Jump to content

Galaxy filament: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 169: Line 169:
Image:2dfdtfe.gif|2dF survey map, containing the SDSS Great Wall
Image:2dfdtfe.gif|2dF survey map, containing the SDSS Great Wall
Image:2MASS LSS chart-NEW Nasa.jpg|2MASS XSC infrared sky map
Image:2MASS LSS chart-NEW Nasa.jpg|2MASS XSC infrared sky map
Image:AstroMSseqF 063aL (18135101).jpg|Simulation of a filament that spans 400 million light years
Image:AstroMSseqF 063aL (18135101).jpg|Simulation of a filament that spans 400 million light years produced by the [[Millennium Run|Millennium Simulation]] project
</gallery>
</gallery>
</center>
</center>

Revision as of 09:17, 27 December 2013

In physical cosmology, galaxy filaments, also called supercluster complexes, great walls, or "great attractors",[1][2] are amongst the largest known cosmic structures in the universe. They are massive, thread-like formations, with a typical length of 50 to 80 megaparsecs h-1, that form the boundaries between large voids in the universe.[3] Filaments consist of gravitationally bound galaxies; parts where a large number of galaxies are very close to each other (in cosmic terms) are called superclusters.

Discovery of structures larger than superclusters began in the 1980s. In 1987, astronomer R. Brent Tully of the University of Hawaii’s Institute of Astronomy identified what he called the Pisces-Cetus Supercluster Complex. In 1989, the CfA2 Great Wall was discovered,[4] followed by the Sloan Great Wall in 2003.[5] On January 11, 2013, researchers led by Roger Clowes of the University of Central Lancashire announced the discovery of a large quasar group, the Huge-LQG, which dwarfs previously discovered galaxy filaments in size.[6] In November 2013, using gamma-ray bursts as reference points, astronomers discovered the Hercules-Corona Borealis Great Wall, an extremely huge filament measuring more than 10 billion light-years across.[7][8]

In 2006, scientists announced the discovery of three filaments aligned to form one of the largest structures known to humanity, [9] composed of densely packed galaxies and enormous blobs of gas known as Lyman-alpha blobs.[10]

List

Galaxy filaments

Filament subtype of filaments have roughly similar major and minor axes in cross-section, along the lengthwise axis.

Filaments of Galaxies
Filament Date Mean Distance Dimension Notes
Coma Filament The Coma Supercluster lies within the Coma Filament.[11] It forms part of the CfA2 Great Wall.[12]
Perseus-Pegasus Filament 1985 Connected to the Pisces-Cetus Supercluster, with the Perseus-Pisces Supercluster being a member of the filament.[13]
Ursa Major Filament Connected to the CfA Homunculus, a portion of the filament forms a portion of the "leg" of the Homunculus.[14]
Lynx-Ursa Major Filament (LUM Filament) 1999 from 2000 km/s to 8000 km/s in redshift space Connected to and separate from the Lynx-Ursa Major Supercluster.[14]
z=2.38 filament around protocluster ClG J2143-4423 2004 z=2.38 110Mpc A filament the length of the Great Wall was discovered in 2004. As of 2008, it was still the largest structure beyond redshift 2.[15][16][17][18]

Galaxy walls

The Galaxy wall subtype of filaments have a significantly greater major axis than minor axis in cross-section, along the lengthwise axis.

