the source.[citation needed] For x ray and electron irradiation these precautions are not necessary as the source of the radiation can be turned off.

For x-ray, gamma ray and electron irradiation, shielding is required when the foodstuffs are being irradiated. This is done to protect protect workers and the environment outside of the chamber from radiation exposure. Typically permanent or movable shields are used.[citation needed] In some gamma irradiators the radioactive source is under water at all times, and the hermetically sealed product is lowered into the water. The water acts as the shield in this application.[citation needed] Because of the lower penetration depth of electron irradiation, treatment to entire industrial pallets or totes is not possible.[citation needed]

Dosimetry[edit]

The radiation absorbed dose is the amount energy absorbed per unit weight of the target material. Dose is used because, when the same substance is given the same dose, similar changes are observed in the target material. The SI unit for dose is grays (Gy or J/kg). Dosimeters are used to measure dose, and are small components that, when exposed to ionizing radiation, change measurable physical attributes to a degree that can be correlated to the dose received. Measuring dose (dosimetry) involves exposing one or more dosimeters along with the target material.[39][40]

Doses are generally divided into low (up to 1 kGy), medium (1 kGy to 10 kGy), and high dose applications (above 10 kGy).[citation needed] High dose applications are above those currently permitted in the USA for commercial food items by the FDA and other regulators around the world.[41] Though these doses are approved for non commercial applications, such as sterilizing frozen meat for NASA astronauts (doses of 44 kGy)[42] and food for hospital patients.

Applications By Overall Average Dose
Low dose (up to 1 kGy) Medium dose (1 kGy to 10 kGy) High dose (above 10 kGy)
Application Dose (kGy) Application Dose (kGy) Application Dose (kGy)
Inhibit sprouting[a] 0.03-0.15 kGy Delay spoilage of meat[b] 1.50–3.00 kGy Sterilization[c] of packaged meat[b] 25.00-70.00 kGy
Delay fruit ripening 0.03-0.15 kGy Reduce risk of pathogens in meat[b] 3.00–7.00 kGy Increase juice yield[citation needed]
Stop insect/parasite infestations[d] 0.07-1.00 kGy Increase sanitation[e] of spices[43] 10.00 kGy Improve re-hydration[citation needed]

Technology[edit]

Efficiency illustration of the different radiation technologies (electron beam, X-ray, gamma rays)
Illustration of the penetration properties of the different radiation technologies (electron beam, X-ray, gamma rays)

Electron irradiation uses electrons accelerated in an electric field to a velocity close to the speed of light. Electrons are particles, and therefore do not penetrate the product beyond a few centimeters, depending on product density.

Gamma irradiation involves exposing the target material to packets of light (photons) that are highly energetic (Gamma rays). A radioactive material (radioisotopes) is used as the source for the gamma rays.[citation needed] Gamma irradiation is the standard because the deeper penetration of the gamma rays enables administering treatment to entire industrial pallets or totes (reducing the need for material handling) and it is significantly less expensive than using a X-ray source. Generally cobalt-60 is used as a radioactive source for gamma irradiation. Cobalt-60 is bred from cobalt-59 using neutron irradiation in specifically designed nuclear reactors.[38] In limited applications caesium-137, a less costly alternative recovered during the processing of spent nuclear fuel, is used as a radioactive source. Insufficient quantities are available for large scale commercial use. An incident where water soluble caesium-137 leaked into the source storage pool requiring NRC intervention[44] has led to near elimination of this radioisotope outside of military applications.

