Jump to content

Primitive abundant number

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by MrMeAndMrMe (talk | contribs) at 18:27, 14 February 2022 (Undid revision 1071859557 by MrMeAndMrMe (talk) never mind). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Euler diagram of numbers under 100:
   Primitive abundant
   Weird
   Perfect

In mathematics a primitive abundant number is an abundant number whose proper divisors are all deficient numbers.[1][2]

For example, 20 is a primitive abundant number because:

  1. The sum of its proper divisors is 1 + 2 + 4 + 5 + 10 = 22, so 20 is an abundant number.
  2. The sums of the proper divisors of 1, 2, 4, 5 and 10 are 0, 1, 3, 1 and 8 respectively, so each of these numbers is a deficient number.

The first few primitive abundant numbers are:

20, 70, 88, 104, 272, 304, 368, 464, 550, 572 ... (sequence A071395 in the OEIS)

The smallest odd primitive abundant number is 945.

A variant definition is abundant numbers having no abundant proper divisor (sequence A091191 in the OEIS). It starts:

12, 18, 20, 30, 42, 56, 66, 70, 78, 88, 102, 104, 114


Properties

Every multiple of a primitive abundant number is an abundant number.

Every abundant number is a multiple of a primitive abundant number or a multiple of a perfect number.

Every primitive abundant number is either a primitive semiperfect number or a weird number.

There are an infinite number of primitive abundant numbers.

The number of primitive abundant numbers less than or equal to n is [3]

References

  1. ^ Weisstein, Eric W. "Primitive Abundant Number". MathWorld.
  2. ^ Erdős adopts a wider definition that requires a primitive abundant number to be not deficient, but not necessarily abundant (Erdős, Surányi and Guiduli. Topics in the Theory of Numbers p214. Springer 2003.). The Erdős definition allows perfect numbers to be primitive abundant numbers too.
  3. ^ Paul Erdős, Journal of the London Mathematical Society 9 (1934) 278–282.