Isotopes of nickel: Difference between revisions
m Reverted edits by ProDuct0339 (talk) to last version by DePiep |
Rescuing 2 sources and tagging 0 as dead. #IABot (v1.3beta6) |
||
Line 491: | Line 491: | ||
{{Reflist}} |
{{Reflist}} |
||
* Isotope masses from: |
* Isotope masses from: |
||
**{{cite journal |
**{{cite journal|author=G. Audi |author2=A. H. Wapstra |author3=C. Thibault |author4=J. Blachot |author5=O. Bersillon |year=2003 |title=The NUBASE evaluation of nuclear and decay properties |url=http://www.nndc.bnl.gov/amdc/nubase/Nubase2003.pdf |journal=[[Nuclear Physics A]] |volume=729 |issue= |pages=3–128 |doi=10.1016/j.nuclphysa.2003.11.001 |bibcode=2003NuPhA.729....3A |deadurl=yes |archiveurl=https://web.archive.org/web/20080923135135/http://www.nndc.bnl.gov/amdc/nubase/Nubase2003.pdf |archivedate=23 September 2008 |df= }} |
||
* Isotopic compositions and standard atomic masses from: |
* Isotopic compositions and standard atomic masses from: |
||
**{{cite journal |author=J. R. de Laeter |author2=J. K. Böhlke |author3=P. De Bièvre |author4=H. Hidaka |author5=H. S. Peiser |author6=K. J. R. Rosman |author7=P. D. P. Taylor |year=2003 |title=Atomic weights of the elements. Review 2000 (IUPAC Technical Report) |url=http://www.iupac.org/publications/pac/75/6/0683/pdf/ |journal=[[Pure and Applied Chemistry]] |volume=75 |issue=6 |pages=683–800 |doi=10.1351/pac200375060683}} |
**{{cite journal |author=J. R. de Laeter |author2=J. K. Böhlke |author3=P. De Bièvre |author4=H. Hidaka |author5=H. S. Peiser |author6=K. J. R. Rosman |author7=P. D. P. Taylor |year=2003 |title=Atomic weights of the elements. Review 2000 (IUPAC Technical Report) |url=http://www.iupac.org/publications/pac/75/6/0683/pdf/ |journal=[[Pure and Applied Chemistry]] |volume=75 |issue=6 |pages=683–800 |doi=10.1351/pac200375060683}} |
||
**{{cite journal |author=M. E. Wieser |year=2006 |title=Atomic weights of the elements 2005 (IUPAC Technical Report) |url=http://iupac.org/publications/pac/78/11/2051/pdf/ |journal=[[Pure and Applied Chemistry]] |volume=78 |issue=11 |pages=2051–2066 |doi=10.1351/pac200678112051 |laysummary=http://old.iupac.org/news/archives/2005/atomic-weights_revised05.html}} |
**{{cite journal |author=M. E. Wieser |year=2006 |title=Atomic weights of the elements 2005 (IUPAC Technical Report) |url=http://iupac.org/publications/pac/78/11/2051/pdf/ |journal=[[Pure and Applied Chemistry]] |volume=78 |issue=11 |pages=2051–2066 |doi=10.1351/pac200678112051 |laysummary=http://old.iupac.org/news/archives/2005/atomic-weights_revised05.html}} |
||
* Half-life, spin, and isomer data selected from the following sources. See editing notes on [[Talk:Isotopes of nickel|this article's talk page]]. |
* Half-life, spin, and isomer data selected from the following sources. See editing notes on [[Talk:Isotopes of nickel|this article's talk page]]. |
||
**{{cite journal |
**{{cite journal|author=G. Audi |author2=A. H. Wapstra |author3=C. Thibault |author4=J. Blachot |author5=O. Bersillon |year=2003 |title=The NUBASE evaluation of nuclear and decay properties |url=http://www.nndc.bnl.gov/amdc/nubase/Nubase2003.pdf |journal=[[Nuclear Physics A]] |volume=729 |issue= |pages=3–128 |doi=10.1016/j.nuclphysa.2003.11.001 |bibcode=2003NuPhA.729....3A |deadurl=yes |archiveurl=https://web.archive.org/web/20080923135135/http://www.nndc.bnl.gov/amdc/nubase/Nubase2003.pdf |archivedate=23 September 2008 |df= }} |
||
**{{cite web |author=[[National Nuclear Data Center]] |year= |title=NuDat 2.1 database |url=http://www.nndc.bnl.gov/nudat2/ |publisher=[[Brookhaven National Laboratory]] |accessdate=23 February 2017}} |
**{{cite web |author=[[National Nuclear Data Center]] |year= |title=NuDat 2.1 database |url=http://www.nndc.bnl.gov/nudat2/ |publisher=[[Brookhaven National Laboratory]] |accessdate=23 February 2017}} |
||