Irradiation by X-ray is similar to irradiation by gamma rays in that less energetic packets of light (X-rays) are used. X-rays are generated by colliding accelerated electrons with a dense material (this process is known as bremsstrahlung-conversion), and therefore do not necessitate the use of radioactive materials.[citation needed] X-rays ability to penetrate the target is similar to gamma irradiation. X-ray machine produces better dose uniformity then Gamma irradiation but they require much more electricity as only as much as 12% of the input energy is converted into X-rays.[38]

Cost[edit]

The cost of food irradiation is influenced by dose requirements, the food's tolerance of radiation, handling conditions, i.e., packaging and stacking requirements, construction costs, financing arrangements, and other variables particular to the situation.[45] Irradiation is a capital-intensive technology requiring a substantial initial investment, ranging from $1 million to $5 million. In the case of large research or contract irradiation facilities, major capital costs include a radiation source, hardware (irradiator, totes and conveyors, control systems, and other auxiliary equipment), land (1 to 1.5 acres), radiation shield, and warehouse. Operating costs include salaries (for fixed and variable labor), utilities, maintenance, taxes/insurance, cobalt-60 replenishment, general utilities, and miscellaneous operating costs.[37][46]

Regulations and international standards[edit]

The Codex Alimentarius represents the global standard for irradiation of food, in particular under the WTO-agreement. Member states are free to convert those standards into national regulations at there discretion. Therefore regulations about irradiation differ from country to country.[citation needed]

The United Nations Food and Agricultural Organization (FAO) has passed a motion to commit member states to implement irradiation technology for their national phytosanitary programs; the General assembly of the International Atomic Energy Agency (IAEA) has urged wider use of the irradiation technology.[citation needed]

Labeling regulations and international standards[edit]

The Radura symbol, as required by U.S. Food and Drug Administration regulations to show a food has been treated with ionizing radiation.

The provisions of the Codex Alimentarius are that any "first generation" product must be labeled "irradiated" as any product derived directly from an irradiated raw material; for ingredients the provision is that even the last molecule of an irradiated ingredient must be listed with the ingredients even in cases where the unirradiated ingredient does not appear on the label. The RADURA-logo is optional; several countries use a graphical version that differs from the Codex-version. The suggested rules for labeling prepacked is published at CODEX-STAN – 1 (2005),[47] and includes the usage of the Radura symbol for all products that contain irradiated foods. The Radura symbol is not a designator of quality. The amount of pathogens remaining is based upon dose and the original content and the dose applied can vary on a product by product basis.

The European union follows the Codex's provision to label irradiated ingredients down to the last molecule of irradiated foodstuffs. The European Community does not provide for the use of the Radura logo and relies exclusively on labeling by the appropriate phrases in the respective languages of the Member States. The European Union enforces its irradiation labeling laws by requiring its member countries to perform tests on a cross section of food items in the market-place and to report to the European Commission. The results are published annually in the OJ of the European Communities.[48]

The US defines irradiated foods as foods in which the irradiation causes a material change in the food, or a material change in the consequences that may result from the use of the food. Therefore food that is processed as an ingredient by a restaurant or food processor is exempt from the labeling requirement in the US. This definition is not consistent with the Codex Alimentarius. All irradiated foods must bear a slightly modified[47] Radura symbol at the point of sale and use the term "irradiated" or a derivative there of, in conjunction with explicit language describing the change in the food or its conditions of use.[49]

Food safety regulations and international standards[edit]

In 2003, the Codex Alimentarius removed any upper dose limit for food irradiation as well as clearances for specific foods, declaring that all are safe to irradiate. Countries such as Pakistan and Brazil have adopted the Codex without any reservation or restriction. Other countries, including New Zealand, Australia, Thailand, India, and Mexico, have permitted the irradiation of fresh fruits for fruit fly quarantine purposes, amongst others.

Standards that describe calibration and operation for radiation dosimetry, as well as procedures to relate the measured dose to the effects achieved and to report and document such results, are maintained by the American Society for Testing and Materials (ASTM international) and are also available as ISO/ASTM standards.[50]

All of the rules involved in processing foodstuffs are applied to all foods before they are irradiated.

