Anthrax: Difference between revisions
m Undid revision 207664922 by 76.179.250.232 (talk) rv blanking |
m Undid revision 207665075 by 76.179.250.232 (talk) and more blanking |
||
Line 5: | Line 5: | ||
After ingesting or getting spores in a cut in the skin, a new host allows these spores to reactivate themselves and multiply in their new host very rapidly. The anthrax spores in soil are very tough and can live many decades and perhaps centuries and are known to occur on all continents except [[Antarctica]]. Anthrax most commonly occurs in wild and domestic grass-eating mammals ([[ruminants]]) who ingest or breathe in the spores while eating grass. Anthrax can also be caught by [[human]]s when they are exposed to dead infected [[pigs]], eat tissue from infected animals, or are exposed to a high density of anthrax [[endospore|spore]]s from an animal's [[fur]], [[hides|hide]], or [[wool]]. Anthrax spores can be grown outside the body and used as a biological weapon. Anthrax cannot spread directly from human to human; but anthrax spores can be transported by human clothing, shoes etc. and if a person dies of anthrax their body can be a very dangerous source of anthrax spores. The word ''anthrax'' is the [[Greek language|Greek]] word for ''[[coal]]'', the germ's name is derived from ''anthrakitis'', the Greek word for ''[[anthracite]]'', in reference to the black skin [[lesion]]s victims develop in a cutaneous skin [[infection]]. |
After ingesting or getting spores in a cut in the skin, a new host allows these spores to reactivate themselves and multiply in their new host very rapidly. The anthrax spores in soil are very tough and can live many decades and perhaps centuries and are known to occur on all continents except [[Antarctica]]. Anthrax most commonly occurs in wild and domestic grass-eating mammals ([[ruminants]]) who ingest or breathe in the spores while eating grass. Anthrax can also be caught by [[human]]s when they are exposed to dead infected [[pigs]], eat tissue from infected animals, or are exposed to a high density of anthrax [[endospore|spore]]s from an animal's [[fur]], [[hides|hide]], or [[wool]]. Anthrax spores can be grown outside the body and used as a biological weapon. Anthrax cannot spread directly from human to human; but anthrax spores can be transported by human clothing, shoes etc. and if a person dies of anthrax their body can be a very dangerous source of anthrax spores. The word ''anthrax'' is the [[Greek language|Greek]] word for ''[[coal]]'', the germ's name is derived from ''anthrakitis'', the Greek word for ''[[anthracite]]'', in reference to the black skin [[lesion]]s victims develop in a cutaneous skin [[infection]]. |
||
==Overview== |
|||
[[Image:Anthrax color enhanced micrograph.JPG| thumb | 275px | right | Color-enhanced [[Scanning electron microscope|scanning electron micrograph]] shows [[spleen|splenic tissue]] from a [[monkey]] with inhalational anthrax; featured are rod-shaped [[bacilli]] (yellow) and an [[erythrocyte]] (red).]] |
|||
Anthrax is one of the oldest recorded diseases of grazing animals such as sheep and cattle and is believed to be the Sixth [[Plagues of Egypt|Plague]] mentioned in the Book of [[Exodus]] in the [[Bible]]<ref name="bibsource">[H.W. Blanc , Anthrax: the disease of the Egyptian plagues. New Orleans Med Surg J 18 (1890), pp. 1–25.]</ref>. Anthrax is also mentioned by Greek and Roman authors such as [[Homer]] (in ''The [[Iliad]]''), [[Virgil]] (''[[Georgics]]''), and [[Hippocrates]]. Anthrax can also infect humans, usually as the result of coming into contact with infected animal hides, fur, wool ("Woolsorter's disease"), leather or contaminated soil. Anthrax (''"siberian ulcer"'' <ref name="ansource">[http://www.ucpress.edu/books/pages/8835/8835.ch01.html Jeanne Guillemin. Anthrax. The Investigation of a Deadly Outbreak]</ref>) is now fairly rare (a few to no cases per year in the developed world) in humans although it still occasionally occurs in [[ruminants]], such as [[cattle]], [[sheep]], [[goat]]s, [[camel]]s, wild [[bovid|buffalo]], and [[antelope]]s. |
|||
''Bacillus anthracis'' bacteria spores are soil-borne and because of their long lifetime they are still present globally and at animal burial sites of anthrax-killed animals for many decades; spores have been known to have reinfected animals over 70 years after burial sites of anthrax-infected animals were disturbed. <ref>"Anthrax" by Jeanne Guillemin, University of California Press, 2001, ISBN 0-520-22917-7, pg. 3 </ref> |
|||