**{{cite book |author=N. E. Holden |year=2004 |editor=D. R. Lide |chapter=Table of the Isotopes |title=[[CRC Handbook of Chemistry and Physics]] |page=Section 11 |nopp=yes |edition=85th |publisher=[[CRC Press]] |isbn=978-0-8493-0485-9}} |
**{{cite book |author=N. E. Holden |year=2004 |editor=D. R. Lide |chapter=Table of the Isotopes |title=[[CRC Handbook of Chemistry and Physics]] |page=Section 11 |nopp=yes |edition=85th |publisher=[[CRC Press]] |isbn=978-0-8493-0485-9}} |
Revision as of 14:16, 15 April 2017
| ||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Ni) | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring nickel (28Ni) is composed of five stable isotopes; 58
Ni
, 60
Ni
, 61
Ni
, 62
Ni
and 64
Ni
with 58
Ni
being the most abundant (68.077% natural abundance).[4] 26 radioisotopes have been characterised with the most stable being 59
Ni
with a half-life of 76,000 years, 63
Ni
with a half-life of 100.1 years, and 56
Ni
with a half-life of 6.077 days. All of the remaining radioactive isotopes have half-lives that are less than 60 hours and the majority of these have half-lives that are less than 30 seconds. This element also has 1 meta state.
Notable isotopes
The 5 stable and 26 unstable isotopes of nickel range in atomic weight from 48
Ni
to 78
Ni
, and include:
Nickel-48, discovered in 1999, is the most neutron-poor nickel isotope known. With 28 protons and 20 neutrons 48
Ni
is "doubly magic" (like 208
Pb
) and therefore much more stable than would be expected from its position in the chart of nuclides.[5]
Nickel-56 is produced in large quantities in type Ia supernovae and the shape of the light curve of these supernovae display characteristic timescales corresponding to the decay of nickel-56 to cobalt-56 and then to iron-56.
Nickel-58 is the most abundant isotope of nickel, making up 68.077% of the natural abundance. Possible sources include electron capture from copper-58 and EC + p from zinc-59.
Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 76,000 years. 59
Ni
has found many applications in isotope geology. 59
Ni
has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment.
Nickel-60 is the daughter product of the extinct radionuclide 60
Fe
(half-life = 2.6 My). Because 60
Fe
had such a long half-life, its persistence in materials in the solar system at high enough concentrations may have generated observable variations in the isotopic composition of 60
Ni
. Therefore, the abundance of 60
Ni
present in extraterrestrial material may provide insight into the origin of the solar system and its early history/very early history. Unfortunately, nickel isotopes appear to have been heterogeneously distributed in the early solar system. Therefore, so far, no actual age information has been attained from 60
Ni
excesses. Other sources may also include beta decay from cobalt-60 and electron capture from copper-60.
Nickel-61 is the only stable isotope of nickel with a nuclear spin (I = 3/2), which makes it useful for studies by EPR spectroscopy.[6]
Nickel-62 has the highest binding energy per nucleon of any isotope for any element, when including the electron shell in the calculation. More energy is released forming this isotope than any other, although fusion can form heavier isotopes. For instance, two 40
Ca
atoms can fuse to form 80
Kr
plus 4 electrons, liberating 77 keV per nucleon, but reactions leading to the iron/nickel region are more probable as they release more energy per baryon.
Nickel-63 has two main uses: Detection of explosives traces, and in certain kinds of electronic devices, such as surge protectors. A surge protector is a device that protects sensitive electronic equipment like computers from sudden changes in the electric current flowing into them. It is also used in Electron capture detector in gas chromatography for the detection mainly of halogens.