United States clearances[edit]

In the United States each new food is approved separately with a guideline specifying a maximum dosage; in case of quarantine applications the minimum dose is regulated. Packaging materials containing the food processed by irradiation must also undergo approval. Food irradiation in the United States is primarily regulated by the FDA[51] since it is considered a food additive. The United States Department of Agriculture (USDA) amends these rules for use with meat, poultry, and fresh fruit.[52]

The United States Department of Agriculture (USDA) has approved the use of low-level irradiation as an alternative treatment to pesticides for fruits and vegetables that are considered hosts to a number of insect pests, including fruit flies and seed weevils. Under bilateral agreements that allows less-developed countries to earn income through food exports agreements are made to allow them to irradiate fruits and vegetables at low doses to kill insects, so that the food can avoid quarantine.

The U.S. Food and Drug Administration (FDA) and the USDA have approved irradiation of the following foods and purposes:

  • Packaged refrigerated or frozen red meat[53] — to control pathogens (E. Coli O157:H7 and Salmonella), and to extend shelf life.[54]
  • Packaged poultry — control pathogens (Salmonella and Camplylobacter).[54]
  • Fresh fruits, vegetables and grains — to control insects and inhibit growth, ripening and sprouting.[54]
  • Pork — to control trichinosis.[54]
  • Herbs, spices and vegetable seasonings[55] — to control insects and microorganisms.[54]
  • Dry or dehydrated enzyme preparations — to control insects and microorganisms.[54]
  • White potatoes — to inhibit sprout development.[54]
  • Wheat and wheat flour — to control insects.[54]
  • Loose or bagged fresh iceberg lettuce and spinach[56]

European Union clearances[edit]

European law dictates that no foods other than dried aromatic herbs, spices and vegetable seasonings are permitted for the application of irradiation.[57] However, any Member State is permitted to maintain previous clearances that are in categories that the EC's Scientific Committee on Food (SCF) had previously approved, or add clearance granted to other Member States. Presently, Belgium, Czech Republic, France, Italy, Netherlands, Poland, and the United Kingdom) have adopted such provisions.[58] Before individual items in an approved class can be added to the approved list, studies into the toxicology of each of such food and for each of the proposed dose ranges are requested. It also states that irradiation shall not be used "as a substitute for hygiene or health practices or good manufacturing or agricultural practice". These regulations only govern food irradiation in consumer products to allow irradiation to be used for patients requiring sterile diets.

Because of the "Single Market" of the EC that any food – even if irradiated – must be allowed to be marketed in any other Member State even if a general ban of food irradiation prevails, under the condition that the food has been irradiated legally in the state of origin. Furthermore, imports into the EC are possible from third countries if the irradiation facility had been inspected and approved by the EC and the treatment is legal within the EC or some Member state.[59][60][61][62][63]

Nuclear and employee safety regulations[edit]

Interlocks and safeguards are mandated to minimize this risk. There have been radiation related accidents, deaths, and injury at such facilities, many of them caused by operators overriding the safety related interlocks.[64] In a radiation processing facility, radiation specific concerns are supervised by special authorities, while "Ordinary" occupational safety regulations are handled much like other businesses.

The safety of irradiation facilities is regulated by the United Nations International Atomic Energy Agency and monitored by the different national Nuclear Regulatory Commissions. The regulators enforce a safety culture that mandates that all incidents that occur are documented and thoroughly analyzed to determine the cause and improvement potential. Such incidents are studied by personnel at multiple facilities, and improvements are mandated to retrofit existing facilities and future design.

In the US the Nuclear Regulatory Commission (NRC) regulates the safety of the processing facility, and the United States Department of Transportation (DOT) regulates the safe transport of the radioactive sources.