Before the last century anthrax infections were a source of many thousands of dead animals and thousands of people dying each year in Europe, Asia and North America. [http://cat.inist.fr/?aModele=afficheN&cpsidt=1974041] French scientist [[Louis Pasteur]] developed the first effective vaccine for anthrax in 1881. [http://louisville.edu/library/ekstrom/special/pasteur/cohn.html][http://www.asm.org/ASM/files/CCLIBRARYFILES/FILENAME/0000000221/490783p320.pdf][http://german.about.com/library/blerf_koch.htm] Thanks to over a century of animal vaccination programs, sterilization of raw animal waste materials and anthrax eradication programs in North America, Australia, New Zealand, Russia, Europe and parts of new mexico and Asia anthrax infection is now rare in domestic animals with normally only a few dozen cases reported every year. Anthrax is even rarer in [[dogs]] and [[cats]] where there was only one documented case in the USA in the last 15 years.<ref>[http://dogsinthenews.com/issues/0110/articles/011030a.htm Can Dogs Get Anthrax?] Canine Nation, [[30 October]] 2001. Retrieved [[17 February]] 2007. </ref> Anthrax outbreaks do occur in a few wild animal populations with some regularity. [http://www.blackwell-synergy.com/doi/pdf/10.1046/j.1365-2672.1999.00872.x?cookieSet=1] |
|||
The disease is more common in developing countries without widespread veterinary or human public health programs. |
|||
There are 89 known [[strain (biology)|strains]] of anthrax, the most widely recognized{{Fact|date=October 2007}} being the virulent [[Ames strain|Ames]] [[Strain (biology)|strain]] used in the [[2001 anthrax attacks]] in the United States. The Ames strain is extremely dangerous, though not quite as virulent as the Vollum strain which was successfully developed as a [[biological weapon]] during the [[Second World War]], but never used. The ''Vollum'' (also incorrectly referred to as ''Vellum'') strain was isolated in 1935 from a [[cow]] in [[Oxfordshire]], [[United Kingdom|UK]]. This is the same strain that was used during the [[Gruinard Island|Gruinard]] bioweapons trials. A variation of Vollum known as "Vollum 1B" was used during the 1960s in the US and [[UK]] bioweapon programs. Vollum 1B was isolated from William A. Boyles, a 46-year-old [[USAMRIID]] scientist who died in 1951 after being accidentally infected with the Vollum strain. The ''Sterne'' strain, named after a South African researcher, is an attenuated strain used as a vaccine. |
|||
== Description of the bacterium == |
== Description of the bacterium == |
Revision as of 19:30, 23 April 2008
Anthrax (Greek Άνθραξ for coal) is an acute disease in humans and animals that is caused by the bacterium Bacillus anthracis and is highly lethal in some forms. Anthrax is one of only a few bacteria that can form long-lived spores. When the bacteria’s life cycle is threatened by factors such as lack of food caused by their host dying or by a change of temperature, the bacteria turn themselves into more or less dormant spores to wait for another host to continue their life cycle.
After ingesting or getting spores in a cut in the skin, a new host allows these spores to reactivate themselves and multiply in their new host very rapidly. The anthrax spores in soil are very tough and can live many decades and perhaps centuries and are known to occur on all continents except Antarctica. Anthrax most commonly occurs in wild and domestic grass-eating mammals (ruminants) who ingest or breathe in the spores while eating grass. Anthrax can also be caught by humans when they are exposed to dead infected pigs, eat tissue from infected animals, or are exposed to a high density of anthrax spores from an animal's fur, hide, or wool. Anthrax spores can be grown outside the body and used as a biological weapon. Anthrax cannot spread directly from human to human; but anthrax spores can be transported by human clothing, shoes etc. and if a person dies of anthrax their body can be a very dangerous source of anthrax spores. The word anthrax is the Greek word for coal, the germ's name is derived from anthrakitis, the Greek word for anthracite, in reference to the black skin lesions victims develop in a cutaneous skin infection.
Overview
Anthrax is one of the oldest recorded diseases of grazing animals such as sheep and cattle and is believed to be the Sixth Plague mentioned in the Book of Exodus in the Bible[1]. Anthrax is also mentioned by Greek and Roman authors such as Homer (in The Iliad), Virgil (Georgics), and Hippocrates. Anthrax can also infect humans, usually as the result of coming into contact with infected animal hides, fur, wool ("Woolsorter's disease"), leather or contaminated soil. Anthrax ("siberian ulcer" [2]) is now fairly rare (a few to no cases per year in the developed world) in humans although it still occasionally occurs in ruminants, such as cattle, sheep, goats, camels, wild buffalo, and antelopes.