Nickel-64 is another stable isotope of nickel. Possible sources include beta decay from cobalt-64, and electron capture from copper-64
Nickel-78 is the element's heaviest isotope and is believed to have an important involvement in supernova nucleosynthesis of elements heavier than iron.[7]
List of isotopes
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s)[8][n 1] |
daughter isotope(s)[n 2] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|
excitation energy (keV) | |||||||||
48 Ni |
28 | 20 | 48.01975(54)# | 10# ms [>500 ns] |
0+ | ||||
49 Ni |
28 | 21 | 49.00966(43)# | 13(4) ms [12(+5-3) ms] |
7/2−# | ||||
50 Ni |
28 | 22 | 49.99593(28)# | 9.1(18) ms | β+ | 50Co | 0+ | ||
51 Ni |
28 | 23 | 50.98772(28)# | 30# ms [>200 ns] |
β+ | 51Co | 7/2−# | ||
52 Ni |
28 | 24 | 51.97568(9)# | 38(5) ms | β+ (83%) | 52Co | 0+ | ||
β+, p (17%) | 51Fe | ||||||||
53 Ni |
28 | 25 | 52.96847(17)# | 45(15) ms | β+ (55%) | 53Co | (7/2−)# | ||
β+, p (45%) | 52Fe | ||||||||
54 Ni |
28 | 26 | 53.95791(5) | 104(7) ms | β+ | 54Co | 0+ | ||
55 Ni |
28 | 27 | 54.951330(12) | 204.7(17) ms | β+ | 55Co | 7/2− | ||
56 Ni |
28 | 28 | 55.942132(12) | 6.075(10) d | β+ | 56 Co |
0+ | ||
57 Ni |
28 | 29 | 56.9397935(19) | 35.60(6) h | β+ | 57 Co |
3/2− | ||
58 Ni |
28 | 30 | 57.9353429(7) | Observationally stable[n 3] | 0+ | 0.680769(89) | |||
59 Ni |
28 | 31 | 58.9343467(7) | 7.6(5)×104 y | EC (99%) | 59 Co |
3/2− | ||
β+ (1.5x10−5%)[9] | |||||||||
60 Ni |
28 | 32 | 59.9307864(7) | Stable | 0+ | 0.262231(77) | |||
61 Ni |
28 | 33 | 60.9310560(7) | Stable | 3/2− | 0.011399(6) | |||
62 Ni [n 4] |
28 | 34 | 61.9283451(6) | Stable | 0+ | 0.036345(17) | |||
63 Ni |
28 | 35 | 62.9296694(6) | 100.1(20) y | β− | 63 Cu |
1/2− | ||
63m Ni |
87.15(11) keV | 1.67(3) µs | 5/2− | ||||||
64 Ni |
28 | 36 | 63.9279660(7) | Stable | 0+ | 0.009256(9) | |||
65 Ni |
28 | 37 | 64.9300843(7) | 2.5172(3) h | β− | 65 Cu |
5/2− | ||
65m Ni |
63.37(5) keV | 69(3) µs | 1/2− | ||||||
66 Ni |
28 | 38 | 65.9291393(15) | 54.6(3) h | β− | 66 Cu |
0+ | ||
67 Ni |
28 | 39 | 66.931569(3) | 21(1) s | β− | 67 Cu |
1/2− | ||
67m Ni |
1007(3) keV | 13.3(2) µs | β− | 67 Cu |
9/2+ | ||||
IT | 67Ni | ||||||||
68 Ni |
28 | 40 | 67.931869(3) | 29(2) s | β− | 68 Cu |
0+ | ||
68m1 Ni |
1770.0(10) keV | 276(65) ns | 0+ | ||||||
68m2 Ni |
2849.1(3) keV | 860(50) µs | 5- | ||||||
69 Ni |
28 | 41 | 68.935610(4) | 11.5(3) s | β− | 69 Cu |
9/2+ | ||
69m1 Ni |
321(2) keV | 3.5(4) s | β− | 69 Cu |
(1/2−) | ||||
IT | 69Ni | ||||||||
69m2 Ni |
2701(10) keV | 439(3) ns | (17/2−) | ||||||
70 Ni |
28 | 42 | 69.93650(37) | 6.0(3) s | β− | 70 Cu |
0+ | ||
70m Ni |
2860(2) keV | 232(1) ns | 8+ | ||||||
71 Ni |
28 | 43 | 70.94074(40) | 2.56(3) s | β− | 71 Cu |
1/2−# | ||
72 Ni |
28 | 44 | 71.94209(47) | 1.57(5) s | β− (>99.9%) | 72 Cu |
0+ | ||
β−, n (<.1%) | 71 Cu | ||||||||
73 Ni |
28 | 45 | 72.94647(32)# | 0.84(3) s | β− (>99.9%) | 73 Cu |
(9/2+) | ||
β−, n (<.1%) | 72 Cu | ||||||||
74 Ni |
28 | 46 | 73.94807(43)# | 0.68(18) s | β− (>99.9%) | 74 Cu |
0+ | ||
β−, n (<.1%) | 73 Cu | ||||||||
75 Ni |