Irradiated food supply[edit]

Currently, there is no global trade in irradiated food,[citation needed] except a rather small quantity of fruit irradiated to eliminate insect pests and to fulfill the US quarantine requirements.[8][9] There is not much information about irradiated food available to the consumer on the market place;[citation needed] a few more recent surveys do not reveal the full picture.[citation needed] It may be assumed that even international trade exists.[citation needed][contradiction]

There are analytical methods available to detect the usage of irradiation on food items in the marketplace.[65][66][67] This is used as a tool for government authorities to enforce existing labeling standards and to bolster consumer confidence. Phytosanitary irradiation of fruits and vegetables has been increasing globally. In 2010, 18446 tonnes of fruits and vegetables where irradiated in six countries for export quarantine control; the countries follow: Mexico (56.2%), United States (31.2%), Thailand (5.18%), Vietnam (4.63%), Australia (2.69%), and India (0.05%). The three types of fruits irradiated the most were guava (49.7%), sweet potato(29.3%) and sweet lime (3.27%).[68]

In total, 103 000 tonnes of food products were irradiated on mainland United States in 2010. The three types of foods irradiated the most were spices (77.7%), fruits and vegetables (14.6%) and meat and poultry (7.77%). 17 953 tonnes, of irradiated fruits and vegetables are exported to the mainland United States.[68] Mexico, the United States' state of Hawaii, Thailand, Vietnam and India export irradiated produce to the mainland U.S.[68][69][70] Mexico, followed by the United States' state of Hawaii, is the largest exporter of irradiated produce to the mainland U.S.[68]

In total, 7 972 tonnes of food products were irradiated in European Union countries in 2012; mainly in three member state countries: Belgium (64.7%), the Netherlands (18.5%) and France (7.7%). The three types of foods irradiated the most were frog legs (36%), poultry (35%) and dried herbs and spices (15%).[71] The European Union's official site gives information on the regulatory status of food irradiation, the quantities of foods irradiated at authorized facilities in European Union member states and the results of market surveillance where foods have been tested to see if they are irradiated. The Official Journal of the European Union publishes annual reports on food irradiation, the current report covers the period from 1 January 2012 to 31 December 2012 and compiles information from 27 Member States.[71]

Table of the history of food irradiation[edit]

  • 1895 Wilhelm Conrad Röntgen discovers X-rays ("bremsstrahlung", from German for radiation produced by deceleration)
  • 1896 Antoine Henri Becquerel discovers natural radioactivity; Minck proposes the therapeutic use[72]
  • 1904 Samuel Prescott describes the bactericide effects Massachusetts Institute of Technology (MIT)[73]
  • 1906 Appleby & Banks: UK patent to use radioactive isotopes to irradiate particulate food in a flowing bed[74]
  • 1918 Gillett: U.S. Patent to use X-rays for the preservation of food[75]
  • 1921 Schwartz describes the elimination of Trichinella from food[76]
  • 1930 Wuest: French patent on food irradiation[77]
  • 1943 MIT becomes active in the field of food preservation for the U.S. Army[78]
  • 1951 U.S. Atomic Energy Commission begins to co-ordinate national research activities
  • 1958 World first commercial food irradiation (spices) at Stuttgart, Germany[79]
  • 1970 Establishment of the International Food Irradiation Project (IFIP), headquarters at the Federal Research Centre for Food Preservation, Karlsruhe, Germany
  • 1980 FAO/IAEA/WHO Joint Expert Committee on Food Irradiation recommends the clearance generally up to 10 kGy "overall average dose"[2]
  • 1981/1983 End of IFIP after reaching its goals
  • 1983 Codex Alimentarius General Standard for Irradiated Foods: any food at a maximum "overall average dose" of 10 kGy
  • 1984 International Consultative Group on Food Irradiation (ICGFI) becomes the successor of IFIP
  • 1998 The European Union's Scientific Committee on Food (SCF) voted "positive" on eight categories of irradiation applications[80]
  • 1997 FAO/IAEA/WHO Joint Study Group on High-Dose Irradiation recommends to lift any upper dose limit[4]
  • 1999 The European Union issues Directives 1999/2/EC (framework Directive) and 1999/3/EC (implementing Directive) limiting irradiation a positive list whose sole content is one of the eight categories approved by the SFC, but allowing the individual states to give clearances for any food previously approved by the SFC.
  • 2000 Germany leads a veto on a measure to provide a final draft for the positive list.
  • 2003 Codex Alimentarius General Standard for Irradiated Foods: no longer any upper dose limit
  • 2003 The SCF adopts a "revised opinion" that recommends against the cancellation of the upper dose limit.[28]
  • 2004 ICGFI ends
  • 2011 The successor to the SFC, European Food Safety Authority (EFSA), reexamines the SFC's list and makes further recommendations for inclusion.[81]