Bacillus anthracis bacteria spores are soil-borne and because of their long lifetime they are still present globally and at animal burial sites of anthrax-killed animals for many decades; spores have been known to have reinfected animals over 70 years after burial sites of anthrax-infected animals were disturbed. [3]
Before the last century anthrax infections were a source of many thousands of dead animals and thousands of people dying each year in Europe, Asia and North America. [2] French scientist Louis Pasteur developed the first effective vaccine for anthrax in 1881. [3][4][5] Thanks to over a century of animal vaccination programs, sterilization of raw animal waste materials and anthrax eradication programs in North America, Australia, New Zealand, Russia, Europe and parts of new mexico and Asia anthrax infection is now rare in domestic animals with normally only a few dozen cases reported every year. Anthrax is even rarer in dogs and cats where there was only one documented case in the USA in the last 15 years.[4] Anthrax outbreaks do occur in a few wild animal populations with some regularity. [6] The disease is more common in developing countries without widespread veterinary or human public health programs.
There are 89 known strains of anthrax, the most widely recognized[citation needed] being the virulent Ames strain used in the 2001 anthrax attacks in the United States. The Ames strain is extremely dangerous, though not quite as virulent as the Vollum strain which was successfully developed as a biological weapon during the Second World War, but never used. The Vollum (also incorrectly referred to as Vellum) strain was isolated in 1935 from a cow in Oxfordshire, UK. This is the same strain that was used during the Gruinard bioweapons trials. A variation of Vollum known as "Vollum 1B" was used during the 1960s in the US and UK bioweapon programs. Vollum 1B was isolated from William A. Boyles, a 46-year-old USAMRIID scientist who died in 1951 after being accidentally infected with the Vollum strain. The Sterne strain, named after a South African researcher, is an attenuated strain used as a vaccine.
Description of the bacterium
Bacillus anthracis is a rod-shaped Gram-positive bacterium, about 1 by 9 micrometers in size. It was shown to cause disease by Robert Koch in 1877. [7] The bacterium normally rests in endospore form in the soil, and can survive for decades in this state. Ruminants are often infected whilst grazing, especially when grazing rough, irritant or spiky vegetation: the vegetation causes wounds within the gastrointestinal tract permitting entry of the bacterial endo-spores into the tissues. Once ingested by a ruminant or placed in an open cut, the bacterium begins multiplying inside the animal or human and in a few days to a month kills it. The endo-spores germinate at the site of entry into the tissues and then spread via the circulation to the lymphatics, where the bacteria multiply. It is the production of a powerful exo-toxin by the bacteria that causes death. Veterinarians can often tell a possible anthrax-induced death by its sudden occurrence and by the blood and bloody fluids that oozes from the body orifices. Most anthrax bacteria inside the body are destroyed by anaerobic bacteria that can grow without oxygen. The greater danger lies in the bodily fluids and blood that spills from the body and spill into the soil where the anthrax bacteria turn into a dormant protective spore form. Once formed the spores are very hard to eradicate.
The infection of ruminants (and occasionally humans) normally proceeds as follows: once the spores are inhaled they are transported through the air passages into the tiny air sacs (alveoli) in the lungs. The spores are then picked up by scavenger cells (macrophages) in the lungs and are transported through small vessels (lymphatics) to the glands (lymph nodes) in the central chest cavity (mediastinum). Damage caused by the anthrax spores and bacilli to the central chest cavity lungs can cause chest pain and difficulty breathing. Once in the lymph glands, the spores germinate into active bacillus, that multiplies, and eventually bursts the macrophage cell, releasing many more bacilli into the bloodstream which are transferred to the entire body. Once in the blood stream these bacilli release a tripartite toxin (composed of lethal factor, oedema factor and protective antigen) which is known to be the primary agents of tissue destruction, bleeding, and death. If antibiotics are administered too late, even if the antibiotics eradicate the bacteria, some people will still die. This is because the toxins produced by the bacilli remain in their system at lethal dose levels.
In order to enter the cells, the toxins use another protein produced by B. anthracis, protective antigen. Oedema factor inactivates neutrophils (a type of phagocytic cell) so that they cannot phagocytose bacteria. Historically, it was believed that lethal factor caused macrophages to make TNF-alpha and interleukin 1, beta (IL1B), both normal components of the immune system used to induce an inflammatory reaction, ultimately leading to septic shock and death. However, recent evidence indicates that anthrax also targets endothelial cells (cells that lines serous cavities, lymph vessels, and blood vessels), causing vascular leakage (similar to hemorrhagic bleeding), and ultimately hypovolemic shock (low blood volume), and not only septic shock. In other words, the patient bleeds to death internally.