28 | 47 | 74.95287(43)# | 0.6(2) s | β− (98.4%) | 75 Cu |
(7/2+)# | ||
β−, n (1.6%) | 74 Cu | ||||||||
76 Ni |
28 | 48 | 75.95533(97)# | 470(390) ms [0.24(+55-24) s] |
β− (>99.9%) | 76 Cu |
0+ | ||
β−, n (<.1%) | 75 Cu | ||||||||
77 Ni |
28 | 49 | 76.96055(54)# | 300# ms [>300 ns] |
β− | 77 Cu |
9/2+# | ||
78 Ni |
28 | 50 | 77.96318(118)# | 120# ms [>300 ns] |
β− | 78 Cu |
0+ |
- ^ Abbreviations:
IT: Isomeric transition - ^ Bold for stable isotopes
- ^ Believed to decay by β+β+ to 58Fe with a half-life over 7×1020 years
- ^ Highest binding energy per nucleon of all nuclides
Notes
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
- Nuclide masses are given by IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO).
- Isotope abundances are given by IUPAC Commission on Isotopic Abundances and Atomic Weights (CIAAW).
References
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ "Standard Atomic Weights: Nickel". CIAAW. 2007.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (4 May 2022). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ "Isotopes of the Element Nickel". Science education. Jefferson Lab.
- ^ "Discovery of doubly magic nickel". CERN Courier. 15 March 2000. Retrieved 2 April 2013.
- ^ Maurice van Gastel; Wolfgang Lubitz (2009). "EPR Investigation of [NiFe] Hydrogenases". In Graeme Hanson; Lawrence Berliner (eds.). High Resolution EPR: Applications to Metalloenzymes and Metals in Medicine. Dordrecht: Springer. pp. 441–470. ISBN 9780387848563.
- ^ Davide Castelvecchi (22 April 2005). "Atom Smashers Shed Light on Supernovae, Big Bang". Sky & Telescope.
- ^ "Universal Nuclide Chart". nucleonica.
{{cite web}}
: Unknown parameter|registration=
ignored (|url-access=
suggested) (help) - ^ I. Gresits; S. Tölgyesi (September 2003). "Determination of soft X-ray emitting isotopes in radioactive liquid wastes of nuclear power plants". Journal of Radioanalytical and Nuclear Chemistry. 258 (1): 107–112.
- Isotope masses from:
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 23 September 2008.
{{cite journal}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help)
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 23 September 2008.
- Isotopic compositions and standard atomic masses from:
- J. R. de Laeter; J. K. Böhlke; P. De Bièvre; H. Hidaka; H. S. Peiser; K. J. R. Rosman; P. D. P. Taylor (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- M. E. Wieser (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
{{cite journal}}
: Unknown parameter|laysummary=
ignored (help)
- Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 23 September 2008.
{{cite journal}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help) - National Nuclear Data Center. "NuDat 2.1 database". Brookhaven National Laboratory. Retrieved 23 February 2017.
- N. E. Holden (2004). "Table of the Isotopes". In D. R. Lide (ed.). CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. Section 11. ISBN 978-0-8493-0485-9.
{{cite book}}
: Unknown parameter|nopp=
ignored (|no-pp=
suggested) (help)
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 23 September 2008.