See also[edit]

Further reading[edit]

Notes[edit]

  1. ^ bulbs and tubers
  2. ^ a b c fresh or frozen red meat, poultry, and seafoods
  3. ^ shelf stable without refrigeration
  4. ^ to help clear quarantine
  5. ^ improve hygienic quality

References[edit]

  1. ^ a b c anon., Food Irradiation – A technique for preserving and improving the safety of food, WHO, Geneva, 1991
  2. ^ a b c d e World Health Organization. Wholesomeness of irradiated food. Geneva, Technical Report Series No. 659, 1981
  3. ^ a b anon., Safety and nutritional adequacy of irradiated food, WHO, Geneva, 1994
  4. ^ a b c d e World Health Organization. High-Dose Irradiation: Wholesomeness of Food Irradiated With Doses Above 10 kGy. Report of a Joint FAO/IAEA/WHO Study Group. Geneva, Switzerland: World Health Organization; 1999. WHO Technical Report Series No. 890
  5. ^ a b anon., Scientific Opinion on the Chemical Safety of Irradiation of Food, EFSA Journal 2011;9(4):1930 [57 pp.]. doi:10.2903/j.efsa.2011.1930 last visited 2013-03-03
  6. ^ "Food Irradiation Clearances". Nucleus.iaea.org. Retrieved 2014-03-19. 
  7. ^ Food irradiation, Position of ADA, J Am Diet Assoc. 2000;100:246-253. http://www.mindfully.org/Food/Irradiation-Position-ADA.htm retrieved November 15, 2007
  8. ^ a b C.M. Deeley, M. Gao, R. Hunter, D.A.E. Ehlermann, The development of food irradiation in the Asia Pacific, the Americas and Europe; tutorial presented to the International Meeting on Radiation Processing, Kuala Lumpur, 2006. http://wayback.archive.org/web/20110726172416/http://www.iiaglobal.org/index.php?mact=News,cntnt01,detail,0&cntnt01articleid=488&cntnt01detailtemplate=resourceCenter-publication-detail-template&cntnt01returnid=231&hl=en_US last visited February 18, 2010
  9. ^ a b Kume, T. et al., Status of food irradiation in the world, Radiat.Phys.Chem. 78(2009), 222-226
  10. ^ Farkas, J. et al., History and future of food irradiation, Trends Food Sci. Technol. 22 (2011), 121-126
  11. ^ a b c d e Loaharanu, Paisan (1990). "Food irradiation: Facts or fiction?.". IAEA Bulletin (32.2): 44–48. Retrieved March 3, 2014. 
  12. ^ Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, International Database on Insect Disinfestation and Sterilization – IDIDAS – http://www-ididas.iaea.org/IDIDAS/default.htm last visited November 16, 2007
  13. ^ a b c Martin, Andrew. Spinach and Peanuts, With a Dash of Radiation. New York Times. February 1, 2009.
  14. ^ Conley, S.T., What do consumers think about irradiated foods, FSIS Food Safety Review (Fall 1992), 11-15
  15. ^ Consumer Attitudes and Market Response to Irradiated Food, Author: Bruhn, Christine M.1 Journal of Food Protection, Volume 58, Number 2, February 1995, pp. 175–181(7), Publisher: International Association for Food Protection
  16. ^ Harris, Gardinier, "F.D.A. Allows Irradiation of Some Produce", The New York Times, August 22, 2008.
  17. ^ "Radiation Protection-Food Safety". epa.gov. Retrieved 2014-05-19. 
  18. ^ "kid question rotting". Retrieved 2014-05-19. 
  19. ^ "What's wrong with food irradiation?". Organicconsumers.org. Retrieved 2014-03-19. 