The virulence of a strain of anthrax is dependent on multiple factors, primarily the poly-D-glutamic acid capsule that protects the bacterium from phagocytosis by host neutrophils and its toxins, edema toxin and lethal toxin.
Exposure
Occupational exposure to infected animals or their products (such as skin wool and meat) is the usual pathway of exposure for humans. Workers who are exposed to dead animals and animal products are at the highest risk, especially in countries where anthrax is more common. Anthrax in livestock grazing on open range where they mix with wild animals still occasionally occurs in the United States and elsewhere. Many workers who deal with wool and animal hides are routinely exposed to low levels of anthrax spores but most exposures are not sufficient to develop anthrax infections. Presumably, the body’s natural defenses can destroy low levels of exposure. These people usually contract cutaneous anthrax if they catch anything. Historically, the most dangerous form of inhalation anthrax was called Woolsorters' disease because it was an occupational hazard for people who sorted wool. Fortunately this is now a very rare form of infection because of the much reduced incidence of anthrax disease in animals. The last fatal case of natural inhalation anthrax in the United States occurred in California in 1976, when a home weaver died after working with infected wool imported from Pakistan. The autopsy was done at UCLA hospital. To minimize the chance of spreading the disease, the deceased was transported to UCLA in a sealed plastic body bag within a sealed metal container. The details of this case have been described in a medical journal Human Pathology (Volume 9, pages 594-597, September, 1978).
In July 2006 an artist who worked with untreated animal skins became the first person in more than 30 years to die in the United Kingdom from anthrax.[5]
Mode of infection
Anthrax can enter the human body through the intestines (ingestion), lungs (inhalation), or skin (cutaneous) and causes distinct clinical symptoms based on its site of entry. An infected human will generally be quarantined. However, anthrax does not usually spread from an infected human to a noninfected human. But if the disease is fatal the person’s body and its mass of anthrax bacilli becomes a potential source of infection to others and special precautions should be used to prevent further contamination. Unfortunately inhalation anthrax, if left untreated until obvious symptoms occur, will usually result in death, as treatment will have started too late.
Anthrax is usually contracted by handling infected animals or their wool, germ warfare/terrorism or laboratory accidents.
Pulmonary (pneumonic, respiratory, or inhalation) anthrax
Respiratory infection initially presents with cold or flu-like symptoms for several days, followed by severe (and often fatal) respiratory collapse. This disease can rarely be treated, even if caught in early stages of infection. Inhalational anthrax is highly fatal, with near 100% mortality.[6] A lethal dose of anthrax is reported to result from inhalation of about 10,000–20,000 spores. [8] Like all diseases there is probably a wide variation to susceptibility with evidence that some people may die from much lower exposures; there is little documented evidence to verify the exact or average number of spores needed for infection. Inhalation anthrax is also known as Woolsorters' disease or as Ragpickers' disease since these people often caught it. Other practices associated with exposure include the slicing up of animal horns for the manufacture of buttons, the handling of hair bristles used for the manufacturing of brushes, and the handling of animal skins. Whether these animal skins came from animals that died of the disease or from animals that had simply laid on ground that had spores on it is unknown. This mode of infection is used as a bioweapon.
Gastrointestinal (gastroenteric) anthrax
Gastrointestinal infection is most often caused by eating anthrax-infected meat and is characterized by serious gastrointestinal difficulty, vomiting of blood,severe diarrhea, acute inflammation of the intestinal tract, and loss of appetite. Some lesions have been found in the intestines and in the mouth and throat. After the bacteria invades the bowel system, it spreads through the bloodstream throughout the body, making even more toxins on the way. Gastrointestinal infections can be treated but usually result in fatality rates of 25% to 60%, depending upon how soon treatment commences. [7]
Cutaneous (skin) anthrax
Cutaneous (on the skin) anthrax infection shows up as a boil-like skin lesion that eventually forms an ulcer with a black centre(i.e., eschar). The black eschar often shows up as a large, painless necrotic ulcer (beginning as an irritating and itchy skin lesion or blister that is dark and usually concentrated as a black dot, somewhat resembling bread mold) at the site of infection. Cutaneous infections generally form within the site of spore penetration within 2 to 5 days after exposure. Unlike bruises or most other lesions, cutaneous anthrax infections normally do not cause pain. Cutaneous infection is the least fatal form of anthrax infection if treated. But without treatment, approximately 20% of all cutaneous skin infection cases may progress to toxemia and death. [7] Treated, cutaneous anthrax is rarely fatal.[6]
Treatment and prevention
Direct person-to-person spread of anthrax is extremely unlikely; but a patient’s clothing and body may be contaminated with anthrax spores. Effective decontamination of people can be accomplished by a thorough wash down with anti-microbe effective soap and water. Waste water should be treated with bleach or other anti-microbial agent. Effective decontamination of articles can be accomplished by boiling contaminated articles in water for 30 minutes or longer and using common disinfectants. Chlorine is effective in destroying spores and vegetative cells on surfaces. Burning clothing is also effective. After decontamination, there is no need to immunize, treat or isolate contacts of persons ill with anthrax unless they were also exposed to the same source of infection . Early antibiotic treatment of anthrax is essential–-delay seriously lessens chances for survival. Treatment for anthrax infection and other bacterial infections includes large doses of intravenous and oral antibiotics, such as fluoroquinolones, like ciprofloxacin (cipro), doxycycline, erythromycin, vancomycin or penicillin. In possible cases of inhalation anthrax exposure to unvaccinated personnel early antibiotic prophylaxis treatment is crucial to prevent possible death. If death occurs from anthrax the body should be isolated to prevent possible spread of anthrax germs. Burial does not kill anthrax spores.