Walls of Galaxies
Wall Date Mean Distance Dimension Notes
CfA2 Great Wall (Coma Wall, Great Wall, Northern Great Wall, Great Northern Wall, CfA Great Wall) 1989 z=0.03058 251Mpc long
750 Mly long
250 Mly wide
20 Mly thick
This was the first super-large large-scale structure or pseudo-structure in the universe to be discovered. The CfA Homunculus lies at the heart of the Great Wall, and the Coma Supercluster forms most of the homunculus structure. The Coma Cluster lies at the core.[19][20]
Sloan Great Wall (SDSS Great Wall) 2005 z=0.07804 433Mpc long This was the largest known structure or pseudo-structure to be discovered[19] until it was eclipsed by the Huge-LQG large quasar group found eight years later.
Sculptor Wall (Southern Great Wall, Great Southern Wall, Southern Wall) 8000 km/s long
5000 km/s wide
1000 km/s deep
(in redshift space dimensions)
The Sculptor Wall is "parallel" to the Fornax Wall and "perpendicular" to the Grus Wall.[21][22]
Grus Wall The Grus Wall is "perpendicular" to the Fornax and Sculptor Walls.[22]
Fornax Wall The Fornax Cluster is part of this wall. The wall is "parallel" to the Sculptor Wall and "perpendicular" to the Grus Wall.[21][22]
Hercules-Corona Borealis Great Wall 2013 z≈2[8] 3 Gpc long,[8]
150 000 km/s deep[8]
(in redshift space)
The largest known structure in the universe.[8][7]
  • A wall has been proposed, in 2000, to lie at z=1.47 in the vicinity of radio galaxy B3 0003+387.[24]

Large Quasar Groups

Large quasar groups (LQGs) are some of the largest structures known.[27] They are theorized to be protohyperclusters/proto-supercluster-complexes/galaxy filament precursors.[28]

Large Quasar Groups
LQG Date Mean Distance Dimension Notes
Clowes & Campusano LQG
(U1.28 , CCLQG)
1991
Huge-LQG 2012 z=1.27
  • characteristic size: 500 Mpc
  • longest dimension: 1240 Mpc
It is the largest structure known in the universe,[28][27] until the discovery of the Hercules-Corona Borealis Great Wall found one year later.[8]


Supercluster complex

Supercluster complex
LQG Date Mean Distance Dimension Notes
Pisces–Cetus Supercluster Complex 1987 1 billion ly wide,
150 million ly deep
Contains Virgo Supercluster and Local Group