  20. ^ Rajamani Karthikeyan, Manivasagam T, Anantharaman P, Balasubramanian T, Somasundaram ST (2011). "Chemopreventive effect of Padina boergesenii extracts on ferric nitrilotriacetate (Fe-NTA)-induced oxidative damage in Wistar rats". J. Appl. Phycol. 23, Issue 2, Page 257 (2): 257–263. doi:10.1007/s10811-010-9564-0. 
  21. ^ a b c d Diehl, J.F., Safety of irradiated foods, Marcel Dekker, N.Y., 1995 (2. ed.)
  22. ^ R.L. Wolke, What Einstein told his cook – Kitchen science explained, W.W. Norton & Company Inc., New York, 2002; see p.310 "Some Illumination on Irradiation"
  23. ^ World Health Organization. Safety and Nutritional Adequacy of Irradiated Food. Geneva, Switzerland: World Health Organization; 1994
  24. ^ US Department of Health, and Human Services, Food, and Drug Administration Irradiation in the production, processing, and handling of food. Federal Register 1986; 51:13376-13399
  25. ^ "Ethiopia Is Using Radiation to Eradicate Tsetse Flies". voanews.com. 2012-11-14. Retrieved 2014-06-18. 
  26. ^ "Production of ochratoxin A by Aspergillus ochraceus NRRL-3174 before and after exposures to 60Co irradiation". Applied and Environmental Microbiology. 1976-03-31. Retrieved 2014-06-18. 
  27. ^ "Does the XL Foods E-coli Scare Make the Case for Irradiation?". issuu.com. 2001-02-11. Retrieved 2014-06-18. 
  28. ^ a b c Scientific Committee on Food. Revised opinion #193.
  29. ^ Food Magazine. News. November 24, 2008. Petfood recall prompted by cat deaths.. Retrieved April 29, 2013.
  30. ^ a b Burke, Kelly (November 28, 2008). "Cat food firm blames death on quarantine controls". The Sydney Morning Herald. Retrieved April 29, 2013. 
  31. ^ Dickson, James. "Radiation meets food". Physics Today. Retrieved 22 March 2013. 
  32. ^ G. Child et al., Ataxia and paralysis in cats in Australia associated with exposure to an impported gamma-irradiated commercial dry pet food, Australian Veterinary Journal 87(2009)no.9, 349-351
  33. ^ "Notice to Industry 33/2009 - Changes to Import Conditions for Pet Foods - Update to Notices 33/2008-09 and 7/2009 - Department of Agriculture, Fisheries and Forestry". daff.gov.au. Retrieved 2014-03-19. 
  34. ^ D.A.E. Ehlermann, The RADURA-terminology and food irradiation, Food Control 20 (2009), 526-528, doi:10.1016/j.foodcont.2008.07.023
  35. ^ Cold Pasteurization of Food By Irradiation by Tim Roberts, Extension Specialist, Food Safety, Virginia Tech; Publication Number 458-300, posted August 1998 http://wayback.archive.org/web/20070102010926/http://www.ext.vt.edu/pubs/foods/458-300/458-300.html retrieved on November 15, 2007 Archived November 12, 2007 at the Wayback Machine
  36. ^ See, e.g., The Truth about Irradiated Meat, CONSUMER REPORTS 34-37 (Aug. 2003).
  37. ^ a b "The Use of Irradiation for Post-Harvest and Quarantine Commodity Control | Ozone Depletion – Regulatory Programs | U.S. EPA". Wayback.archive.org. Retrieved 2014-03-19. 
  38. ^ a b c anon., Gamma Irradiators for Radiation Processing, IAEA, Vienna, 2005
  39. ^ "anon., Dosimetry for Food Irradiation, IAEA, Vienna, 2002, Technical Reports Series No. 409" (PDF). Retrieved 2014-03-19. 
  40. ^ K. Mehta, Radiation Processing Dosimetry – A practical manual, 2006, GEX Corporation, Centennial, USA
  41. ^ "Irradiated Food Authorization Database (IFA)". Retrieved 2014-03-19. 