If a person is suspected as having died from anthrax every precaution should be taken to avoid skin contact with the potentially contaminated body and fluids exuded through natural body openings. The body should be put in strict quarantine. A blood sample taken in a sealed container and analyzed in an approved lab should be used to ascertain if anthrax is the cause of death. Microscopic visualization of the encapsulated bacilli, usually in large numbers, in a blood smear stained with polychrome methylene blue (McFadyean reaction) is fully diagnostic. Full isolation of the body is important to prevent possible contamination of others. Protective, impermeable clothing and equipment such as rubber gloves, rubber apron, and rubber boots with no perforations should be used when handling the body. No skin, especially if it has any wounds or scratches, should be exposed. Disposable personal protective equipment is preferable, but if not available, decontamination can be achieved by washing any exposed equipment in hot water, bleach and detergent. Disposable personal protective equipment and filters should be burned and buried. Bacillus anthracis bacillii range from 0.5-5.0 μm in size. Anyone working with anthrax in a suspected or confirmed victim should wear respiratory equipment capable of filtering this size of particle or smaller. The US National Institute for Occupational Safety and Health (NIOSH) and Mine Safety and Health Administration (MS.HA) approved high efficiency-respirator, such as a half-face disposable respirator with a high-efficiency particulate air (HEPA) filter, is recommended. All possibly contaminated bedding or clothing should be isolated in double plastic bags and treated as possible bio-hazard waste. The victim should be sealed in an airtight body bag. Dead victims that are opened and not burned provide an ideal source of anthrax spores. Cremating victims is the preferred way of handling body disposal. No embalming or autopsy should be attempted without a fully equipped biohazard lab and trained and knowledgable personnel.
Delays of only a few days may make the disease untreatable and treatment should be started even without symptoms if possible contamination or exposure is suspected. Animals with anthrax often just die without any apparent symptoms. Initial symptoms may resemble a common cold – sore throat, mild fever, muscle aches and malaise. After a few days, the symptoms may progress to severe breathing problems and shock and ultimately death. Death can occur from about two days to a month after exposure with deaths apparently peaking at about 8 days after exposure. [8] Antibiotic-resistant strains of anthrax are known.
Aerial spores can be trapped by a simple HEPA or P100 filter.[citation needed] Inhalation of anthrax spores can be prevented with a full-face mask using appropriate filtration. Unbroken skin can be decontaminated by washing with simple soap and water.[citation needed] All of these procedures do not kill the spores which are very hard to kill and require extensive treatment to eradicate them. Filters, clothes, etc. exposed to possible anthrax contaminated environments should be treated with chemicals or destroyed by fire to minimize the possibility of spreading the contamination.
In recent years there have been many attempts to develop new drugs against anthrax; but the existing supply still works fine if treatment is started soon enough.
Prevention can also be accomplished through early detection. In response to the anthrax attacks of October, 2001 utilizing the United States Postal Service (USPS), the USPS has installed BioDetection Systems (BDS)in their large scale mail cancellation facilities. BDS response plans have been formulated by the USPS in conjunction with local responders including fire, police, hospitals and public health. Employees of these facilities have been educated about anthrax, response actions and prophylactic medication. Because of the time delay inherent in getting final verification that anthrax has been used, prophylactic antibiotics use for possibly exposed personnel should commence as soon as possible.
The most effective form of prevention is vaccination against infection but this must be done well in advance of exposure to the bacillus.
Anthrax vaccines
An FDA-licensed vaccine, produced from one non-virulent strain of the anthrax bacterium, is manufactured by BioPort Corporation, subsidiary of Emergent BioSolutions. The trade name is BioThrax, although it is commonly called Anthrax Vaccine Adsorbed (AVA). It is administered in a six-dose primary series at 0,2,4 weeks and 6,12,18 months; annual booster injections are required thereafter to maintain immunity. The injections are typically very painful, and may leave the area of injection with swelling; this area may be painful for several days.