Map of nearest galaxy walls

The Universe within 500 million Light Years, showing the nearest galaxy walls

Maps of large-scale distribution

See also

References

  1. ^ Boris V. Komberg, Andrey V. Kravtsov, Vladimir N. Lukash; "The search and investigation of the Large Groups of Quasars"; arXiv:astro-ph/9602090 ; Bibcode:1996astro.ph..2090K ;
  2. ^ R.G.Clowes; "Large Quasar Groups - A Short Review"; 'The New Era of Wide Field Astronomy', ASP Conference Series, Vol. 232.; 2001; Astronomical Society of the Pacific; ISBN 1-58381-065-X ; Bibcode:2001ASPC..232..108C
  3. ^ Bharadwaj, Somnath; Bhavsar, Suketu; Sheth, Jatush V. The Size of the Longest Filaments in the Universe. Astrophys.J. 606 (2004) 25-31
  4. ^ M. J. Geller & J. P. Huchra, Science 246, 897 (1989).
  5. ^ Sky and Telescope, "Refining the Cosmic Recipe", 14 November 2003
  6. ^ Wall, Mike (2013-01-11). "Largest structure in universe discovered". Fox News.
  7. ^ a b "Universe's Largest Structure is a Cosmic Conundrum". discovery. 2013-11-19. Retrieved 2013-11-22. {{cite web}}: |first= missing |last= (help)
  8. ^ a b c d e f Horvath I., Hakkila J. (2013). "The largest structure of the Universe, defined by Gamma-Ray Bursts". arXiv:1311.1104. {{cite journal}}: Cite journal requires |journal= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  9. ^ Cain, Fraser. "The Largest Structure in the Universe". Universe Today.
  10. ^ Than, Ker (2006-07-28). "Scientists: Cosmic blob biggest thing in universe". SPACE.com. Retrieved 2007-03-11.
  11. ^ 'Astronomy and Astrophysics' (ISSN 0004-6361), vol. 138, no. 1, Sept. 1984, p. 85-92. Research supported by Cornell University "The Coma/A 1367 filament of galaxies" 09/1984 Bibcode:1984A&A...138...85F
  12. ^ THE ASTRONOMICAL JOURNAL, 115:1745-1777, 1998 May ; THE STAR FORMATION PROPERTIES OF DISK GALAXIES: Hα IMAGING OF GALAXIES IN THE COMA SUPERCLUSTER
  13. ^ 'Astrophysical Journal', Part 1 (ISSN 0004-637X), vol. 299, Dec. 1, 1985, p. 5-14. "A possible 300 megaparsec filament of clusters of galaxies in Perseus-Pegasus" 12/1985 Bibcode:1985ApJ...299....5B
  14. ^ a b 'The Astrophysical Journal Supplement Series', Volume 121, Issue 2, pp. 445-472. "Photometric Properties of Kiso Ultraviolet-Excess Galaxies in the Lynx-Ursa Major Region" 04/1999 Bibcode:1999ApJS..121..445T
  15. ^ NASA, GIANT GALAXY STRING DEFIES MODELS OF HOW UNIVERSE EVOLVED, January 7, 2004
  16. ^ 'The Astrophysical Journal', Volume 602, Issue 2, pp. 545-554. The Distribution of Lyα-Emitting Galaxies at z=2.38 02/2004 Bibcode:2004ApJ...602..545P doi:10.1086/381145
  17. ^ 'The Astrophysical Journal', Volume 614, Issue 1, pp. 75-83. The Distribution of Lyα-emitting Galaxies at z=2.38. II. Spectroscopy 10/2004 Bibcode:2004ApJ...614...75F doi:10.1086/423417
  18. ^ 'Relativistic Astrophysics Legacy and Cosmology - Einstein's, ESO Astrophysics Symposia', Volume . ISBN 978-3-540-74712-3. Springer-Verlag Berlin Heidelberg, 2008, p. 358 Ultraviolet-Bright, High-Redshift ULIRGS 00/2008 Bibcode:2008ralc.conf..358W
  19. ^ a b Chin. J. Astron. Astrophys. Vol. 6 (2006), No. 1, 35–42 Template:PDF
  20. ^ 'Scientific American', Vol. 280, No. 6, p. 30 - 37 Template:PDF 06/1999 Bibcode:1999SciAm.280f..30L
  21. ^ a b c Unveiling large-scale structures behind the Milky Way. Astronomical Society of the Pacific Conference Series, Vol. 67; Proceedings of a workshop at the Observatoire de Paris-Meudon; 18–21 January 1994; San Francisco: Astronomical Society of the Pacific (ASP); c1994; edited by Chantal Balkowski and R. C. Kraan-Korteweg, p.21 ; Visualization of Nearby Large-Scale Structures ; Fairall, A. P., Paverd, W. R., & Ashley, R. P. ; 1994ASPC...67...21F
  22. ^ a b c d 'Astrophysics and Space Science', Volume 230, Issue 1-2, pp. 225-235 Large-Scale Structures in the Distribution of Galaxies 08/1995 Bibcode:1995Ap&SS.230..225F
  23. ^ World Science, Wall of galaxies tugs on ours, astronomers find April 19, 2006
  24. ^ 'The Astronomical Journal', Volume 120, Issue 5, pp. 2331-2337. B3 0003+387: AGN-Marked Large-Scale Structure at Redshift 1.47? 11/2000 Bibcode:2000AJ....120.2331T doi:10.1086/316827
  25. ^ FermiLab, Astronomers Find Wall of Galaxies Traversing the Hubble Deep Field, DARPA, Monday, January 24, 2000
  26. ^ 'The Astronomical Journal', Volume 119, Issue 6, pp. 2571-2582 ; QSOS and Absorption-Line Systems surrounding the Hubble Deep Field ; 06/2000 ; doi:10.1086/301404 ; Bibcode:2000AJ....119.2571V ;
  27. ^ a b ScienceDaily, "Biggest Structure in Universe: Large Quasar Group Is 4 Billion Light Years Across", Royal Astronomical Society, 11 January 2013 (accessed 13 January 2013)
  28. ^ a b Clowes, Roger G.; Harris, Kathryn A.; Raghunathan, Srinivasan; Campusano, Luis E.; Soechting, Ilona K.; Graham, Matthew J.; "A structure in the early universe at z ~ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology"; arXiv:1211.6256 ; Bibcode:2012arXiv1211.6256C ; doi:10.1093/mnras/sts497 ; Monthly Notices of the Royal Astronomical Society, 11 January 2013

Further reading