  42. ^ "U. S. Food and Drug Administration. Center for Food Safety & Applied Nutrition. Office of Premarket Approval. ''Food Irradiation: The treatment of foods with ionizing radiation'' Kim M. Morehouse, PhD Published in ''Food Testing & Analysis'', June/July 1998 edition (Vol. 4, No. 3, Pages 9, 32, 35)". Wayback.archive.org. 2007-03-29. Retrieved 2014-03-19. 
  43. ^ "''Annex III of Directive 1999/2/EC of the European Parliament and of the Council of 22 February 1999 on the approximation of the laws of the Member States concerning foods and food ingredients treated with ionising radiation (OJ L 66, 13.3.1999, p. 16)''.". Retrieved 2014-03-19. 
  44. ^ "Information Notice No. 89-82: RECENT SAFETY-RELATED INCIDENTS AT LARGE IRRADIATORS". Nrc.gov. Retrieved 2014-03-19. 
  45. ^ (Forsythe and Evangel 1993, USDA 1989)
  46. ^ (Kunstadt et al., USDA 1989)
  47. ^ a b "''GENERAL STANDARD FOR THE LABELLING OF PREPACKAGED FOODS''. CODEX STAN 1-1985." (PDF). Retrieved 2014-03-19. 
  48. ^ http://ec.europa.eu/food/food/biosafety/irradiation/scientific_advices_reports_en.htm Expand "Food Irradiation Reports" and select respective annual report and language
  49. ^ "CFR - Code of Federal Regulations Title 21". Accessdata.fda.gov. Retrieved 2014-03-19. 
  50. ^ (see Annual Book of ASTM Standards, vol. 12.02, West Conshohocken, PA, USA)
  51. ^ FDA, Irradiation in the production, processing and handling of food. Final rule, Fed. Reg., 51: 13376-13399 (1986) this is the initial and general ruling; later amendments on various details have been published in Fed. Reg.
  52. ^ USDA/FSIS and USDA/APHIS, various final rules on pork, poultry and fresh fruits: Fed.Reg. 51:1769–1771 (1986); 54:387-393 (1989); 57:43588-43600 (1992); and others more
  53. ^ anon.,Is this technology being used in other countries? retrieved on November 15, 2007
  54. ^ a b c d e f g h "Food Irradiation-FMI Background". Food Marketing Institute. February 5, 2003. Retrieved June 2, 2014. 
  55. ^ anon., Are irradiated foods in the U.S. supermarkets now? retrieved on November 15, 2007
  56. ^ "Irradiation: A safe measure for safer iceberg lettuce and spinach". US FDA. August 22, 2008. Retrieved December 31, 2009. 
  57. ^ EU: Food Irradiation – Community Legislation http://ec.europa.eu/food/food/biosafety/irradiation/comm_legisl_en.htm
  58. ^ "Official Journal of the European Communities. 24 November, 2009. ''List of Member States' authorisations of food and food ingredients which may be treated with ionizing radiation.''". Retrieved 2014-03-19. 
  59. ^ "Official Journal of the European Communities. 23 October 2002. ''COMMISSION DECISION of 23 October 2004 adopting the list of approved facilities in third countries for the irradiation of foods.''". Retrieved 2014-03-19. 
  60. ^ "Official Journal of the European Communities. October 13, 2004. ''COMMISSION DECISION of October 7, 2004 amending Decision 2002/840/EC adopting the list of approved facilities in third countries for the irradiation of foods.''" (PDF). Retrieved 2014-03-19. 
  61. ^ "Official Journal of the European Communities. 23 October 2007. ''Commission Decision of 4 December 2007 amending Decision 2002/840/EC as regards the list of approved facilities in third countries for the irradiation of foods.''" (PDF). Retrieved 2014-03-19. 