Unlike the West, the Soviets developed and used live spore anthrax vaccines produced in Tbilisi, Georgia. This is known as the STI vaccine and its serious side effects restrict its use to healthy adults.[9]
Site cleanup
Anthrax spores can survive for long periods of time in the environment after release. Methods for cleaning anthrax-contaminated sites commonly use oxidizing agents such as peroxides, ethylene oxide, Sandia Foam [9], chlorine dioxide (used in Hart Senate office building), and liquid bleach products containing sodium hypochlorite. These agents slowly destroy bacterial spores. A bleach solution for treating hard surfaces has been approved by the EPA [10]. It can be prepared by mixing one part bleach (5.25%-6.00%) to one part white vinegar to eight parts water. Bleach and vinegar must not be combined together directly, as doing so could produce chlorine gas. Rather some water must first be added to the bleach (e.g., two cups water to one cup of bleach), then vinegar (e.g., one cup), and then the rest of the water (e.g., six cups). The pH of the solution should be tested with a paper test strip; and treated surfaces must remain in contact with the bleach solution for 60 minutes (repeated applications will be necessary to keep the surfaces wet).
Chlorine dioxide has emerged as the preferred biocide against anthrax-contaminated sites, having been employed in the treatment of numerous government buildings over the past decade. Its chief drawback is the need for in situ processes to have the reactant on demand.
To speed the process, trace amounts of a non-toxic catalyst composed of iron and tetro-amido macrocyclic ligands are combined with sodium carbonate and bicarbonate and converted into a spray. The spray formula is applied to an infested area and is followed by another spray containing tertiary-butyl hydroperoxide.[citation needed]
Using the catalyst method, a complete destruction of all anthrax spores takes 30 minutes. [citation needed] A standard catalyst-free spray destroys fewer than half the spores in the same amount of time. They can be heated, exposed to the harshest chemicals, and t.
Cleanups at a Senate office building, several contaminated postal facilities and other U.S. government and private office buildings showed that decontamination is possible, but it is time-consuming and costly. Clearing the Senate office building of anthrax spores cost $27 million, according to the Government Accountability Office. Cleaning the Brentwood postal facility outside Washington cost $130 million and took 26 months. Since then newer and less costly methods have been developed. [11], Template:PDFlink
History
Discovery
Robert Koch, a German physician and scientist, first identified the bacteria which caused the anthrax disease in 1875.[10] His pioneering work in the late nineteenth century was one of the first demonstrations that diseases could be caused by microbes. In a groundbreaking series of experiments he uncovered the life cycle and means of transmission of anthrax. His experiments not only helped create an understanding of anthrax, but also helped elucidate the role of microbes in causing illness at a time when debates were still held over spontaneous generation versus cell theory. Koch went on to study the mechanisms of other diseases and was awarded the 1905 Nobel Prize in Physiology or Medicine for his discovery of the bacteria causing tuberculosis. Koch is today recognized as one of history's most important biologists and a founder of modern bacteriology.
First vaccination
In May 1881, Louis Pasteur performed a public experiment to demonstrate his concept of vaccination. He prepared two groups of 25 sheep, one goat and several cows. The animals of one group were all injected with a self-prepared anti-anthrax vaccine twice, with an interval of 15 days. The animals of the other group were left unvaccinated. Thirty days after the first injection, both groups were injected with a culture of live anthrax bacteria. All the animals in the non-vaccinated group died, while all of the animals in the vaccinated group survived.[11]
After mastering his method of vaccination, Pasteur applied this concept to rabies. He went on to develop vaccines against small pox, cholera, and swine erysipelas.
The human vaccine for anthrax became available in 1954. This was a cell-free vaccine instead of the live-cell Pasteur-style vaccine used for veterinary purposes. An improved cell-free vaccine became available in 1970.[12]
Biological warfare
Anthrax spores can and have been used as a biological warfare weapon. There is a long history of practical bioweapons research in this area. For example, in 1942 British bioweapons trials severely contaminated Gruinard Island in Scotland with anthrax spores of the Vollum-14578 strain, thereby rendering it uninhabitable for the following 48 years.[13] The Gruinard trials involved testing the effectiveness of a submunition of an "N-bomb"—a biological weapon. Additionally, five million "cattle cakes" impregnated with anthrax were prepared and stored at Porton Down in 'Operation Vegetarian' - an anti-livestock weapon intended for attacks on Germany by the Royal Air Force [12] The infected cattle cakes were intended to be dropped on Germany in 1944. However neither the cakes nor the bomb were ever used. After the war ended the anthrax-impregnated cattle cakes were destroyed by incineration in late 1945. Gruinard, meanwhile, remained a no-go area until 1990.
More recently, the Rhodesian government used anthrax against cattle and humans in the period 1978–1979 during its war with black nationalists.[14]
American military and British Army personnel are routinely vaccinated against anthrax prior to active service in places where biological attacks are considered a threat. The anthrax vaccine, produced by BioPort Corporation, contains non-living bacteria, and is approximately 93% effective in preventing infection.[citation needed]
Weaponized stocks of anthrax in the US were destroyed in 1971–72 after President Nixon ordered the dismantling of US biowarfare programs in 1969 and the destruction of all existing stockpiles of bioweapons[13]. Research continues to this day in the United States on ways to counter act possible bioweapons attacks.
Soviet accident: April 2, 1979
Despite signing the 1972 agreement to end bioweapon production, the government of the Soviet Union had an active bioweapons program that included the production of hundreds of tons of weapons-grade anthrax after this period. On April 2, 1979 part of the over one million people living in Sverdlovsk (now called Ekaterinburg, Russia), roughly 850 miles east of Moscow were exposed to an accidental release of anthrax from a biological weapons complex located near there. The first victim died after four days; ten victims died in eight days at the peak of the deaths and the last victim died six weeks later. In all at least 94 people were infected, of which at least 68 died. Extensive cleanup, vaccinations and medical interventions managed to save about 30 of the victims. [15] Extensive cover-ups and destruction of records by the KGB continued from 1979 till 1992 when Russian President Boris Yeltsin finally admitted this anthrax accident. A combined Russian and United States team investigated this accident in 1992 as reported by Jeanne Guillemin in 1999 [16] [14], [15]
There was a ceramics plant directly across the street from the biological facility (compound 19), where nearly all of the night shift workers became infected and most died. Since most of these people were men, there were suspicions by Western governments that the Soviet Union had developed a gender-specific weapon (Alibek, 1999). The government blamed the outbreak on the consumption of anthrax-tainted meat and ordered the confiscation of all uninspected meat that entered the city. They also ordered that all stray dogs be shot and that people not have contact with sick animals. There was also a voluntary evacuation and anthrax vaccination program established for people from 18–55 (Meselson et al., 1994).
To support the story, Soviet medical and legal journals published articles about an outbreak in livestock that caused GI anthrax in people who consumed the meat and cutaneous anthrax in people who came into contact with the animals. All medical and public health records were confiscated by the KGB (Meselson et al., 1994). In addition to the medical problems that the outbreak caused, it also prompted Western countries to be more suspicious of a covert Soviet Bioweapons program and to increase their surveillance of suspected sites. In 1986, the American government was allowed to investigate the matter and concluded that the exposure was from aerosol anthrax from a military weapons facility (Sternbach, 2002). In 1992, President Yeltsin admitted that he was "absolutely certain" that "rumors" about the Soviet Union violating the 1972 Bioweapons Treaty were true. The Russians, like the US and UK, agreed to submit information to the UN about their bioweapons programs but the Russian report omitted known facilities and never acknowledged their weapons program (Alibek, 1999).
Preparation of biowarfare-grade anthrax
Theoretically, cultivating anthrax spores can be done with minimal special equipment and a first-year collegiate microbiological education. Fortunately, there are many obstacles to overcome to do this and doing this can be quite dangerous. To make large amounts of an aerosol form of anthrax suitable for biological warfare, requires extensive practical knowledge, training and highly advanced equipment.
Concentrated anthrax spores were used for bioterrorism in the 2001 anthrax attacks in the United States, delivered by mailing postal letters containing the spores. Only a few grams of material were used in these attacks and it is unknown if this material was produced by a single individual or by a state sponsored bioweapons program. These events also spawned innumerable anthrax hoaxes. In response, the US Postal Service sterilized some of the mail using a process of gamma irradiation combined with the use of a unique and proprietary enzyme treatment formula supplied by Sipco Industries Ltd.[17]
Theoretical "at home" Countermeasure
A scientific experiment performed by a high school student (later published in The Journal of Medical Toxicology) suggested that a common electric iron adjusted to the hottest setting (at least 400 degrees Fahrenheit) and used for at least 5 minutes should destroy all anthrax spores in a common envelope. [18]
See also
- 2001 anthrax attacks
- Anthrax hoaxes
- Ames strain
- Gruinard Island - site of British bioweapons trials in 1942
- Sverdlovsk Anthrax leak
- Anthrax toxin
- Anthrax Detection Device
- Anthrax Vaccine
- Anthrax Vaccine Immunization Program, or AVIP: the program for vaccinating all members of the armed services in the United States.