  62. ^ "Official Journal of the European Communities. 23 March 2010 ''COMMISSION DECISION of 22 March 2010 amending Decision 2002/840/EC as regards the list of approved facilities in third countries for the irradiation of foods.''". Retrieved 2014-03-19. 
  63. ^ "Official Journal of the European Communities of 24 May 2012 ''COMMISSION IMPLEMENTING DECISION of 21 May 2012 amending Decision 2002/840/EC adopting the list of approved facilities in third countries for the irradiation of foods.''". Retrieved 2014-03-19. 
  64. ^ International Atomic Energy Agency. The Radiological Accident in Soreq
  65. ^ McMurray, C.H., Gray, R., Stewart, E.M., Pearce, J., Detection methods for irradiated foods, Royal Society of Chemistry; Cambridge (GB); 1996
  66. ^ Raffi, J., Delincée, H., Marchioni, E., Hasselmann, C., Sjöberg, A.-M., Leonardi, M., Kent, M., Bögl, K.-W., Schreiber, G., Stevenson, H., Meier, W., Concerted action of the community bureau of reference on methods of identification of irradiated foods; bcr information; European Commission; Luxembourg; 1994, 119 p.; EUR--15261
  67. ^ "General Codex Methods for the Detection of Irradiated Foods, CODEX STAN 231-2001, Rev.1 2003" (PDF). Retrieved 2014-03-19. 
  68. ^ a b c d "Food Irradiation in Asia, the European Union, and the United States". Japan Radioisotope accociation. 2013-04. Retrieved 2014-07-01. 
  69. ^ "APHIS Factsheet". United States Department of Agriculture • Animal and Plant Health Inspection Service. December 2008. Retrieved 2014-03-19. 
  70. ^ Guidance for importing mangoes into the United States from Pakistan. Retrieved 2014-03-19. 
  71. ^ a b "Report from the Commission to the European Parliament and the Council on Food and Food Ingredients Treated with Ionising Radiation for the Year 2012". European Commission. 2014-02-04. Retrieved 2014-07-01. 
  72. ^ Minck, F. (1896) Zur Frage über die Einwirkung der Röntgen'schen Strahlen auf Bacterien und ihre eventuelle therapeutische Verwendbarkeit. Münchener Medicinische Wochenschrift 43 (5), 101-102.
  73. ^ S.C. Prescott,The effect of radium rays on the colon bacillus, the diphtheria bacillus and yeast. Science XX(1904) no.503, 246-248
  74. ^ Appleby, J. and Banks, A. J. Improvements in or relating to the treatment of foodstuffs, more especially cereals and their products. British patent GB 1609 (January 4, 1906).
  75. ^ D.C. Gillet, Apparatus for preserving organic materials by the use of x-rays, US Patent No. 1,275,417 (August 13, 1918)
  76. ^ Schwartz, B. Effect of X-rays on Trichinae. Journal of Agricultural Research 20 (1921) 845-854
  77. ^ O. Wüst, Procédé pour la conservation d'aliments en tous genres, Brevet d'invention no.701302 (July 17, 1930)
  78. ^ Physical Principles of Food Preservation: Von Marcus Karel, Daryl B. Lund, CRC Press, 2003 ISBN 0-8247-4063-7, S. 462 ff.
  79. ^ K.F. Maurer, Zur Keimfreimachung von Gewürzen, Ernährungswirtschaft 5(1958) nr.1, 45-47
  80. ^ Scientific Committee on Food. 15.
  81. ^ "Statement summarising the Conclusions and Recommendations from the Opinions on the Safety of Irradiation of Food adopted by the BIOHAZ and CEF Panels." (PDF). Retrieved 2014-03-19. 

External links[edit]