- Black death
- Unit 731
References
- ^ [H.W. Blanc , Anthrax: the disease of the Egyptian plagues. New Orleans Med Surg J 18 (1890), pp. 1–25.]
- ^ Jeanne Guillemin. Anthrax. The Investigation of a Deadly Outbreak
- ^ "Anthrax" by Jeanne Guillemin, University of California Press, 2001, ISBN 0-520-22917-7, pg. 3
- ^ Can Dogs Get Anthrax? Canine Nation, 30 October 2001. Retrieved 17 February 2007.
- ^ Artist dies from anthrax caught from animal skins Independent News and Media Limited, 17 August 2006. Retrieved 6 October 2006.
- ^ a b Bravata DM, Holty JE, Liu H, McDonald KM, Olshen RA, Owens DK (2006), Systematic review: a century of inhalation anthrax cases from 1900 to 2005, Annals of Internal Medicine; 144(4): 270–80.
- ^ a b "Anthrax Q & A: Signs and Symptoms". Emergency Preparedness and Response. Centers for Disease Control and Prevention. 2003. Retrieved 2007-04-19.
- ^ ANTHRAX, the investigation of a Deadly Outbreak, Jeanne Guillemin, University of California Press, 1999, ISBN 0=520-22917-7, chart of Russian deaths at Sverdlovsk, 1979, pg 27
- ^ ANTHRAX, the investigation of a Deadly Outbreak, Jeanne Guillemin, University of California Press, 1999, ISBN 0=520-22917-7, pg 34
- ^ Madigan M; Martinko J (editors). (2005). Brock Biology of Microorganisms (11th ed. ed.). Prentice Hall. ISBN 0-13-144329-1.
{{cite book}}
:|author=
has generic name (help);|edition=
has extra text (help)CS1 maint: multiple names: authors list (link) - ^ Decker, Janet. Deadly Diseases and Epidemics, Anthrax. Chelesa House Publishers, 2003. ISBN 0-7910-7302-5 p 27–28.
- ^ "Anthrax and Anthrax Vaccine - Epidemiology and Prevention of Vaccine-Preventable Diseases", National Immunization Program, Centers for Disease Control and Prevention, January 2006, http://www.cdc.gov/vaccines/vpd-vac/anthrax/downloads/ed-vpd2006-anthrax.ppt (PPT format)
- ^ The Times Newspaper:Saddam's germ war plot is traced back to one Oxford cow
- ^ Southern African News Feature : the plague wars
- ^ ANTHRAX, the investigation of a Deadly Outbreak, Jeanne Guillemin, University of California Press, 1999, ISBN 0=520-22917-7, names of victims, pg 275-277
- ^ Guillmin, op. cit.
- ^ USPS - DEPARTMENT OF PUBLIC AFFAIRS AND COMMUNICATIONS [1]
- ^ Pittsburgh Tribune-Review, February 2006 HAHA:high school research findings
- Alibek, K. Biohazard. New York, New York: Dell Publishing, 1999.
- "Bacillus anthracis and anthrax". Todar's Online Textbook of Bacteriology (University of Wisconsin-Madison Department of Bacteriology). Retrieved June 17.
{{cite web}}
: Check date values in:|accessdate=
(help); Unknown parameter|accessyear=
ignored (|access-date=
suggested) (help) - "Anthrax". CDC Division of Bacterial and Mycotic Diseases. Retrieved June 17.
{{cite web}}
: Check date values in:|accessdate=
(help); Unknown parameter|accessyear=
ignored (|access-date=
suggested) (help) - "Focus on anthrax". Nature.com. Retrieved June 17.
{{cite web}}
: Check date values in:|accessdate=
(help); Unknown parameter|accessyear=
ignored (|access-date=
suggested) (help) - Chanda, A., S. Ketan, and C.P. Horwitz. 2004. Fe-TAML catalysts: A safe way to decontaminate an anthrax simulant. Society of Environmental Journalists annual meeting. October 20–24. Pittsburgh.
- Meselson, M. et al. (1994). "The Sverdlovsk Outbreak of 1979". Science 266(5188) 1202–1208
- Sternbach, G. (2002). "The History of Anthrax". The Journal of Emergency Medicine 24(4) 463–467.
External links
- Anthrax - Comprehensive information from the Centers for Disease Control and Prevention (CDC)
- Bioterrorism Category A Agents - Information Resources
- Cutaneous Anthrax Images and Diagnosis Synopsis
- Anthrax Detection Device
- Article re. Fort Detrick and Vollum strain of Anthrax
- Template:PDFlink
- [16]
- [17]